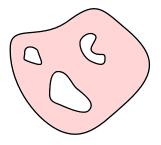

Conformal symmetries of planar regions I

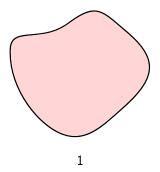
Ian Short

Tuesday 2 November 2010

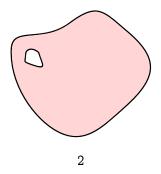

C onformal symmetries 00000000000

INTRODUCTION

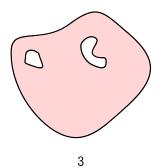
Introduction
•0000000000


Hyperbolic geometry 0000000 Conformal symmetries

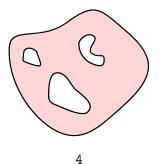
Regions


Introduction
0000000000

Hyperbolic geometry 0000000 Conformal symmetries

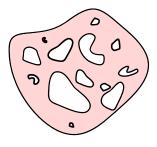

Introduction
0000000000

Hyperbolic geometry 0000000 Conformal symmetries


Introduction
0000000000

Hyperbolic geometry 0000000 Conformal symmetries

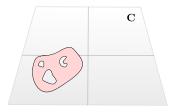
Introduction
0000000000


Hyperbolic geometry 0000000 Conformal symmetries

Circular regions

Hyperbolic geometry 0000000 Conformal symmetries

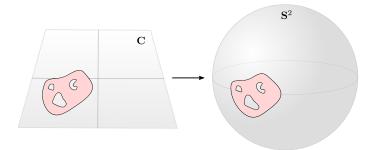
Connectivity



 ∞

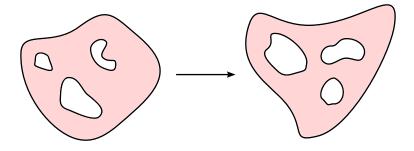
Circular regions

Hyperbolic geometry 0000000 Conformal symmetries


STEREOGRAPHIC PROJECTION

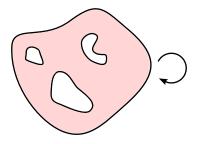
Circular regions

Hyperbolic geometry 0000000 Conformal symmetries


STEREOGRAPHIC PROJECTION

Introduction
00000000000000000

Hyperbolic geometry 0000000 Conformal symmetries


Conformal maps

INTRODUCTION 00000000000 Circular regions

Hyperbolic geometry 0000000 Conformal symmetries

CONFORMAL SYMMETRIES

INTRODUCTION 00000000000

Two questions

QUESTION 1. What are the conformal maps from one region to another?

QUESTION 2. Which groups arise as conformal symmetry groups?

Introduction	
00000000000	

Two questions

QUESTION 1. What are the conformal maps from one region to another?

QUESTION 2. Which groups arise as conformal symmetry groups?

Conformal symmetries 00000000000

SELECTED PUBLICATIONS

On directly conformal maps Maurice Heins Bulletin of the American Mathematical Society, 1946

Conformal automorphisms of finitely connected regions

Alan Beardon and David Minda London Mathematical Society Lecture Note Series 348, 2008

Rigidity of configuration of balls and points in the *N*-sphere Edward Crane and Ian Short

Conformal symmetries 00000000000

SELECTED PUBLICATIONS

On directly conformal maps Maurice Heins Bulletin of the American Mathematical Society 10

Conformal automorphisms of finitely connected regions Alan Beardon and David Minda London Mathematical Society Lecture Note Series 348, 2008

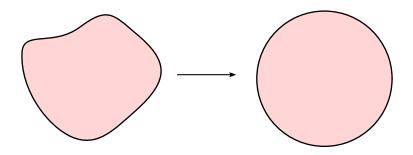
Rigidity of configuration of balls and points in the N-sphere Edward Crane and Ian Short The Quarterly Journal of Mathematics, 2010

C onformal symmetries 0000000000

SELECTED PUBLICATIONS

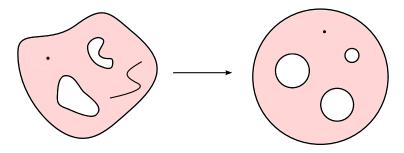
On directly conformal maps

Maurice Heins


Bulletin of the American Mathematical Society, 1946

Conformal automorphisms of finitely connected regions Alan Beardon and David Minda

