	MAPS
00 00000000000000 000000000000000000000000000000000000	

Conformal symmetries of planar regions II

Ian Short

Tuesday 2 November 2010

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	00000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
•0	000000000000000	000000000	000000000000	0000000

Two questions

QUESTION 1. What are the conformal maps from one region to another?

QUESTION 2. Which groups arise as conformal symmetry groups?

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
•0	000000000000000	000000000	000000000000	0000000

Two questions

QUESTION 1. What are the conformal maps from one region to another?

QUESTION 2. Which groups arise as conformal symmetry groups?

Recap	Infinite connectivity	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000000000000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	Infinite connectivity
00	000000000000000000000000000000000000000

Higher dimensions

Lorentz space 0000000000000 QUASICONFORMAL MAPS 00000000

INFINITE CONNECTIVITY

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	●00000000000000	000000000	000000000000	0000000

Plan

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000	000000000	0000000000000	0000000

Möbius group

$$\mathcal{M}=\left\{z\mapsto rac{az+b}{cz+d}\,:\,a,b,c,d\in\mathbb{C},\;ad-bc=1
ight\}$$

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000	000000000	000000000000	0000000

Möbius group

$$\mathcal{M}=\left\{z\mapsto rac{az+b}{cz+d}\,:\,a,b,c,d\in\mathbb{C},\;ad-bc=1
ight\}$$

$$\mathcal{M}\cong \mathrm{SL}(2,\mathbb{C})/\{\pm I\}$$

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000	000000000	000000000000	0000000

Möbius group

$$\mathcal{M}=\left\{z\mapsto rac{az+b}{cz+d}\,:\,a,b,c,d\in\mathbb{C},\;ad-bc=1
ight\}$$

$$\mathcal{M}\cong \mathrm{SL}(2,\mathbb{C})/\{\pm I\}$$

Coincides with the topology of uniform convergence.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Maskit's Theorem

DEFINITION. Let $Aut^+(D)$ denote the group of conformal symmetries of a region D.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Maskit's Theorem

DEFINITION. Let $Aut^+(D)$ denote the group of conformal symmetries of a region D.

Theorem (Maskit, 1968).

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Maskit's Theorem

DEFINITION. Let $Aut^+(D)$ denote the group of conformal symmetries of a region D.

THEOREM (MASKIT, 1968). Each region in \mathbb{C}_{∞} is conformally equivalent to a region D for which $\operatorname{Aut}^+(D)$ is a subgroup of \mathcal{M} .

Recap	Infinite connectivity	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Conformal symmetry groups are closed

Suppose henceforth that $\operatorname{Aut}^+(D) \leq \mathcal{M}$.

Recap	Infinite connectivity	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

CONFORMAL SYMMETRY GROUPS ARE CLOSED

Suppose henceforth that $\operatorname{Aut}^+(D) \leq \mathcal{M}$.

```
LEMMA. Aut<sup>+</sup>(D) is closed in \mathcal{M}.
```

Recap	Infinite connectivity	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Conformal symmetry groups are discrete

Recap	Infinite connectivity	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000000000000000000000000000	000000000	000000000000	0000000

CONFORMAL SYMMETRY GROUPS ARE DISCRETE

THEOREM. If D is a region of connectivity at least three then $Aut^+(D)$ is discrete.

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let $G = \operatorname{Aut}^+(D)$.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let $G = \operatorname{Aut}^+(D)$.

Let G_I be the connected component of the identity in G.

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let $G = \operatorname{Aut}^+(D)$.

Let G_I be the connected component of the identity in G.

If $G_I = \{I\}$ then G is discrete.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let $G = \operatorname{Aut}^+(D)$.

Let G_I be the connected component of the identity in G.

If $G_I = \{I\}$ then G is discrete.

Otherwise G_I contains a one-parameter subgroup of \mathcal{M} .

