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Questions

Is the nearest-integer continued fraction the shortest continued
fraction with integer coefficients?

How many shortest continued fractions are there?

Can we characterise shortest continued fractions?
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Möbius transformations

Note that Sbi(0) =∞.

Hence

Sb1 ◦ Sb2 ◦ · · · ◦ Sbn(0) = Sb1 ◦ Sb2 ◦ · · · ◦ Sbn−1(∞).
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The modular group

Γ =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ Z, ad− bc = 1

}
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The modular surface



The extended modular group

Γ̃ =

{
z 7→ az + b

cz + d
: a, b, c, d ∈ Z, |ad− bc| = 1

}
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Words in the extended modular group

Each word in Γ̃ has the form
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The word metric

Cayley graph of Γ with respect to T (z) = z + 1 and X(z) = −1/z



The Farey graph
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The vertical half-plane



The vertical half-plane



A path of geodesics

Tn = Sb1 ◦ Sb2 ◦ · · · ◦ Sbn
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The Farey graph

Γ̃(δ)



The Farey graph

Vertices = Q

Join a
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d if and only if |ad− bc| = 1.
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The Farey graph



Paths in the Farey graph



A correspondence

Finite integer continued fractions

Finite paths from ∞ in the Farey graph
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Finite integer continued fractions
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Cutting sequences



Geodesics on the modular surface



A geodesic on the modular surface



Geodesics
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Is the nearest-integer continued fraction the shortest continued
fraction?
Does the nearest-integer continued fraction correspond to a
geodesic in the Farey graph?

How many shortest continued fractions are there?
How many geodesics are there between two vertices in the Farey
graph?

Can we characterise shortest continued fractions?
Can we characterise geodesics in terms of the coefficients of a
continued fraction?
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Answer 1

The nearest-integer algorithm does correspond to a geodesic.
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Answer 2

Count geodesics using the dual graph.
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The dual graph



Unique path of triangles



Answer 3

Theorem. A continued fraction with coefficients b1, b2, . . . , bn
corresponds to a geodesic in the Farey graph if and only if
|bi| > 2 for each i > 2, and there is no substring of b2, b3, . . . , bn
of the form 2,−3, 3,−3, 3,−3, . . . , 3,−2.
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Paths and coefficients



Inefficient paths

bi = 0



Inefficient paths

bi = ±1



Inefficient paths

bi, bi+1, bi+2, bi+3 = 2,−3, 3,−2



Thank you!
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