Rigidity of configuration of balls and points in the *N*-sphere Edward Crane and Ian Short The Quarterly Journal of Mathematics, 2010


Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
00000000000	00000000	000000	0000000000

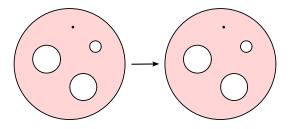
THE RIEMANN MAPPING THEOREM

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
000000000000	00000000	000000	0000000000

THE RIEMANN MAPPING THEOREM

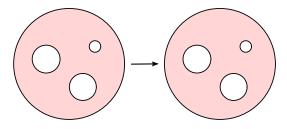
Koebe's generalisation

Introduction	
0000000000000	

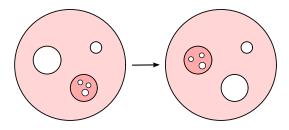

Conformal symmetries 00000000000

PUBLICATION

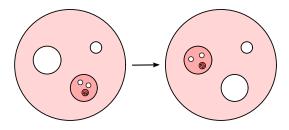
Fixed points, Koebe uniformization and circle packings Zheng-Xu He and Oded Schramm The Annals of Mathematics, 1993


Circular regions

Hyperbolic geometry 0000000 Conformal symmetries


Circular regions

Hyperbolic geometry 0000000 Conformal symmetries


Circular regions

Hyperbolic geometry 0000000 Conformal symmetries

Circular regions

Hyperbolic geometry 0000000 Conformal symmetries

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
000000000	00000000	000000	0000000000

Möbius maps

$$z\mapsto rac{az+b}{cz+d} \qquad a,b,c,d\in \mathbb{C} \qquad ad-bc=1$$

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
000000000	00000000	000000	0000000000

Möbius maps

C onformal symmetries 00000000000

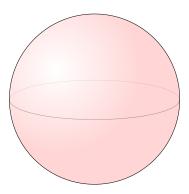
CIRCULAR REGIONS

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	•0000000	000000	0000000000

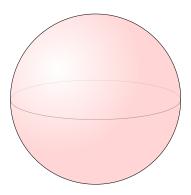
Two questions

QUESTION 1. Is there a conformal map from one region to another?

QUESTION 2. Which groups arise as conformal symmetry groups?


000000000 0000000 0000000 0000000000000	Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
	0000000000	•00000000	000000	0000000000

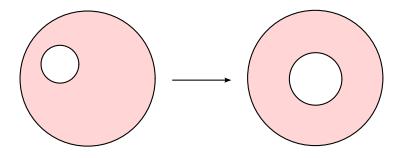
Two questions


QUESTION 1. Is there a conformal map from one region to another?

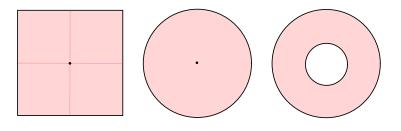
QUESTION 2. Which groups arise as conformal symmetry groups of finitely connected regions?

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

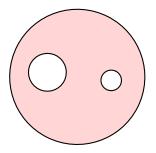
Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000



Conformal symmetry group is \mathcal{M} .

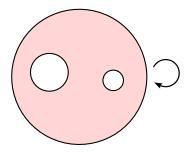

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

Introduction Circular regions Hyperbolic geometry Conformation	LSYMMETRES
00000000 00000000 0000000 0000000	000


Introduction	Circular regions	Hyperbolic geometry	C onfor mal symmetries
0000000000	00000000	0000000	0000000000

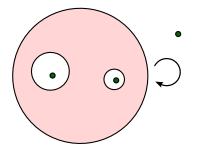
Introduction	
00000000000	

Hyperbolic geometry 0000000 Conformal symmetries


Connectivity 3+

Introduction	
00000000000	

Hyperbolic geometry 0000000 Conformal symmetries


Connectivity 3+

Introduction	Circular regions
0000000000	00000000

Hyperbolic geometry 0000000 Conformal symmetries 0000000000

Connectivity 3+

INTRODUCTION	(
0000000000	(

C onformal symmetries 00000000000

Connectivity 3+

Conformal symmetry group is finite.

