The Farey graph, continued fractions, and the modular group

Ian Short

26 November 2009

Collaborators

Alan Beardon (University of Cambridge)

Meira Hockman (University of the Witswatersrand)

Continued fractions

Euclid's algorithm

31
13

Euclid's ALGORITHM

$$
\frac{31}{13}=2+\frac{1}{\frac{13}{5}}
$$

Euclid's algorithm

$$
\begin{aligned}
\frac{31}{13} & =2+\frac{1}{\frac{13}{5}} \\
& =2+\frac{1}{2+\frac{1}{\frac{5}{3}}}
\end{aligned}
$$

Euclid's algorithm

$$
\begin{aligned}
\frac{31}{13} & =2+\frac{1}{\frac{13}{5}} \\
& =2+\frac{1}{2+\frac{1}{\frac{5}{3}}} \\
& =2+\frac{1}{2+\frac{1}{1+\frac{1}{\frac{3}{2}}}}
\end{aligned}
$$

Euclid's algorithm

The nearest-integer algorithm

31
13

The nearest-integer algorithm

$$
\frac{31}{13}=2+\frac{1}{\frac{13}{5}}
$$

The nearest-integer algorithm

$$
\begin{aligned}
\frac{31}{13} & =2+\frac{1}{\frac{13}{5}} \\
& =2+\frac{1}{3+\frac{1}{-\frac{5}{2}}}
\end{aligned}
$$

The nearest-integer algorithm

$$
\begin{aligned}
\frac{31}{13} & =2+\frac{1}{\frac{13}{5}} \\
& =2+\frac{1}{3+\frac{1}{-\frac{5}{2}}} \\
& =2+\frac{1}{3+\frac{1}{-3+\frac{1}{2}}}
\end{aligned}
$$

The nearest－integer algorithm

$$
\frac{31}{13}=2+\frac{1}{3+\frac{1}{-3+\frac{1}{2}}}
$$

Another expansion

Questions

Questions

Is the nearest-integer continued fraction the shortest continued fraction with integer coefficients?

Questions

Is the nearest-integer continued fraction the shortest continued fraction with integer coefficients?

How many shortest continued fractions are there?

Questions

Is the nearest-integer continued fraction the shortest continued fraction with integer coefficients?

How many shortest continued fractions are there?

Can we characterise shortest continued fractions?

Literature

Literature

Perron O., Die Lehre von den Kettenbrüchen, Chelsea Publishing Company, New York, (1950).

Literature

Perron O., Die Lehre von den Kettenbrüchen, Chelsea Publishing Company, New York, (1950).

Srinivisan, M.S., Shortest semiregular continued fractions, Proc. Indian Acad. Sci., Sect. A, 35 (1952).

The modular group

MÖBIUS TRANSFORMATIONS

MÖBIUS TRANSFORMATIONS

Define, for an integer b,

$$
S_{b}(z)=b+1 / z
$$

MÖBIUS TRANSFORMATIONS

Define, for an integer b,

$$
\begin{gathered}
S_{b}(z)=b+1 / z \\
S_{b_{1}} \circ S_{b_{2}} \circ \cdots \circ S_{b_{n}}(\infty)=b_{1}+\frac{1}{b_{2}+\frac{1}{b_{3}+\frac{1}{b_{4}+\cdots+\frac{1}{b_{n}}}}}
\end{gathered}
$$

MÖBIUS TRANSFORMATIONS

Note that $S_{b_{i}}(0)=\infty$.

MÖBIUS TRANSFORMATIONS

Note that $S_{b_{i}}(0)=\infty$. Hence

$$
S_{b_{1}} \circ S_{b_{2}} \circ \cdots \circ S_{b_{n}}(0)=S_{b_{1}} \circ S_{b_{2}} \circ \cdots \circ S_{b_{n-1}}(\infty)
$$

MÖBIUS TRANSFORMATIONS

What is the group generated by the maps $S_{b_{i}}(z)=b_{i}+1 / z ?$

MÖBIUS TRANSFORMATIONS

What is the group generated by the maps $S_{b_{i}}(z)=b_{i}+1 / z ?$

$$
\left(\begin{array}{ll}
b & 1 \\
1 & 0
\end{array}\right) \longmapsto S_{b}
$$

The modular group

$$
\Gamma=\left\{z \mapsto \frac{a z+b}{c z+d}: a, b, c, d \in \mathbb{Z}, \quad a d-b c=1\right\}
$$

$$
T(z)=z+1 \quad X(z)=-1 / z
$$

The modular surface

The extended modular group

$$
\widetilde{\Gamma}=\left\{z \mapsto \frac{a z+b}{c z+d}: a, b, c, d \in \mathbb{Z}, \quad|a d-b c|=1\right\}
$$

Presentation for the extended modular group

$$
T(z)=z+1 \quad U(z)=\frac{1}{z} \quad V(z)=-z
$$

Presentation for the extended modular group

$$
\begin{gathered}
T(z)=z+1 \quad U(z)=\frac{1}{z} \quad V(z)=-z \\
V=U T U T^{-1} U T
\end{gathered}
$$

Presentation for the extended modular group

$$
\begin{gathered}
T(z)=z+1 \quad U(z)=\frac{1}{z} \quad V(z)=-z \\
V=U T U T^{-1} U T \\
\widetilde{\Gamma}=\left\langle T, U \mid U^{2}=1, \quad U V=V U, \quad V T=T^{-1} V\right\rangle
\end{gathered}
$$

Words in the extended modular group

Words in the extended modular group

Each word in $\widetilde{\Gamma}$ has the form

$$
T^{b_{1}} U T^{b_{2}} U \cdots T^{b_{n}} U
$$

for integers $b_{1}, b_{2}, \ldots, b_{n}(T(z)=z+1$ and $U(z)=1 / z)$.

