・ロト ・四ト ・モト ・モト - 王

Sac

Hyperbolic geometry and continued fraction theory I

Ian Short 9 February 2010

 $http://maths.org/\ ims25/maths/presentations.php$

CONTINUED FRACTIONS MOBIUS	MAPS HYPERBOLIC GE	COMETRY I OPLOGICAL G	ROUP
000000 000000	000000000 00000000000000000000000000000	00000000 000000000000000000000000000000	0000

Collaborators

Continued	FRACTIONS
00000000	00

Hyperbolic geometry

TOPLOGICAL GROUPS

Collaborators

Meira Hockman

Hyperbolic geometry

TOPLOGICAL GROUPS

Collaborators

Meira Hockman

Alan Beardon (University of Cambridge)

Continued	FRACTIONS
00000000	00

Hyperbolic geometry

TOPLOGICAL GROUPS

Project

The geometry of continued fractions

Continued	FRACTIONS
00000000	00

Hyperbolic geometry

TOPLOGICAL GROUPS

Project

The geometry of continued fractions

http://maths.org/ ims25/maths/presentations.php

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

CONTINUED FRACTIONS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
00000000	00000000	00000000000000000	000000000000000000000000000000000000000

CONTINUED FRACTIONS

 $\mathbf{K}(a_n | b_n) = \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \dots}}}}$

・ロト ・ 直 ト ・ 直 ト ・ 直 ・ つへぐ

Continued fractions Möbi	us maps Hyperboli	C GEOMETRY TOPLO	GICAL GROUPS
000000000 0000	000000 0000000	000000000 00000	000000000

$$\frac{a_1}{b_1},$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

$$\frac{a_1}{b_1}, \frac{a_1}{b_1 + \frac{a_2}{b_2}},$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < ()</p>

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

$$\frac{a_1}{b_1}, \frac{a_1}{b_1 + \frac{a_2}{b_2}}, \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3}}},$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUP
00000000	00000000	00000000000000000	000000000000000000000000000000000000000

$$\frac{a_1}{b_1}, \frac{a_1}{b_1 + \frac{a_2}{b_2}}, \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3}}}, \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3}}}, \dots$$

▲ロト ▲園ト ▲ミト ▲ミト 三三 - のへで

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
00000000	00000000	00000000000000000	000000000000000000000000000000000000000
00000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

EXPANSION OF e = 2.71828182845905... (EULER)

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
00000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

EXPANSION OF $\pi = 3.14159265358979...$ (Lange)

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

A problematic example

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000	00000000000000

$$t_n(z) = \frac{a_n}{b_n + z}$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

$$t_n(z) = \frac{a_n}{b_n + z}$$

$$T_n = t_1 \circ t_2 \circ \cdots \circ t_n$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

$$t_n(z) = \frac{a_n}{b_n + z}$$

$$T_n = t_1 \circ t_2 \circ \cdots \circ t_n$$

$$t_n(\infty) = 0$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

$$t_n(z) = \frac{a_n}{b_n + z}$$

$$T_n = t_1 \circ t_2 \circ \cdots \circ t_n$$

$$t_n(\infty) = 0$$

$$T_n(\infty) = T_{n-1}(0)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	Möbius maps 00000000	Möbius maps Hyperbolic geometry 000000000 000000000000000000000000000000000000

Convergence again

Convergence of $\mathbf{K}(a_n | b_n)$ equivalent to convergence of $T_1(0), T_2(0), \dots$

Continued fractions	Μ
00000000000	00

Hyperbolic geometry

TOPLOGICAL GROUPS

Dealing with ∞

Previously $\frac{1}{\infty} = 0.$

IAPS HYPERBOLIC GEOMETRY	TOPLOGICAL GROU
000000000000000000000000000000000000000	00 000000000000000000000000000000000000
	IAPS Hyperbolic geometry 000 000000000000000000000000000000000

Dealing with ∞

Previously $\frac{1}{\infty} = 0.$ Now $h(z) = \frac{1}{z} \qquad h(\infty) = 0.$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

THREE MORE REASONS FOR USING MÖBIUS MAPS

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000

THREE MORE REASONS FOR USING MÖBIUS MAPS

$\circ~$ There is already a well developed theory of Möbius maps.