Introduction	
00000000000	

Conformal symmetries 00000000000

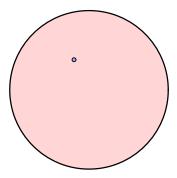
Connectivity 3+

Conformal symmetry group is finite.

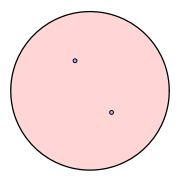
Which finite groups arise as conformal symmetry groups?

Introduction	
00000000000	

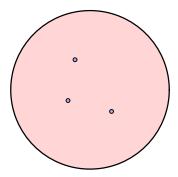
Connectivity 3+

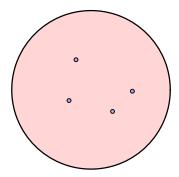

Conformal symmetry group is finite.

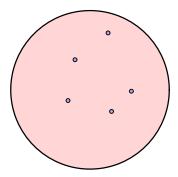
Which finite groups arise as conformal symmetry groups?

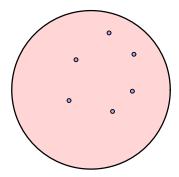

Which finite groups arise as subgroups of the Möbius group?

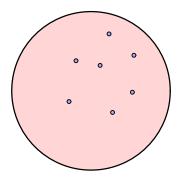
 INTRODUCTION
 C RCULAR REGIONS
 HYPERBOLIC GEOMETRY
 C ONFORMAL SYMMETRIES

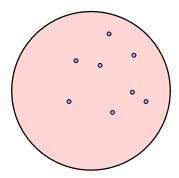

 0000000000
 000000000
 000000000
 0000000000

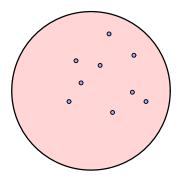

Introduction	Circular regions	Hyperbolic geometry	C ONFORMAL SYMMETRIES
0000000000	000000000	000000	0000000000

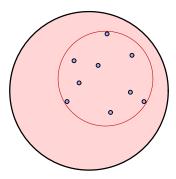

Introduction	Circular regions	Hyperbolic geometry	C onformal symmetries
0000000000	000000000	000000	0000000000

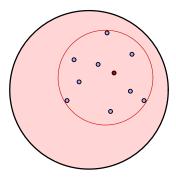

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000

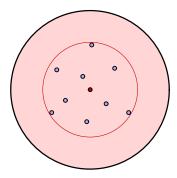

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000

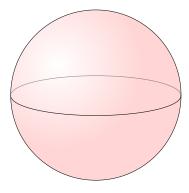

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000

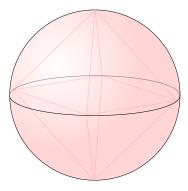
Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000

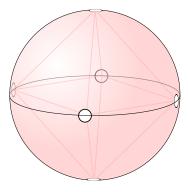


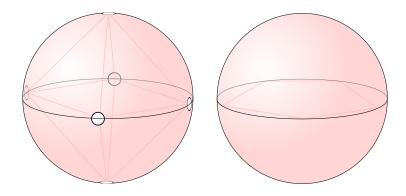
Introduction	Circular regions	Hyperbolic geometry	C onformal symmetries
0000000000	000000000	000000	0000000000

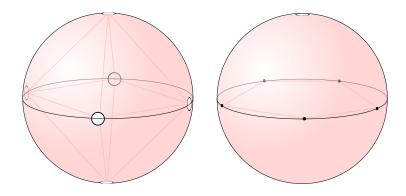


 INTRODUCTION
 C RCULAR REGIONS
 HYPERBOLIC GEOMETRY
 C ONFORMAL SYMMETRIES


 0000000000
 000000000
 000000000
 0000000000


Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onfor mal symmetries
0000000000	000000000	0000000	0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	000000000	000000	0000000000

000000000 0000000 0000000 00000000000	Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
	0000000000	000000000	000000	0000000000

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

THEOREM (HEINS, 1946).

