Hyperbolic geometry and continued fraction theory II

Ian Short 16 February 2010

http://maths.org/ims25/maths/presentations.php

BaCKGROUND

Schematic diagram

continued fractions

Möbius maps

Schematic diagram

continued fractions

MÖBIUS GROUP

Möbius group

- Group of hyperbolic isometries of \mathbb{H}^{3}.

MÖbius group

- Group of hyperbolic isometries of \mathbb{H}^{3}.
- Group of conformal automorphisms of \mathbb{C}_{∞}.

Stereographic projection

\mathbf{H}^{3}

Stereographic projection

Stereographic projection

Stereographic projection

The chordal metric

$$
\chi(w, z)=\frac{2|w-z|}{\sqrt{1+|w|^{2}} \sqrt{1+|z|^{2}}}
$$

$$
\chi(w, \infty)=\frac{2}{\sqrt{1+|w|^{2}}}
$$

The chordal metric

$\left(\mathbf{C}_{\infty}, \chi\right)$

The supremum metric

Denote the Möbius group by \mathcal{M}.

The supremum metric

Denote the Möbius group by \mathcal{M}.

$$
\begin{gathered}
\chi_{0}(f, g)=\sup _{z \in \mathbb{C}_{\infty}} \chi(f(z), g(z)) \\
f, g \in \mathcal{M}
\end{gathered}
$$

Denote the Möbius group by \mathcal{M}.

$$
\begin{gathered}
\chi_{0}(f, g)=\sup _{z \in \mathbb{C}_{\infty}} \chi(f(z), g(z)) \\
f, g \in \mathcal{M}
\end{gathered}
$$

The metric of uniform convergence.

MÖbius group

Möbius group

- $\left(\mathcal{M}, \chi_{0}\right)$ is a complete metric space

MÖbius group

- $\left(\mathcal{M}, \chi_{0}\right)$ is a complete metric space
- $\left(\mathcal{M}, \chi_{0}\right)$ is a topological group

MÖbius group

- $\left(\mathcal{M}, \chi_{0}\right)$ is a complete metric space
- $\left(\mathcal{M}, \chi_{0}\right)$ is a topological group
- right-invariant: $\chi_{0}(f k, g k)=\chi_{0}(f, g)$

Möbius group

- $\left(\mathcal{M}, \chi_{0}\right)$ is a complete metric space
- $\left(\mathcal{M}, \chi_{0}\right)$ is a topological group
- right-invariant: $\chi_{0}(f k, g k)=\chi_{0}(f, g)$
- $h(z)=1 / z$ is a chordal isometry: $\chi_{0}(h f, h g)=\chi_{0}(f, g)$

The Stern-Stolz Theorem

Theorem. If $\sum_{n}\left|b_{n}\right|$ converges then $\mathbf{K}\left(1 \mid b_{n}\right)$ diverges.

$$
t_{n}(z)=\frac{1}{b_{n}+z}
$$

Notation

$$
\begin{gathered}
t_{n}(z)=\frac{1}{b_{n}+z} \\
T_{n}=t_{1} \circ t_{2} \circ \cdots \circ t_{n}
\end{gathered}
$$

$$
\begin{gathered}
t_{n}(z)=\frac{1}{b_{n}+z} \\
T_{n}=t_{1} \circ t_{2} \circ \cdots \circ t_{n} \\
h(z)=\frac{1}{z}
\end{gathered}
$$

Hyperbolic geometry proof (Beardon)

Topological groups proof

$$
\sum_{n} \chi_{0}\left(T_{n}, T_{n+2}\right) \leqslant \sum_{n}\left|b_{n}\right|
$$

Topological groups proof

$$
\begin{aligned}
& \sum_{n} \chi_{0}\left(T_{n}, T_{n+2}\right) \leqslant \sum_{n}\left|b_{n}\right| \\
& T_{2 n-1} \rightarrow g \quad T_{2 n} \rightarrow g h
\end{aligned}
$$

Topological groups proof

$$
\begin{gathered}
\sum_{n} \chi_{0}\left(T_{n}, T_{n+2}\right) \leqslant \sum_{n}\left|b_{n}\right| \\
T_{2 n-1} \rightarrow g \quad T_{2 n} \rightarrow g h \\
T_{2 n-1}(0) \rightarrow g(0) \quad T_{2 n}(0) \rightarrow g(\infty)
\end{gathered}
$$

TodAY

The Parabola Theorem

The Parabola Theorem

'The queen of the convergence theorems' (Lorentzen)

The Parabola Theorem
'The queen of the convergence theorems' (Lorentzen)

Topological groups techniques and hyperbolic geometry

The Parabola Theorem

Continued fractions

$$
\mathbf{K}\left(a_{n} \mid 1\right)=\frac{a_{1}}{1+\frac{a_{2}}{1+\frac{a_{3}}{1+\frac{a_{4}}{1+\cdots}}}}
$$

PARABOLIC REGION

The Stern-Stolz series

$$
\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots
$$

Suppose that $a_{n} \in P_{\alpha}$ for $n=1,2, \ldots$.