	. GROUPS
000000000 00000000 000000000000000000	000000

THREE MORE REASONS FOR USING MÖBIUS MAPS

There is already a well developed theory of Möbius maps. Allows us to bring in geometry.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

	. GROUPS
000000000 00000000 000000000000000000	000000

Three more reasons for using Möbius maps

 $\circ~$ There is already a well developed theory of Möbius maps.

- Allows us to bring in geometry.
- Simpler notation: composition of maps rather than algebraic manipulation.

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
00000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Schematic diagram

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - つへぐ

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	●0000000	00000000000000000	000000000000000000000000000000000000000

Reminder

$$t_n(z) = \frac{a_n}{b_n + z}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Möbius maps	Hyperbolic geometry	Toplogical groups
00000000	00000000000000000	00000000000000
	Möbius maps ●00000000	MÖBIUS MAPS Hyperbolic geometry •00000000 000000000000000000000000000000000000

Reminder

$$t_n(z) = \frac{a_n}{b_n + z}$$

$$T_n = t_1 \circ t_2 \circ \cdots \circ t_n$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	000000000000000000000000000000000000000

 $\mathbf{K}(1|b_n) \qquad b_n \in \mathbb{N}$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000	00000000000000

$$\mathbf{K}(1|b_n) \qquad b_n \in \mathbb{N}$$
$$t_n(z) = \frac{1}{b_n + z}$$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	000000000000000000000000000000000000000

$$\mathbf{K}(1|b_n) \qquad b_n \in \mathbb{N}$$
$$t_n(z) = \frac{1}{b_n + z}$$

The modular group

$$\Gamma = \left\{ z \mapsto \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{Z}, ad-bc = 1 \right\}$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

COMPLEX CONTINUED FRACTIONS

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

COMPLEX CONTINUED FRACTIONS

$$\mathbf{K}(a_n | b_n) \qquad a_n, b_n \in \mathbb{C}$$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>
Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

COMPLEX CONTINUED FRACTIONS

$$\mathbf{K}(a_n | b_n) \qquad a_n, b_n \in \mathbb{C}$$
$$t_n(z) = \frac{a_n}{b_n + z}$$

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	000000000000000000000000000000000000000

COMPLEX CONTINUED FRACTIONS

$$\mathbf{K}(a_n | b_n) \qquad a_n, b_n \in \mathbb{C}$$

$$t_n(z) = \frac{a_n}{b_n + z}$$

The Möbius group

$$\mathcal{M} = \left\{ z \mapsto \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{C}, \, ad-bc \neq 0 \right\}$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

${\mathcal M}$ generated by inversions

	Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000 0000000 00000000000000000000	000000000	00000000	00000000000000000	00000000000000000

${\mathcal M}$ generated by inversions

000000000 0000000000000000000000000000	Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
	000000000	000000000	00000000000000000	000000000000000000000000000000000000000

Two aspects of \mathcal{M}

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Two aspects of \mathcal{M}

$\circ~$ Three-dimensional hyperbolic isometries

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUP
000000000	000000000	0000000000000000	00000000000000000

Two aspects of \mathcal{M}

- $\circ~$ Three-dimensional hyperbolic isometries
- Topological group (and complete metric space)

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	000000000	000000000000000000000000000000000000000	000000000000000

SCHEMATIC DIAGRAM

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	000000000	000000000000000000000000000000000000000	000000000000000

Schematic diagram

000000000 00000000 0000000000000000000	Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
	000000000	000000000	00000000000000000	000000000000000000000000000000000000000

THE STERN-STOLZ THEOREM

Theorem. If $\sum_{n} |b_n|$ converges then $\mathbf{K}(1|b_n)$ diverges.