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	0000000	0000000000

THEOREM (HEINS, 1946). The only groups that arise as conformal symmetry groups of finitely connected regions of connectivity at least three

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

THEOREM (HEINS, 1946). The only groups that arise as conformal symmetry groups of finitely connected regions of connectivity at least three are A_4 , S_4 , A_5 , C_n , and D_n , for $n = 1, 2, \ldots$

INTRODUCTION 0000000000 Circular regions

Hyperbolic geometry

Conformal symmetries 0000000000

Hyperbolic geometry

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000

The real Möbius group

$$x\mapsto rac{ax+b}{cx+d} \qquad a,b,c,d\in \mathbb{R} \qquad ad-bc=1$$

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000

The real Möbius group

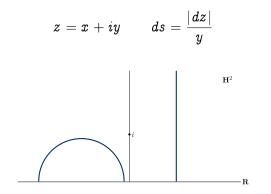
$$x\mapsto rac{ax+b}{cx+d}\qquad a,b,c,d\in \mathbb{R}\qquad ad-bc=1$$

 $-\mathbf{R}$

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

The real Möbius group

$$x\mapsto rac{ax+b}{cx+d}$$
 a, b, c, $d\in\mathbb{R}$ $ad-bc=1$


Introduction	Circular regions	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000

TWO-DIMENSIONAL HYPERBOLIC GEOMETRY

$$z=x+iy \qquad ds=rac{|dz|}{y}$$

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000

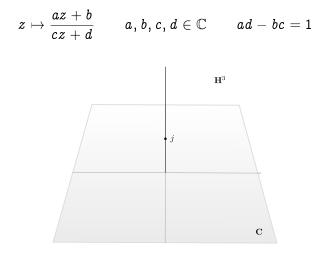
Two-dimensional hyperbolic geometry

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000


The complex Möbius group

$$z\mapsto rac{az+b}{cz+d} \qquad a,b,c,d\in \mathbb{C} \qquad ad-bc=1$$

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000


The complex Möbius group

$$z\mapsto rac{az+b}{cz+d} \qquad a,b,c,d\in \mathbb{C} \qquad ad-bc=1$$

Introduction	Circular regions	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000

The complex Möbius group

INTRODUCTION 00000000000 Circular regions

Hyperbolic geometry 0000000 Conformal symmetries

Action on \mathbb{H}^3

Introduction	Circular regions	Hyperbolic geometry	C ONFOR MAL SYMMETRIES
0000000000	00000000	0000000	0000000000

Action on \mathbb{H}^3

 $\zeta = z + tj$ t > 0

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	000000	0000000000

Action on \mathbb{H}^3

$$\zeta = z + tj$$
 $t > 0$

$$\zeta\mapsto (a\zeta+b)(c\zeta+d)^{-1} \qquad a,b,c,d\in\mathbb{C} \qquad ad-bc=1$$

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	0000000	0000000000

Action on \mathbb{H}^3

$$\zeta = z + tj$$
 $t > 0$

$$\zeta\mapsto (a\zeta+b)(c\zeta+d)^{-1}\qquad a,b,c,d\in\mathbb{C}\qquad ad-bc=1$$

 ${
m Euclidean\ similarities}:\qquad \zeta\mapsto a\zeta\,d^{-1}+b$

Introduction	Circular regions	Hyperbolic geometry	C onformal symmetries
0000000000	00000000	0000000	0000000000

Action on \mathbb{H}^3

$$\zeta = z + tj$$
 $t > 0$

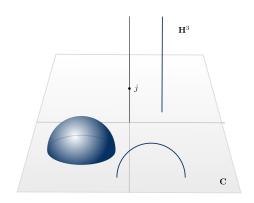
$$\zeta\mapsto (a\zeta+b)(c\zeta+d)^{-1} \qquad a,b,c,d\in\mathbb{C} \qquad ad-bc=1$$

 ${
m Euclidean\ similarities}:\qquad \zeta\mapsto a\zeta\,d^{-1}+b$

inversion in unit sphere: $\zeta\mapsto ar{\zeta}^{-1}$

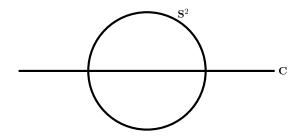
Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C onfor mal symmetries
0000000000	00000000	0000000	0000000000

