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The Parabola Theorem

Suppose that an ∈ Pα for n = 1, 2, . . . .
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Möbius transformations

tn(z) =
an

1 + z

Tn = t1 ◦ t2 ◦ · · · ◦ tn
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Convergence using Möbius transformations

The continued fraction K(an| 1) converges if and only if
T1(0), T2(0), T3(0), . . . converges.
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Question

What does the condition a ∈ Pα signify for the map
t(z) = a/(1 + z)?
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Answer

The coefficient a belongs to Pα if and only if t maps a
half-plane Hα within itself.
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Proof (α = 0)

t(H) ⊂ H ⇐⇒ |a− 0| ≤ |a− ∂H|
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Proof (α = 0)

Parabola |a− 0| = |a− ∂H|.
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Original condition

an ∈ Pα
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tn(−1) =∞

tn(∞) = 0 tn(Hα) ⊂ Hα

Does Tn = t1 ◦ t2 ◦ · · · ◦ tn converge at 0?
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Conclusion

If an ∈ Pα then there are points p and q in Hα such that T2n−1

converges on Hα to p, and T2n converges on Hα to q.
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Action of T2n−1
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Suppose an ∈ Pα.

Then K(an| 1) converges if and only if the
Stern–Stolz series diverges.
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The Stern–Stolz series
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Convergence of the Stern–Stolz series

tn(z) =
an

1 + z
∼ sn(z) =

an
z
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Möbius transformations
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an
z

Sn = s1 ◦ s2 ◦ · · · ◦ sn
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Convergence of the Stern–Stolz series

Is Sn ∼ Tn?
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Chordal metric

Let χ denote the chordal metric.

Let M denote the group of Möbius transformations.

χ0(f, g) = sup
z∈C∞

χ(f(z), g(z))

χ0 is right-invariant.
(M, χ0) is a topological group.
(M, χ0) is a complete metric space.
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χ0(f, g) = sup
z∈C∞

χ(f(z), g(z))

χ0 is right-invariant.
(M, χ0) is a topological group.

(M, χ0) is a complete metric space.



A classical theorem The parabolic region The Stern–Stolz series

Chordal metric

Let χ denote the chordal metric.
Let M denote the group of Möbius transformations.
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The Stern–Stolz series

µ1 =
1
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µ2 =
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µ3 =
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. . .

|µ1|+ |µ2|+ |µ3|+ · · ·

S2n−1(z) =
1

µ2n−1z
S2n(z) = µ2nz
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Conjugation

µz ◦ (1 + z) ◦ µ−1z = µ+ z

S2n ◦ (1 + z) ◦ S−1
2n (z) = µ2n + z

Let σ(z) = 1
z .

S2n−1 ◦ (1 + z) ◦ S−1
2n−1(z) = σ ◦ (µ2n−1 + z) ◦ σ
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Calculation

χ0(SnT−1
n , Sn−1T

−1
n−1)

= χ0(Snt−1
n , Sn−1)

= χ0(I, Sn−1tnS
−1
n )

= χ0(I, Sn ◦ (1 + z) ◦ S−1
n )

= χ0(I, µn + z)
∼ |µn|
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Summary
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Convergence of the Stern–Stolz series

∑
n

χ0(SnT−1
n , Sn−1T

−1
n−1) < +∞

There exists Möbius g such that χ0(SnT−1
n , g)→ 0.

Let h = g−1.

χ0(Tn, hSn)→ 0
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Oscillation

Recall
S2n−1(z) =

1
µ2n−1z

S2n(z) = µ2nz

So if Tn ∼ hSn then T2n−1 → h(∞) and T2n → h(0).
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Oscillation

Action of T2n−1
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Hyperbolic space
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Hyperbolic geometry

S2n−1(z) =
1

µ2n−1z
S2n(z) = µ2nz

S−1
2n−1(z) =

1
µ2n−1z

S−1
2n (z) =

z

µ2n

S−1
n (j) =

j

|µn|

If |µn| < 1 then

exp
[
−ρ(j, S−1

n (j))
]

= exp
[
− log

(
1
|µn|

)]
= |µn|
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n exp[−ρ(j, Sn(j))] < +∞ and ∞ is the only (conical) limit

point of Sn∑
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Thank you!
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