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

990

Open Problem I

Open Problem I

Interpret each result on complex continued fractions in terms of (a) hyperbolic geometry, and (b) topological group theory.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ��

Hyperbolic geometry

◆□ > ◆母 > ◆臣 > ◆臣 > ○ ● ●

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	•0000000000000000	000000000000000

Schematic diagram

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

UPPER HALF-SPACE

$$\mathbb{H}^3 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0 \}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000

UPPER HALF-SPACE

$$\mathbb{H}^3 = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0 \}$$
$$\mathbb{C} \longleftrightarrow \{ (x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R} \}$$

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

UPPER HALF-SPACE

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

 \mathbf{H}^3

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	00000000000000000

 (\mathbb{H}^3,ρ)

 d fractions Möbiu	JS MAPS HYPERBOL	IC GEOMETRY TOPLOGICAL	GROUPS
0000 0000	000000 000000	000000000 00000000000000000000000000000	00000

(\mathbb{H}^3,ρ)

$$\sinh \frac{1}{2}\rho(x,y) = \frac{|x-y|}{2\sqrt{x_3y_3}}$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	00000000000000

GRAPH REPRESENTATION OF HYPERBOLIC SPACE

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	00000000000000

GRAPH REPRESENTATION OF HYPERBOLIC SPACE

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	00000000000000

GRAPH REPRESENTATION OF HYPERBOLIC SPACE

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GR
000000000	00000000	00000000000000000	00000000000

MÖBIUS ACTION ON HYPERBOLIC SPACE

Continued	FRACTIONS			
000000000				

Möbius maps 000000000 Hyperbolic geometry

TOPLOGICAL GROUPS

MÖBIUS ACTION ON HYPERBOLIC SPACE

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

ISOMETRY GROUP

 $\mathrm{Isom}(\mathbb{H}^3)=\mathcal{M}$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

BACK TO CONTINUED FRACTIONS

$$t_n(\infty) = 0 \qquad T_n(\infty) = T_{n-1}(0)$$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Continued	FRACTIONS		
000000000			

Möbius maps 000000000 TOPLOGICAL GROUPS

Convergence

Suppose $\mathbf{K}(a_n | b_n)$ converges.

Continued	FRACTIONS
00000000	00

Möbius maps 000000000 Hyperbolic geometry

Toplogical groups

Convergence

Suppose $\mathbf{K}(a_n | b_n)$ converges.

In other words, suppose $T_1(0), T_2(0), \ldots$ converges.

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへぐ

Continued fractions	Möbius maps 000000000	Hyperbolic geometry 0000000000000000000	Toplogical groups
Convergence			
CONVERGENCE			
		∞	
			\mathbf{H}^3
			11
		j	

0

 \mathbf{C}

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへぐ

Continued fractions	Möbius maps 00000000	Hyperbolic geometry 000000000000000000	Toplogical groups
Convergence			
	x		
	Ĩ		2
			\mathbf{H}^3
	~		
	/		
			C

・ロト < 団ト < 三ト < 三ト < 三 の < ()

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
0000000000	000000000	000000000000000000	
Convergence			

4 日 > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H >

000000

4 日 > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H >

Continued fractions	Möbius maps 000000000	Hyperbolic geometry 0000000000000000000	Toplogical groups
Convergence			
		\sim	

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
0000000000	000000000	000000000000000000	
Convergence			

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ り へ や

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	000000000000000

Convergence

If

 $T_n(0) \to p$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	00000000000000000	0000000000000000

Convergence

If

 $T_n(0) \to p$

then

 $T_n(j) \to p.$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	000000000000000

Convergence

If

$$T_n(0) \to p$$

then

$$T_n(j) \to p.$$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

(Lorentzen, Aebischer, Beardon)

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

RECALL THE STERN-STOLZ THEOREM

Theorem. If $\sum_{n} |b_n|$ converges then $\mathbf{K}(1|b_n)$ diverges.

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

RECALL THE HYPERBOLIC METRIC

$$\sinh \frac{1}{2}\rho(x,y) = \frac{|x-y|}{2\sqrt{x_3y_3}}$$

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

000000 00000000 0000000000000000000000	000000000

HYPERBOLIC DISTANCE CALCULATIONS

$\rho(j, t_n(j))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

000000 00000000 0000000000000000000000	000000000

HYPERBOLIC DISTANCE CALCULATIONS

$$\rho(j, t_n(j)) = \rho(h(j), ht_n(j))$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

	CAL GROUPS
00000000000000000000000000000000000000	00000000

$$\rho(j, t_n(j)) = \rho(h(j), ht_n(j))$$
$$= \rho(j, b_n + j)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