THREE-DIMENSIONAL HYPERBOLIC GEOMETRY

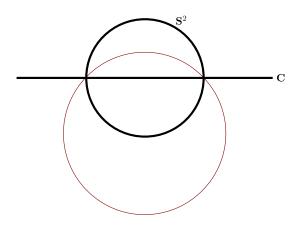

$$\zeta = x + iy + jt \qquad ds = rac{|d\zeta|}{t}$$

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C ONFOR MAL SYMMETRIES
0000000000	00000000	0000000	0000000000

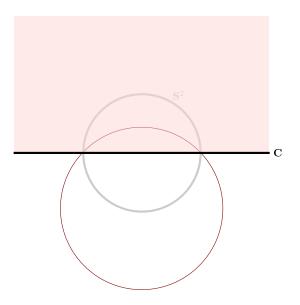
THREE-DIMENSIONAL HYPERBOLIC GEOMETRY


$$\zeta = x + iy + jt$$
 $ds = rac{|d\zeta|}{t}$

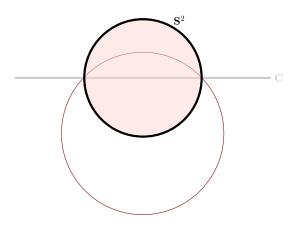
1


Circular regions

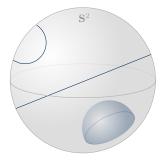
Hyperbolic geometry 0000000 Conformal symmetries


Circular regions

Hyperbolic geometry 00000€0 Conformal symmetries


Circular regions

Hyperbolic geometry 00000€0 Conformal symmetries 0000000000


Circular regions

Hyperbolic geometry 00000€0 Conformal symmetries

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

BALL MODEL OF HYPERBOLIC SPACE

INTRODUCTION 00000000000 Circular regions

Hyperbolic geometry 0000000 C onformal symmetries

CONFORMAL SYMMETRIES

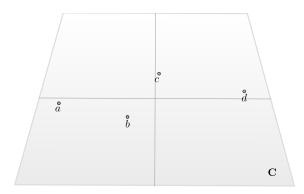
Two questions

QUESTION 1. What are the conformal maps from one region to another?

QUESTION 2. Which groups arise as conformal symmetry groups?

Punctured spheres

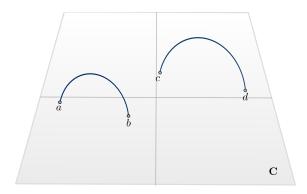
Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000


Cross-ratios

$$\left[a, b, c, d
ight] = \left|rac{(a-b)(c-d)}{(a-c)(b-d)}
ight|$$

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C ONFOR MAL SYMMETRIES
0000000000	00000000	0000000	0000000000

CROSS-RATIOS


$$\left[a, b, c, d
ight] = \left|rac{(a-b)(c-d)}{(a-c)(b-d)}
ight|$$

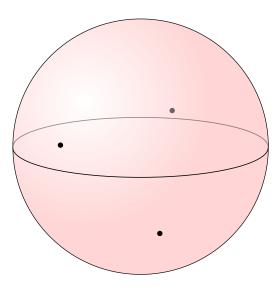
Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

