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Expansion of π = 3.14159265358979 . . . (Lange)
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Convergence again

Convergence of K(an| bn) equivalent to convergence of
T1(0), T2(0), . . . .
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The Stern–Stolz Theorem

Theorem. If
∑

n |bn| converges then K(1| bn) diverges.
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C←→ {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R}
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√
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Isom(H3) =M
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tn(∞) = 0 Tn(∞) = Tn−1(0)
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Continued fractions Möbius maps Hyperbolic geometry Toplogical groups

Convergence
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Continued fractions Möbius maps Hyperbolic geometry Toplogical groups

Convergence
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Continued fractions Möbius maps Hyperbolic geometry Toplogical groups

Hyperbolic distance calculations

sinh 1
2ρ(Tn−1(j), Tn(j)) =

|bn|
2

Hence if
∑

n |bn| < +∞ then∑
n

ρ(Tn−1(j), Tn(j)) < +∞
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The chordal metric

χ(w, z) =
2|w − z|√

1 + |w|2
√

1 + |z|2
χ(w,∞) =

2√
1 + |w|2
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Continued fractions Möbius maps Hyperbolic geometry Toplogical groups

The supremum metric

χ0(f, g) = sup
z∈C∞

χ(f(z), g(z))

f, g ∈M

The metric of uniform convergence.
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n |bn| converges then K(1| bn) diverges.
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Continued fractions Möbius maps Hyperbolic geometry Toplogical groups

Calculate χ0(tn, h)

χ0(tn, h) = χ0(htn, I)
= χ0(z + bn, z)

= sup
z∈C∞

2|bn|√
1 + |z|2

√
1 + |z + bn|2

≤ 2|bn|
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Continued fractions Möbius maps Hyperbolic geometry Toplogical groups

Calculate χ0(T−1
n , T−1

n+2)

χ0(T−1
n , T−1

n+2) = χ0(tn+1tn+2, I)
= χ0(htn+1tn+2, h)
≤ χ0(htn+1tn+2, tn+2) + χ0(tn+2, h)
= χ0(tn+1, h) + χ0(tn+2, h)

≤ 2|bn+1|+ 2|bn+2|
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Conclusion

If
∑

n |bn| < +∞ then

∑
n

χ0(T−1
n , T−1

n+2) < +∞.

Hence T−1
2n−1 converges uniformly to a Möbius map f .

Hence T2n−1 converges uniformly to a Möbius map g.

Hence T2n = T2n−1t2n converges uniformly to gh, where
h(z) = 1/z.
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Conclusion

In summary, if
∑

n |bn| < +∞ then there is a Möbius map g
such that

T2n−1 → g T2n → gh.

Hence

T2n−1(0)→ g(0) T2n(0)→ gh(0) = g(∞).
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Thank you!
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