Words in the extended modular group

Each word in $\widetilde{\Gamma}$ has the form

$$
T^{b_{1}} U T^{b_{2}} U \cdots T^{b_{n}} U
$$

for integers $b_{1}, b_{2}, \ldots, b_{n}(T(z)=z+1$ and $U(z)=1 / z)$.

$$
S_{b}=T^{b} U
$$

Words in the extended modular group

Each word in $\widetilde{\Gamma}$ has the form

$$
T^{b_{1}} U T^{b_{2}} U \cdots T^{b_{n}} U
$$

for integers $b_{1}, b_{2}, \ldots, b_{n}(T(z)=z+1$ and $U(z)=1 / z)$.

$$
S_{b}=T^{b} U
$$

Each word in $\widetilde{\Gamma}$ has the form

$$
S_{b_{1}} S_{b_{2}} \cdots S_{b_{n}},
$$

for integers $b_{1}, b_{2}, \ldots, b_{n}$.

A correspondence

A correspondence

Finite integer continued fractions

A correspondence

Finite integer continued fractions
Words of T and U in $\widetilde{\Gamma}$

A correspondence

Finite integer continued fractions
Words of T and U in $\widetilde{\Gamma}$

$$
(T(z)=z+1 \text { and } U(z)=1 / z)
$$

The word metric

Cayley graph of Γ with respect to $T(z)=z+1$ and $X(z)=-1 / z$

The Farey graph

The upper half－plane

The upper half－plane

The vertical half－Plane

The vertical half-Plane

A path of geodesics

The Farey graph

$\widetilde{\Gamma}(\delta)$

The Farey graph

The Farey graph

Vertices $=\mathbb{Q}$

The Farey graph

Vertices $=\mathbb{Q}$
Join $\frac{a}{b}$ to $\frac{c}{d}$ if and only if $|a d-b c|=1$.

The Farey graph

Mediants

Mediants

The Farey graph

Paths in the Farey graph

A correspondence

A correspondence

Finite integer continued fractions

A correspondence

Finite integer continued fractions

Finite paths from ∞ in the Farey graph

Cutting sequences

Geodesics on the modular surface

A GEODESIC ON THE MODULAR SURFACE

GEODESICS

Questions

Questions

Is the nearest-integer continued fraction the shortest continued fraction?

Questions

Is the nearest-integer continued fraction the shortest continued fraction?
Does the nearest-integer continued fraction correspond to a geodesic in the Farey graph?

Questions

Is the nearest-integer continued fraction the shortest continued fraction?
Does the nearest-integer continued fraction correspond to a geodesic in the Farey graph?

How many shortest continued fractions are there?

Questions

Is the nearest-integer continued fraction the shortest continued fraction?
Does the nearest-integer continued fraction correspond to a geodesic in the Farey graph?

How many shortest continued fractions are there?
How many geodesics are there between two vertices in the Farey graph?

Questions

Is the nearest-integer continued fraction the shortest continued fraction?
Does the nearest-integer continued fraction correspond to a geodesic in the Farey graph?

How many shortest continued fractions are there?
How many geodesics are there between two vertices in the Farey graph?

Can we characterise shortest continued fractions?

Questions

Is the nearest-integer continued fraction the shortest continued fraction?
Does the nearest-integer continued fraction correspond to a geodesic in the Farey graph?

How many shortest continued fractions are there?
How many geodesics are there between two vertices in the Farey graph?

Can we characterise shortest continued fractions?
Can we characterise geodesics in terms of the coefficients of a continued fraction?

Answer 1

Answer 1

The nearest-integer algorithm does correspond to a geodesic.

The nearest-integer algorithm

The nearest－integer algorithm

The nearest－integer algorithm

The nearest-integer algorithm

The nearest－integer algorithm

The nearest－integer algorithm

Answer 2

Answer 2

Count geodesics using the dual graph.

The dual graph

Unique path of triangles

Answer 3

Answer 3

Theorem. A continued fraction with coefficients $b_{1}, b_{2}, \ldots, b_{n}$ corresponds to a geodesic in the Farey graph if and only if $\left|b_{i}\right| \geqslant 2$ for each $i \geqslant 2$, and there is no substring of $b_{2}, b_{3}, \ldots, b_{n}$ of the form $2,-3,3,-3,3,-3, \ldots, 3,-2$.

Paths and coefficients

Inefficient paths

InEFFICIENT PATHS

$b_{i}= \pm 1$

Inefficient paths

$$
b_{i}, b_{i+1}, b_{i+2}, b_{i+3}=2,-3,3,-2
$$

Thank you!