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

The one-parameter subgroups in $SL(2, \mathbb{C})$ are $t \mapsto \exp(tA)$ for A in $\mathfrak{sl}(2, \mathbb{C})$.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

The one-parameter subgroups in $SL(2, \mathbb{C})$ are $t \mapsto \exp(tA)$ for A in $\mathfrak{sl}(2, \mathbb{C})$. Now,

$$\mathfrak{sl}(2,\mathbb{C})=\left\{egin{pmatrix}a&b\\c&-a\end{pmatrix}:a,b,c\in\mathbb{C}
ight\}.$$

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

The one-parameter subgroups in $SL(2, \mathbb{C})$ are $t \mapsto \exp(tA)$ for A in $\mathfrak{sl}(2, \mathbb{C})$. Now,

$$\mathfrak{sl}(2,\mathbb{C})=\left\{egin{pmatrix}a&b\\c&-a\end{pmatrix}:a,b,c\in\mathbb{C}
ight\}.$$

Two types of Jordan normal form:

$$\begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Sketch proof that $Aut^+(D)$ is discrete II

The one-parameter subgroups in $SL(2, \mathbb{C})$ are $t \mapsto \exp(tA)$ for A in $\mathfrak{sl}(2, \mathbb{C})$. Now,

$$\mathfrak{sl}(2,\mathbb{C})=\left\{egin{pmatrix}a&b\\c&-a\end{pmatrix}:a,b,c\in\mathbb{C}
ight\}.$$

Two types of Jordan normal form:

$$\begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Hence, up to conjugation, the one-parameter subgroups in $\ensuremath{\mathcal{M}}$ are

$$z\mapsto e^{\lambda\,t}z,\qquad z\mapsto z+t,\qquad t\in\mathbb{R}.$$

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

 G_I contains either $z\mapsto e^{\lambda t}z$ or $z\mapsto z+t.$

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

 G_I contains either $z\mapsto e^{\lambda\,t}z$ or $z\mapsto z+t.$

Unless λ purely imaginary this means that every component of $\mathbb{C}_{\infty} \setminus D$ contains ∞ .
Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Sketch proof that $\operatorname{Aut}^+(D)$ is discrete III

 G_I contains either $z\mapsto e^{\lambda\,t}z$ or $z\mapsto z+t.$

Unless λ purely imaginary this means that every component of $\mathbb{C}_{\infty} \setminus D$ contains ∞ .

When λ purely imaginary get annuli (at most two components).

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

PROPERTIES OF LIMIT SETS

 Λ is closed

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

PROPERTIES OF LIMIT SETS

 Λ is closed

 Λ is invariant under G

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

PROPERTIES OF LIMIT SETS

 Λ is closed

 Λ is invariant under G

 Λ is the *smallest* closed set invariant under G

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let G be a discrete group with limit set Λ . Four possibilities arise.

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let G be a discrete group with limit set Λ . Four possibilities arise.

 $|\Lambda|=0 ext{ } \longrightarrow ext{ } G ext{ is finite }$

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let G be a discrete group with limit set Λ . Four possibilities arise.

 $|\Lambda|=0 \longrightarrow G$ is finite

 $|\Lambda|=1 \longrightarrow G$ is a discrete group of Euclidean isometries

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let G be a discrete group with limit set Λ . Four possibilities arise.

 $|\Lambda|=0 \longrightarrow G$ is finite

 $|\Lambda|=1 \longrightarrow G$ is a discrete group of Euclidean isometries

 $|\Lambda|=2$ \longrightarrow G is a discrete group of \mathbb{C}^* isometries

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Let G be a discrete group with limit set Λ . Four possibilities arise.

 $|\Lambda|=0$ \longrightarrow G is finite

 $|\Lambda|=1 \longrightarrow G$ is a discrete group of Euclidean isometries

 $|\Lambda|=2 \longrightarrow G$ is a discrete group of \mathbb{C}^* isometries

 $|\Lambda|$ uncountable

Recap Infin	NITE CONNECTIVITY	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
000	00000000000000	000000000	000000000000	0000000

PUNCTURED SPHERES OF COUNTABLE CONNECTIVITY

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	00000000000000000	000000000	000000000000	0000000

PUNCTURED SPHERES OF COUNTABLE CONNECTIVITY

Finite punctures \longrightarrow finite conformal symmetry group

Recap	Infinite connectivity	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

PUNCTURED SPHERES OF COUNTABLE CONNECTIVITY

Finite punctures \longrightarrow finite conformal symmetry group

 $Countable \ punctures \longrightarrow elementary \ discrete \ conformal \ symmetry \ group$

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000000000000000000000000	000000000	000000000000	0000000

Discrete group of isometries of ${\mathbb C}$

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000000000000000000000000	000000000	000000000000	0000000

Discrete group of isometries of \mathbb{C}^*

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000000000000000000000000	000000000	000000000000	0000000

THEOREM.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000000	000000000	0000000000000	0000000

THEOREM. Let D be a countably connected region of connectivity at least three.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000	000000000	000000000000	0000000

THEOREM. Let D be a countably connected region of connectivity at least three. Then D is conformally equivalent to a region whose conformal symmetry group is either a Fuchsian group or an elementary discrete group.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000	000000000	000000000000	0000000

THEOREM. Let D be a countably connected region of connectivity at least three. Then D is conformally equivalent to a region whose conformal symmetry group is either a Fuchsian group or an elementary discrete group. Furthermore, each Fuchsian group and elementary discrete group arises as the conformal symmetry group of a countably connected region.