000000000 00000000 0000000000000000000	0000

$$\rho(j, t_n(j)) = \rho(h(j), ht_n(j))$$
$$= \rho(j, b_n + j)$$

$$\sinh \frac{1}{2}\rho(j, t_n(j)) = \frac{|b_n|}{2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

000000000 00000000 0000000000000000000	0000

$$\rho(j, t_n(j)) = \rho(h(j), ht_n(j))$$
$$= \rho(j, b_n + j)$$

$$\sinh \frac{1}{2}\rho(j, t_n(j)) = \frac{|b_n|}{2}$$

$$\rho(j, t_n(j)) = \rho(T_{n-1}(j), T_n(j))$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

0000000000 000000000000000000000000000	0000000

$$\sinh \frac{1}{2}\rho(T_{n-1}(j), T_n(j)) = \frac{|b_n|}{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

$$\sinh \frac{1}{2}\rho(T_{n-1}(j), T_n(j)) = \frac{|b_n|}{2}$$

Hence if $\sum_{n} |b_n| < +\infty$ then

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - つへぐ

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

$$\begin{split} \sinh \frac{1}{2}\rho(T_{n-1}(j),T_n(j)) &= \frac{|b_n|}{2} \end{split}$$
 Hence if $\sum_n |b_n| < +\infty$ then

$$\sum_n \rho(T_{n-1}(j),T_n(j)) < +\infty$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	0000000000000000000	00000000000000

CANNOT REACH THE BOUNDARY (BEARDON)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Open Problem II

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Open Problem II

What is the geometric significance of the *argument* of b_n to the orbit $T_1(j), T_2(j), \ldots$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

TOPLOGICAL GROUPS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	•0000000000000

Schematic diagram

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical group
000000000	00000000	000000000000000000	000000000000000000000000000000000000000

Möbius group

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	0000000000000000000

Möbius group

• Group of hyperbolic isometries of \mathbb{H}^3 .

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

MÖBIUS GROUP

- Group of hyperbolic isometries of \mathbb{H}^3 .
- Group of conformal automorphisms of \mathbb{C}_{∞} .

000000000 00000000 0000000000000000000	Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
	000000000	00000000	00000000000000000	000000000000000000000000000000000000000

STEREOGRAPHIC PROJECTION

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Continued fractions	Möbius maps	Hyperbolic geometry	Тс
000000000	00000000	00000000000000000	oc

STEREOGRAPHIC PROJECTION

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Continued fractions	Möbius maps	Hyperbolic geometry	TOPL
000000000	00000000	0000000000000000	0000

TOPLOGICAL GROUPS 0000000000000

STEREOGRAPHIC PROJECTION

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	000000000000000000000000000000000000000

STEREOGRAPHIC PROJECTION

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

000000000 00000000 00000000000000000000	Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
	000000000	00000000	0000000000000000	000000000000000000000000000000000000000

The chordal metric

$$\chi(w,z) = \frac{2|w-z|}{\sqrt{1+|w|^2}\sqrt{1+|z|^2}} \qquad \chi(w,\infty) = \frac{2}{\sqrt{1+|w|^2}}$$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	00000000000000000	000000000000000000000000000000000000000

The chordal metric

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

The supremum metric

$$\chi_0(f,g) = \sup_{z \in \mathbb{C}_{\infty}} \chi(f(z),g(z))$$
$$f,g \in \mathcal{M}$$

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000

The supremum metric

$$\chi_0(f,g) = \sup_{z \in \mathbb{C}_{\infty}} \chi(f(z),g(z))$$
$$f,g \in \mathcal{M}$$

The metric of uniform convergence.

