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Theorem (Heins, 1946).The only groups that arise as

conformal symmetry groups of �nitely connected regions of

connectivity at least three are A4, S4, A5, Cn , and Dn , for

n = 1; 2; : : : .
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Conformal symmetries of punctured spheres

Theorem (Beardon & Minda, 2008). Let p1; p2; : : : ; pn and

q1; q2; : : : ; qn , n � 4, be two sets of punctures in C1. There

exists a Möbius map f such that f (pi ) = qi for i = 1; 2; : : : ;n if

and only if [pi ; pj ; pk ; pl ] = [qi ; qj ; qk ; ql ] for all distinct
quadruples i ; j ; k ; l .
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Conformal symmetries of circular regions

Theorem (Beardon & Minda, 2008). Let D be a region

bounded by n circles C1;C2; : : : ;Cn , and let �i be the

hyperbolic plane with boundary Ci . De�ne D 0, C 0

i , and �0i
similarly. There exists a Möbius map f such that f (D) = D 0

and f (Ci ) = C 0

i for i = 1; 2; : : : ;n if and only if

%(�i ;�j ) = %(�0i ;�
0

j ) for each pair i ; j .
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