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

In the source of the state of t	QUASICONFORMAL MAPS
00 000000000000 0000000000 000000000000000000000000000000000000	0000000

Recap Infini	ITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00 0000	••••••••	000000000	0000000000000	0000000

Recap	Infinite connectivity	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL N
00	000000000000000	000000000	000000000000	0000000

HIGHER DIMENSIONS

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	●000000000	000000000000	0000000

Plan

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000000000000000000000000	000000000	000000000000	0000000

Decomposing Möbius maps

$$rac{az+b}{cz+d}=rac{a}{c}-rac{1}{c(cz+d)}$$
Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	00000000	000000000000	0000000

Decomposing Möbius maps

$$rac{az+b}{cz+d}=rac{a}{c}-rac{1}{c(cz+d)}$$
 $\sigma(z)=rac{1}{z+rac{d}{c}}$ $A(z)=-rac{1}{c^2}z$ $B=rac{a}{c}$

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	00000000	000000000000	0000000

Decomposing Möbius maps

$$egin{array}{ll} rac{az+b}{cz+d}&=rac{a}{c}-rac{1}{c(cz+d)}\ \sigma(z)&=rac{1}{z+rac{d}{c}} &A(z)=-rac{1}{c^2}z &B=rac{a}{c}\ rac{az+b}{cz+d}&=A\sigma(z)+B \end{array}$$

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

DEFINITION.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Definition. A *Möbius map* of $\mathbb{R}^n \cup \{\infty\}$ is a homeomorphism f that either takes the form

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

DEFINITION. A *Möbius map* of $\mathbb{R}^n \cup \{\infty\}$ is a homeomorphism f that either takes the form f(z) = Az + B

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

DEFINITION. A *Möbius map* of $\mathbb{R}^n \cup \{\infty\}$ is a homeomorphism f that either takes the form f(z) = Az + B or $f(z) = A\sigma(z) + B$,

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

DEFINITION. A *Möbius map* of $\mathbb{R}^n \cup \{\infty\}$ is a homeomorphism f that either takes the form f(z) = Az + B or $f(z) = A\sigma(z) + B$, where σ is an inversion, A is an orthogonal map followed by a scaling, and $B \in \mathbb{R}^n$.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

LIOUVILLE'S THEOREM

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

LIOUVILLE'S THEOREM

THEOREM (LIOUVILLE, 1850). A smooth conformal map from one region in \mathbb{R}^n to another is a Möbius transformation.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

SIGNIFICANCE

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

SIGNIFICANCE

POSITIVE. Fewer conformal maps to worry about.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

SIGNIFICANCE

POSITIVE. Fewer conformal maps to worry about.

NEGATIVE. No Riemann mapping theorem.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

FINITELY CONNECTED REGIONS

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

FINITELY CONNECTED REGIONS

Two dimensions. Groups A_4 , S_4 , A_5 , C_n , and D_n .

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

FINITELY CONNECTED REGIONS

Two dimensions. Groups A_4 , S_4 , A_5 , C_n , and D_n .

HIGHER DIMENSIONS. All finite groups arise.

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	0000000000	000000000000	0000000

DEFINITION. Let $\operatorname{Aut}(D)$ denote the full group of conformal and anticonformal symmetries of a region D in \mathbb{S}^n .

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	0000000000	000000000000	0000000

DEFINITION. Let Aut(D) denote the full group of conformal and anticonformal symmetries of a region D in \mathbb{S}^n .

THEOREM. Let D be the complement in \mathbb{S}^n of finitely many (at least three) punctures.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	0000000000	000000000000	0000000

DEFINITION. Let Aut(D) denote the full group of conformal and anticonformal symmetries of a region D in \mathbb{S}^n .

THEOREM. Let D be the complement in \mathbb{S}^n of finitely many (at least three) punctures. Then $\operatorname{Aut}(D)$ is conjugate to $F \times O$, where F is a finite group and O is an orthogonal group.

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	0000000000000000	0000000000	000000000000	0000000

DEFINITION. Let Aut(D) denote the full group of conformal and anticonformal symmetries of a region D in \mathbb{S}^n .