・ロト ・ 四ト ・ ヨト ・ ヨー ・ うへぐ

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000	0000000000000

Möbius group

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical group
000000000	00000000	000000000000000000	000000000000000000000000000000000000000

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Möbius group

•
$$(\mathcal{M}, \chi_0)$$
 is a complete metric space

C	ONTINUED FRACTIONS	Möbius maps	Hyperbolic geometry	TOPLOGICA
С	00000000	00000000	0000000000000000	0000000

L GROUPS

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Möbius group

(M, χ₀) is a complete metric space
(M, χ₀) is a topological group
Continued fractions	Möbi
000000000	0000

Möbius group

- $\circ (\mathcal{M}, \chi_0)$ is a complete metric space
- $\circ (\mathcal{M}, \chi_0)$ is a topological group
- \circ right-invariant: $\chi_0(fk,gk) = \chi_0(f,g)$

▲ロト ▲園ト ▲目ト ▲目ト 三目 → のへで

Continued	FRACTIONS	
00000000	00	

Möbius group

- $\circ (\mathcal{M}, \chi_0)$ is a complete metric space
- $\circ (\mathcal{M}, \chi_0)$ is a topological group
- $\circ \ {\rm right-invariant:} \ \chi_0(fk,gk) = \chi_0(f,g)$
- $\circ\ h(z)=1/z$ is a chordal isometry: $\chi_0(hf,hg)=\chi_0(f,g)$

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	000000000000000

RECALL THE STERN-STOLZ THEOREM

Theorem. If $\sum_{n} |b_n|$ converges then $\mathbf{K}(1|b_n)$ diverges.

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000

KEY OBSERVATION

If b_n small then

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000

KEY OBSERVATION

If b_n small then

$$t_n(z) = \frac{1}{b_n + z} \sim h(z) = \frac{1}{z}.$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	000000000000000000000000000000000000000	000000000000000

KEY OBSERVATION

If b_n small then

$$t_n(z) = \frac{1}{b_n + z} \sim h(z) = \frac{1}{z}.$$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

We must calculate $\chi_0(t_n, h)$.

Continued	FRACTIONS
00000000	00

Möbius maps 000000000 Hyperbolic geometry

TOPLOGICAL GROUPS

Calculate $\chi_0(t_n, h)$

 $\chi_0(t_n,h)$

Continued	FRACTIONS
00000000	00

Möbius maps 000000000 Hyperbolic geometry

TOPLOGICAL GROUPS

Calculate $\chi_0(t_n, h)$

$$\chi_0(t_n,h) = \chi_0(ht_n,I)$$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 一臣 - のへで

Continued	FRACTIONS
00000000	00

Möbius maps 000000000 Hyperbolic geometry

TOPLOGICAL GROUPS

Calculate $\chi_0(t_n, h)$

$$\chi_0(t_n, h) = \chi_0(ht_n, I)$$
$$= \chi_0(z + b_n, z)$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Continued	FRACTIONS
00000000	00

Calculate $\chi_0(t_n, h)$

$$\begin{split} \chi_0(t_n, h) &= \chi_0(ht_n, I) \\ &= \chi_0(z + b_n, z) \\ &= \sup_{z \in \mathbb{C}_\infty} \frac{2|b_n|}{\sqrt{1 + |z|^2}\sqrt{1 + |z + b_n|^2}} \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Continued	FRACTIONS
00000000	00

Calculate $\chi_0(t_n, h)$

$$\begin{split} \chi_0(t_n,h) &= \chi_0(ht_n,I) \\ &= \chi_0(z+b_n,z) \\ &= \sup_{z \in \mathbb{C}_{\infty}} \frac{2|b_n|}{\sqrt{1+|z|^2}\sqrt{1+|z+b_n|^2}} \\ &\leq 2|b_n| \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Continued fractions

Möbius maps 000000000 Hyperbolic geometry

TOPLOGICAL GROUPS

CALCULATE $\chi_0(T_n^{-1}, T_{n+2}^{-1})$

$\chi_0(T_n^{-1}, T_{n+2}^{-1})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Continued fractions

Möbius maps 000000000 Hyperbolic geometry

TOPLOGICAL GROUPS

Calculate $\chi_0(T_n^{-1}, T_{n+2}^{-1})$

$$\chi_0(T_n^{-1}, T_{n+2}^{-1}) = \chi_0(t_{n+1}t_{n+2}, I)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Continued fractions