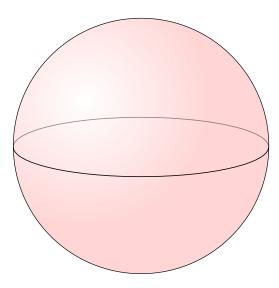
Cross-ratios


$$\left[a, b, c, d\right] = \left|rac{(a-b)(c-d)}{(a-c)(b-d)}
ight|$$

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

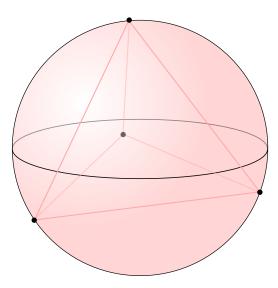
Cross-ratios


$$\left[a, b, c, d
ight] = \left|rac{(a-b)(c-d)}{(a-c)(b-d)}
ight|$$

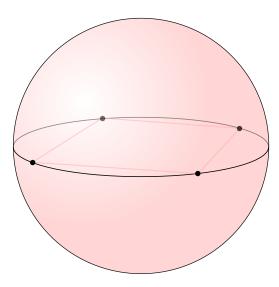

Introduction	Circular regions	Hype
0000000000	00000000	0000

Hyperbolic geometry 0000000 Conformal symmetries 0000000000

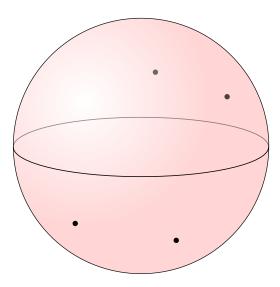
THREE PUNCTURED SPHERE

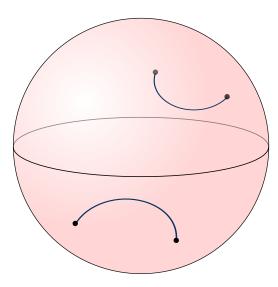


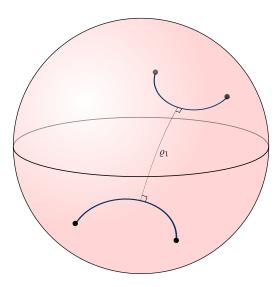
Introduction	Circular regions	Hyperbolic geometry	C ONFOR MAL SYMMETRIES
0000000000	00000000	0000000	0000000000

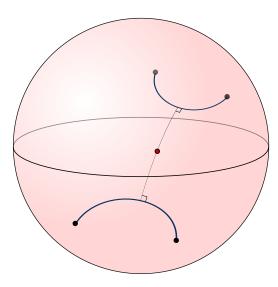


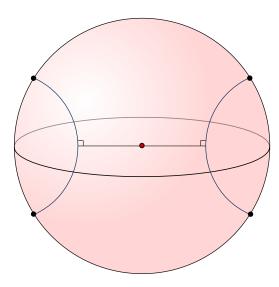
Introduction	
00000000000	


Hyperbolic geometry 0000000 Conformal symmetries 0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000


Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	0000000	0000000000


Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C ONFOR MAL SYMMETRIES
0000000000	00000000	000000	0000000000

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

Introduction	Circular regions	Hyperbolic geometry	C ONFOR MAL SYMMETRIES
0000000000	00000000	0000000	0000000000

Introduction
00000000000

Hyperbolic geometry 0000000 Conformal symmetries 0000000000

CONFORMAL SYMMETRIES OF PUNCTURED SPHERES

Introduction	Circular regions	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

CONFORMAL SYMMETRIES OF PUNCTURED SPHERES

THEOREM (BEARDON & MINDA, 2008). Let p_1, p_2, \ldots, p_n and q_1, q_2, \ldots, q_n , $n \ge 4$, be two sets of punctures in \mathbb{C}_{∞} .

000000000 0000000 0000000 000000 000000	Introduction	CIRCULAR REGIONS	Hyperbolic geometry	C ONFORMAL SYMMETRES
	0000000000	00000000	0000000	0000000000

CONFORMAL SYMMETRIES OF PUNCTURED SPHERES

THEOREM (BEARDON & MINDA, 2008). Let p_1, p_2, \ldots, p_n and $q_1, q_2, \ldots, q_n, n \ge 4$, be two sets of punctures in \mathbb{C}_{∞} . There exists a Möbius map f such that $f(p_i) = q_i$ for $i = 1, 2, \ldots, n$ if and only if

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	000000000

CONFORMAL SYMMETRIES OF PUNCTURED SPHERES

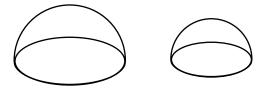
THEOREM (BEARDON & MINDA, 2008). Let p_1, p_2, \ldots, p_n and $q_1, q_2, \ldots, q_n, n \ge 4$, be two sets of punctures in \mathbb{C}_{∞} . There exists a Möbius map f such that $f(p_i) = q_i$ for $i = 1, 2, \ldots, n$ if and only if $[p_i, p_j, p_k, p_l] = [q_i, q_j, q_k, q_l]$ for all distinct quadruples i, j, k, l.