THEOREM. Let D be the complement in \mathbb{S}^n of finitely many (at least three) punctures. Then $\operatorname{Aut}(D)$ is conjugate to $F \times O$, where F is a finite group and O is an orthogonal group. Conversely, given a finite group F and an orthogonal group O there exists a finitely punctured sphere D such that $\operatorname{Aut}(D)$ is isomorphic to $F \times O$.

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	0000000000000000	00000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	0000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	0000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	0000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	0000000000	000000000000	0000000

More complicated groups

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	0000000000	000000000000	0000000

More complicated groups

 $\operatorname{Aut}(D) \cong (\operatorname{O}_2 \times \operatorname{O}_2 \times \operatorname{O}_2) \rtimes S_3$

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

 $G \leqslant {\mathcal M}_n$ $G|_{\Sigma}$ either discrete or ${\mathcal M}_k$

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

 $G \leqslant \mathcal{M}_n$ $G|_{\Sigma}$ either discrete or \mathcal{M}_k Fix(Σ) conjugate to a closed orthogonal group

Recap	Infinite connectivity
00	000000000000000000000000000000000000000

Higher dimensions

Lorentz space

QUASICONFORMAL MAPS 00000000

LORENTZ SPACE

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000000000000000000000000000	000000000	●000000000000	0000000

Plan

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

INTERSECTING CIRCLES

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

INTERSECTING CIRCLES

There exists a Möbius map f such that $f(C_1) = C'_1$, $f(C_2) = C'_2$, and $f(C_3) = C'_3$ if and only if $\rho_{1,2} = \rho'_{1,2}$, $\rho_{2,3} = \rho'_{2,3}$, and $\rho_{3,1} = \rho'_{3,1}$.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	00000000000	0000000

INTERSECTING CIRCLES

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

INVERSIVE DISTANCE

 $\sigma(C_1,\,C_2)=\cosharrho_{1,2}$

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000	0000000

INVERSIVE DISTANCE

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

OBSERVATION. Let C_1, C_2, \ldots, C_m and C'_1, C'_2, \ldots, C'_m be two sets of circles.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

OBSERVATION. Let C_1, C_2, \ldots, C_m and C'_1, C'_2, \ldots, C'_m be two sets of circles. Suppose that f is a Möbius transformation such that $f(C_i) = C'_i$ for each i.

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

OBSERVATION. Let C_1, C_2, \ldots, C_m and C'_1, C'_2, \ldots, C'_m be two sets of circles. Suppose that f is a Möbius transformation such that $f(C_i) = C'_i$ for each i. Then, by conformality and preservation of hyperbolic distance, $\sigma(C_i, C_j) = \sigma(C'_i, C'_j)$ for each pair i, j.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

OBSERVATION. Let C_1, C_2, \ldots, C_m and C'_1, C'_2, \ldots, C'_m be two sets of circles. Suppose that f is a Möbius transformation such that $f(C_i) = C'_i$ for each i. Then, by conformality and preservation of hyperbolic distance, $\sigma(C_i, C_j) = \sigma(C'_i, C'_j)$ for each pair i, j.

Does the converse hold?

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Another problematic example

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Another problematic example

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

THEOREM (CRANE & SHORT, 2010.)

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

THEOREM (CRANE & SHORT, 2010.) Let D_1, D_2, \ldots, D_m and D'_1, D'_2, \ldots, D'_m be two collections of discs such that $\bigcap \partial D_i = \bigcap \partial D'_i = \emptyset$.

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

THEOREM (CRANE & SHORT, 2010.) Let D_1, D_2, \ldots, D_m and D'_1, D'_2, \ldots, D'_m be two collections of discs such that $\bigcap \partial D_i = \bigcap \partial D'_i = \emptyset$. Then there is a Möbius transformation f such that $f(D_i) = D'_i$ for each i if and only if $\hat{\sigma}(D_i, D_j) = \hat{\sigma}(D'_i, D'_j)$ for each pair i, j.

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Use the hyperboloid model of hyperbolic space.

