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Möbius group

M =

�
z 7!

az + b

cz + d
: a ; b; c; d 2 C; ad � bc = 1

�

M�= SL(2;C)=f�I g

Coincides with the topology of uniform convergence.
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Theorem (Maskit, 1968). Each region in C1 is conformally

equivalent to a region D for which Aut+(D) is a subgroup of
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Let GI be the connected component of the identity in G .
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Otherwise GI contains a one-parameter subgroup of M.
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Sketch proof that Aut+(D) is discrete II

The one-parameter subgroups in SL(2;C) are t 7! exp(tA) for

A in sl(2;C).

Now,

sl(2;C) =
( 

a b

c �a

!
: a ; b; c 2 C

)
:

Two types of Jordan normal form: 
� 0

0 ��

!
;

 
0 1

0 0

!
:

Hence, up to conjugation, the one-parameter subgroups in M
are

z 7! e�tz ; z 7! z + t ; t 2 R:
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Sketch proof that Aut+(D) is discrete III

GI contains either z 7! e�tz or z 7! z + t .

Unless � purely imaginary this means that every component of

C1 nD contains 1.

When � purely imaginary get annuli (at most two components).
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Size of limit sets

Let G be a discrete group with limit set �. Four possibilities

arise.

j�j = 0 �! G is �nite

j�j = 1 �! G is a discrete group of Euclidean isometries

j�j = 2 �! G is a discrete group of C� isometries

j�j uncountable
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Finite punctures �! �nite conformal symmetry group

Countable punctures �! elementary discrete conformal symmetry group
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Conformal symmetry groups of countably connected regions

Theorem.

Let D be a countably connected region of

connectivity at least three. Then D is conformally equivalent to

a region whose conformal symmetry group is either a Fuchsian

group or an elementary discrete group. Furthermore, each

Fuchsian group and elementary discrete group arises as the

conformal symmetry group of a countably connected region.
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Möbius maps in higher dimensions

Definition.

A Möbius map of Rn [ f1g is a homeomorphism

f that either takes the form f (z ) = Az +B or

f (z ) = A�(z ) +B , where � is an inversion, A is an orthogonal

map followed by a scaling, and B 2 Rn .
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Significance

Positive. Fewer conformal maps to worry about.

Negative. No Riemann mapping theorem.
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Two dimensions. Groups A4, S4, A5, Cn , and Dn .

Higher dimensions. All �nite groups arise.
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Finitely punctured spheres

Definition. Let Aut(D) denote the full group of conformal

and anticonformal symmetries of a region D in Sn .

Theorem. Let D be the complement in Sn of �nitely many (at

least three) punctures. Then Aut(D) is conjugate to F �O ,

where F is a �nite group and O is an orthogonal group.

Conversely, given a �nite group F and an orthogonal group O

there exists a �nitely punctured sphere D such that Aut(D) is

isomorphic to F �O .
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Intersecting circles

There exists a Möbius map f such that f (C1) = C 0

1,

f (C2) = C 0

2, and f (C3) = C 0

3 if and only if %1;2 = %01;2,
%2;3 = %02;3, and %3;1 = %03;1.
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Inversive distance

�(C1;C2) = cosh %1;2
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Extend Question 1

Observation. Let C1;C2; : : : ;Cm and C 0

1;C
0

2 : : : ;C
0

m be two

sets of circles. Suppose that f is a Möbius transformation such

that f (Ci ) = C 0

i for each i . Then, by conformality and

preservation of hyperbolic distance, �(Ci ;Cj ) = �(C 0

i ;C
0

j ) for

each pair i ; j .

Does the converse hold?
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The main theorem

Theorem (Crane & Short, 2010.) Let D1;D2; : : : ;Dm and

D 0

1;D
0

2; : : : ;D
0

m be two collections of discs such thatT
@Di =

T
@D 0

i = ;. Then there is a Möbius transformation f

such that f (Di ) = D 0

i for each i if and only if

�̂(Di ;Dj ) = �̂(D 0

i ;D
0

j ) for each pair i ; j .
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Proof

Use the hyperboloid model of hyperbolic space.

Equip R4 with the Lorentz inner product

h(x1; x2; x3; x4); (y1; y2; y3; y4)i = x1y1 + x2y2 + x3y3 � x4y4:

H3 =
n
x 2 R4 : kxk2 = �1; x4 > 0

o

cosh %(x ; y) = �hx ; yi
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Hyperboloid model

H3 =
�
x 2 R4 : kxk2 = �1; x4 > 0
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Hyperbolic isometries

Lorentz transformations : linear maps that preserve the Lorentz

inner product.

Positive Lorentz transformations : Lorentz transformations that

preserve H3.
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Inversive distance

Given discs D1 and D2 with associated space-like normals n1
and n2 in R4 we have

�̂(D1;D2) = hn1;n2i:

The rest is linear algebra...
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Quasiconformal map of circular regions

Theorem.

Let 
 and 
0 be two circular regions in the complex

plane bounded by circles C1;C2; : : : ;Cm and C 0

1;C
0

2; : : : ;C
0

m ,

respectively. Let f be a K -quasiconformal map from 
 to 
0

with f (Ci ) = C 0

i for each i . Then

1

K
6

exp %i ;j
exp %0i ;j

6 K

for each pair i ; j .
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Does the converse hold?
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Thank you!
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