Möbius maps 000000000 Hyperbolic geometry

TOPLOGICAL GROUPS

Calculate $\chi_0(T_n^{-1}, T_{n+2}^{-1})$

$$\chi_0(T_n^{-1}, T_{n+2}^{-1}) = \chi_0(t_{n+1}t_{n+2}, I)$$
$$= \chi_0(ht_{n+1}t_{n+2}, h)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Calculate $\chi_0(T_n^{-1}, T_{n+2}^{-1})$

$$\chi_0(T_n^{-1}, T_{n+2}^{-1}) = \chi_0(t_{n+1}t_{n+2}, I)$$

= $\chi_0(ht_{n+1}t_{n+2}, h)$
 $\leq \chi_0(ht_{n+1}t_{n+2}, t_{n+2}) + \chi_0(t_{n+2}, h)$

Calculate $\chi_0(T_n^{-1}, T_{n+2}^{-1})$

$$\begin{split} \chi_0(T_n^{-1}, T_{n+2}^{-1}) &= \chi_0(t_{n+1}t_{n+2}, I) \\ &= \chi_0(ht_{n+1}t_{n+2}, h) \\ &\leq \chi_0(ht_{n+1}t_{n+2}, t_{n+2}) + \chi_0(t_{n+2}, h) \\ &= \chi_0(t_{n+1}, h) + \chi_0(t_{n+2}, h) \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Calculate $\chi_0(T_n^{-1}, T_{n+2}^{-1})$

$$\chi_0(T_n^{-1}, T_{n+2}^{-1}) = \chi_0(t_{n+1}t_{n+2}, I)$$

= $\chi_0(ht_{n+1}t_{n+2}, h)$
 $\leq \chi_0(ht_{n+1}t_{n+2}, t_{n+2}) + \chi_0(t_{n+2}, h)$
= $\chi_0(t_{n+1}, h) + \chi_0(t_{n+2}, h)$
 $\leq 2|b_{n+1}| + 2|b_{n+2}|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	00000000000000000	000000000000000

If $\sum_{n} |b_n| < +\infty$ then

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	000000000000000000000000000000000000000	0000000000000000

If $\sum_{n} |b_n| < +\infty$ then

$$\sum_{n} \chi_0(T_n^{-1}, T_{n+2}^{-1}) < +\infty.$$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	0000000000000000

If $\sum_{n} |b_n| < +\infty$ then

$$\sum_{n} \chi_0(T_n^{-1}, T_{n+2}^{-1}) < +\infty.$$

Hence T_{2n-1}^{-1} converges uniformly to a Möbius map f.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへの

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	0000000000000000

If $\sum_{n} |b_n| < +\infty$ then

$$\sum_{n} \chi_0(T_n^{-1}, T_{n+2}^{-1}) < +\infty.$$

Hence T_{2n-1}^{-1} converges uniformly to a Möbius map f.

Hence T_{2n-1} converges uniformly to a Möbius map g.

<ロト < 団 > < 巨 > < 巨 > 三 の < @</p>

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	0000000000000000

If $\sum_{n} |b_n| < +\infty$ then

$$\sum_{n} \chi_0(T_n^{-1}, T_{n+2}^{-1}) < +\infty.$$

Hence T_{2n-1}^{-1} converges uniformly to a Möbius map f.

Hence T_{2n-1} converges uniformly to a Möbius map g.

Hence $T_{2n} = T_{2n-1}t_{2n}$ converges uniformly to gh, where h(z) = 1/z.

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 4 日 ト - 4 日 ト

Continued fractions	Möbius maps	Hyperbolic geometry	Toplogical groups
000000000	00000000	00000000000000000	000000000000000

In summary, if $\sum_n |b_n| < +\infty$ then there is a Möbius map g such that

$$T_{2n-1} \to g \qquad T_{2n} \to gh.$$

Continued fractions	Möbius maps	Hyperbolic geometry	TOPLOGICAL GROUPS
000000000	00000000	0000000000000000	0000000000000000
0000000000	0000000000	000000000000000000000000000000000000000	000000000000000

In summary, if $\sum_n |b_n| < +\infty$ then there is a Möbius map g such that

$$T_{2n-1} \to g \qquad T_{2n} \to gh.$$

Hence

$$T_{2n-1}(0) \to g(0)$$
 $T_{2n}(0) \to gh(0) = g(\infty).$

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