Conformal symmetries 00000000000

Circular regions

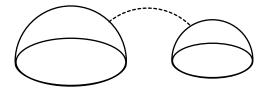
Introduction
00000000000

Hyperbolic geometry 0000000 Conformal symmetries 00000000000

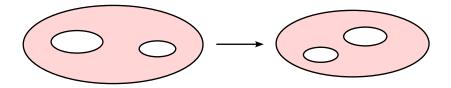

CROSS-RATIO FOR CIRCLES?

Circular regions

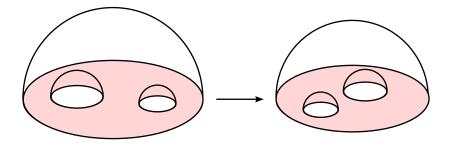
Hyperbolic geometry 0000000 Conformal symmetries 00000000000


CROSS-RATIO FOR CIRCLES?

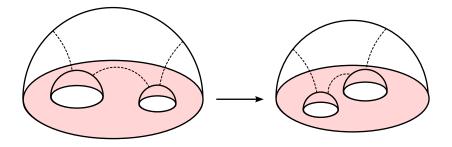
Circular regions


Hyperbolic geometry 0000000 Conformal symmetries 00000000000

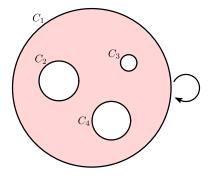
CROSS-RATIO FOR CIRCLES?


Introduction
00000000000

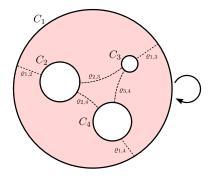
Hyperbolic geometry 0000000 Conformal symmetries 000000000000


Introduction
00000000000

Hyperbolic geometry 0000000 Conformal symmetries 000000000000


Introduction
00000000000

Hyperbolic geometry 0000000 Conformal symmetries 000000000000


Introduction
00000000000

Hyperbolic geometry 0000000 Conformal symmetries 0000000000

Introduction
00000000000

Hyperbolic geometry 0000000 Conformal symmetries 0000000000

NTRODUCTION	
00000000000	

Hyperbolic geometry 0000000 Conformal symmetries 0000000000

Conformal symmetries of circular regions

Introduction	CIRCULAR REGIONS	Hyperbolic geometry	Conformal symmetries
0000000000	00000000	000000	0000000000

CONFORMAL SYMMETRIES OF CIRCULAR REGIONS

THEOREM (BEARDON & MINDA, 2008). Let D be a region bounded by n circles C_1, C_2, \ldots, C_n , and let Π_i be the hyperbolic plane with boundary C_i .

Introduction
00000000000

CONFORMAL SYMMETRIES OF CIRCULAR REGIONS

THEOREM (BEARDON & MINDA, 2008). Let D be a region bounded by n circles C_1, C_2, \ldots, C_n , and let Π_i be the hyperbolic plane with boundary C_i . Define D', C'_i , and Π'_i similarly.

Introduction
00000000000

Hyperbolic geometry 0000000 Conformal symmetries 0000000000

CONFORMAL SYMMETRIES OF CIRCULAR REGIONS

THEOREM (BEARDON & MINDA, 2008). Let D be a region bounded by n circles C_1, C_2, \ldots, C_n , and let Π_i be the hyperbolic plane with boundary C_i . Define D', C'_i , and Π'_i similarly. There exists a Möbius map f such that f(D) = D'and $f(C_i) = C'_i$ for $i = 1, 2, \ldots, n$ if and only if

Introduction
00000000000

CONFORMAL SYMMETRIES OF CIRCULAR REGIONS

THEOREM (BEARDON & MINDA, 2008). Let D be a region bounded by n circles C_1, C_2, \ldots, C_n , and let Π_i be the hyperbolic plane with boundary C_i . Define D', C'_i , and Π'_i similarly. There exists a Möbius map f such that f(D) = D'and $f(C_i) = C'_i$ for $i = 1, 2, \ldots, n$ if and only if $\rho(\Pi_i, \Pi_j) = \rho(\Pi'_i, \Pi'_j)$ for each pair i, j.