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Use the hyperboloid model of hyperbolic space. Equip \mathbb{R}^4 with the Lorentz inner product

 $\langle (x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)
angle = x_1y_1 + x_2y_2 + x_3y_3 - x_4y_4.$

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Use the hyperboloid model of hyperbolic space. Equip \mathbb{R}^4 with the Lorentz inner product

 $\langle (x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)
angle = x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4.$

$$\mathcal{H}^3=\left\{x\in\mathbb{R}^4\ :\ \|x\|^2=-1,\quad x_4>0
ight\}$$

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Use the hyperboloid model of hyperbolic space. Equip \mathbb{R}^4 with the Lorentz inner product

 $\langle (x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)
angle = x_1 y_1 + x_2 y_2 + x_3 y_3 - x_4 y_4.$

$$\mathcal{H}^3=\left\{x\in\mathbb{R}^4\,:\,\|x\|^2=-1,\quad x_4>0
ight\}$$

 $\cosh arrho(x,y) = -\langle x,y
angle$

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Hyperboloid model

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	00000000000000	0000000

Hyperbolic isometries

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	00000000000000	0000000

Hyperbolic isometries

Lorentz transformations : linear maps that preserve the Lorentz inner product.

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	00000000000000	0000000

HYPERBOLIC ISOMETRIES

Lorentz transformations : linear maps that preserve the Lorentz inner product.

Positive Lorentz transformations : Lorentz transformations that preserve \mathcal{H}^3 .

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000000	0000000

Normals

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000000	0000000

Normals

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000000	0000000

Normals

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

INVERSIVE DISTANCE

Given discs D_1 and D_2 with associated space-like normals n_1 and n_2 in \mathbb{R}^4 we have

$$\hat{\sigma}(D_1, D_2) = \langle n_1, n_2 \rangle.$$

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

INVERSIVE DISTANCE

Given discs D_1 and D_2 with associated space-like normals n_1 and n_2 in \mathbb{R}^4 we have

$$\hat{\sigma}(D_1, D_2) = \langle n_1, n_2 \rangle.$$

The rest is linear algebra...

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

QUASICONFORMAL MAPS
Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Plan

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	0000000

 $f(z_0 + z) = f(z_0) + az + b\overline{z} + \varepsilon(z)$

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

 $f(z_0 + z) = f(z_0) + az + b\bar{z} + \varepsilon(z)$

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

 $f(z_0 + z) = f(z_0) + az + b\overline{z} + \varepsilon(z)$

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

 $f(z_0 + z) = f(z_0) + az + b\overline{z} + \varepsilon(z)$

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

K-quasiconformal map of annuli

 $\frac{1}{K} \leqslant \frac{r}{s} \leqslant K$

Recap	Infinite connectivity	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	0000000

K-quasiconformal map of annuli

 $\frac{1}{K} \leqslant \frac{r}{s} \leqslant K$

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Suppose there is a K-quasiconformal map f.

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Suppose there is a K-quasiconformal map f.

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	0000000

Suppose there is a K-quasiconformal map f.

Recap	INFINITE CONNECTIVITY	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	00000000

THEOREM.

Recap	Infinite connectivity	Higher dimensions	Lorentz space	QUASICONFORMAL MAPS
00	0000000000000000	000000000	0000000000000	00000000

THEOREM. Let Ω and Ω' be two circular regions in the complex plane bounded by circles C_1, C_2, \ldots, C_m and C'_1, C'_2, \ldots, C'_m , respectively.

Recap	INFINITE CONNECTIVITY	Higher dimensions	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	00000000

THEOREM. Let Ω and Ω' be two circular regions in the complex plane bounded by circles C_1, C_2, \ldots, C_m and C'_1, C'_2, \ldots, C'_m , respectively. Let f be a K-quasiconformal map from Ω to Ω' with $f(C_i) = C'_i$ for each i.

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	0000000000000000	000000000	000000000000	00000000

THEOREM. Let Ω and Ω' be two circular regions in the complex plane bounded by circles C_1, C_2, \ldots, C_m and C'_1, C'_2, \ldots, C'_m , respectively. Let f be a K-quasiconformal map from Ω to Ω' with $f(C_i) = C'_i$ for each i. Then

$$rac{1}{K} \leqslant rac{\exp arrho_{i,j}}{\exp arrho_{i,j}'} \leqslant K$$

for each pair i, j.

Recap	INFINITE CONNECTIVITY	HIGHER DIMENSIONS	Lorentz space	QUASICONFORMAL MAPS
00	000000000000000	000000000	000000000000	00000000

Open Problem

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	00000000

Open Problem

Does the converse hold?

Recap	Infinite connectivity	HIGHER DIMENSIONS	LORENTZ SPACE	QUASICONFORMAL MAPS
00	000000000000000	000000000	0000000000000	0000000

THANK YOU!