The Parabola Theorem

Suppose that $a_{n} \in P_{\alpha}$ for $n=1,2, \ldots$ Then $\mathbf{K}\left(a_{n} \mid 1\right)$ converges if and only if the series

$$
\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots
$$

diverges.

Long history of the Parabola Theorem

Long history of the Parabola Theorem

- Scott and Wall (Trans. Amer. Math. Soc., 1940)

Long history of the Parabola Theorem

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)

Long history of the Parabola Theorem

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)
- Paydon and Wall (Duke Math. J., 1942)

Long history of the Parabola Theorem

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)
- Paydon and Wall (Duke Math. J., 1942)
- Thron (Duke Math. J., 1943, 1944)

Long history of the Parabola Theorem

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)
- Paydon and Wall (Duke Math. J., 1942)
- Thron (Duke Math. J., 1943, 1944)
- Thron (J. Indian Math. Soc., 1963)

Understanding The Theorem

What is the significance of the parabolic region?

What is the significance of the parabolic region?

What is the significance of the series?

Years of confusion

YEARS OF CONFUSION

Years of confusion

Split the theorem in two.

Years of confusion

Split the theorem in two.

Theorem involving the parabolic region.

Years of confusion

Split the theorem in two.

Theorem involving the parabolic region.

Theorem involving the Stern-Stolz series.

SCHEMATIC DIAGRAM

Parabola Theorem

Schematic diagram

The Parabolic REGION

Schematic diagram

MÖbius transformations

$$
t_{n}(z)=\frac{a_{n}}{1+z}
$$

MÖbius transformations

$$
\begin{gathered}
t_{n}(z)=\frac{a_{n}}{1+z} \\
T_{n}=t_{1} \circ t_{2} \circ \cdots \circ t_{n}
\end{gathered}
$$

Convergence using Möbius transformations

The continued fraction $\mathbf{K}\left(a_{n} \mid 1\right)$ converges if and only if $T_{1}(0), T_{2}(0), T_{3}(0), \ldots$ converges.

Question

What does the condition $a \in P_{\alpha}$ signify for the map $t(z)=a /(1+z)$?

Answer

The coefficient a belongs to P_{α} if and only if t maps a half-plane H_{α} within itself.

Proof $(\alpha=0)$

Proof $(\alpha=0)$

$$
t(z)=\frac{a}{1+z}
$$

Proof $(\alpha=0)$

$$
t(z)=\frac{a}{1+z}
$$

$$
\longrightarrow
$$

$$
\infty \mapsto 0
$$

$$
-1 \mapsto \infty
$$

Proof $(\alpha=0)$

Proof $(\alpha=0)$

Proof $(\alpha=0)$

$$
t(H) \subset H \Longleftrightarrow|a-0| \leqslant|a-\partial H|
$$

Proof $(\alpha=0)$

$$
t(H) \subset H \Longleftrightarrow|a-0| \leqslant|a-\partial H|
$$

Proof $(\alpha=0)$

Parabola $|a-0|=|a-\partial H|$

Original condition

$$
a_{n} \in P_{\alpha}
$$

New CONDITION

New condition

NEW CONDITION

$$
t_{n}(-1)=\infty
$$

NEW CONDITION

$$
t_{n}(-1)=\infty \quad t_{n}(\infty)=0
$$

NEW CONDITION

$$
t_{n}(-1)=\infty \quad t_{n}(\infty)=0 \quad t_{n}\left(H_{\alpha}\right) \subset H_{\alpha}
$$

New condition

$$
t_{n}(-1)=\infty \quad t_{n}(\infty)=0 \quad t_{n}\left(H_{\alpha}\right) \subset H_{\alpha}
$$

Does $T_{n}=t_{1} \circ t_{2} \circ \cdots \circ t_{n}$ converge at 0 ?

EXTENSIVE LITERATURE

Extensive literature

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)

Extensive Literature

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)

Extensive literature

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)

Extensive literature

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)
- Beardon (Comp. Methods. Func. Theory, 2001)

Extensive literature

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)
- Beardon (Comp. Methods. Func. Theory, 2001)
- Beardon, Carne, Minda, and Ng (Ergod. Th. \& Dynam. Sys., 2004)

Extensive literature

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)
- Beardon (Comp. Methods. Func. Theory, 2001)
- Beardon, Carne, Minda, and Ng (Ergod. Th. \& Dynam. Sys., 2004)
- Lorentzen (Ramanujan J., 2007)

Conclusion

If $a_{n} \in P_{\alpha}$ then there are points p and q in H_{α} such that $T_{2 n-1}$ converges on H_{α} to p, and $T_{2 n}$ converges on H_{α} to q.

Divergence

Action of $T_{2 n-1}$

Divergence

Action of $T_{2 n}$

Summary

Summary

$$
\circ a_{n} \in P_{\alpha}
$$

Summary

- $a_{n} \in P_{\alpha}$
- $t_{n}\left(H_{\alpha}\right) \subseteq H_{\alpha}$

Summary

- $a_{n} \in P_{\alpha}$
- $t_{n}\left(H_{\alpha}\right) \subseteq H_{\alpha}$
- refer to the literature

Summary

- $a_{n} \in P_{\alpha}$
- $t_{n}\left(H_{\alpha}\right) \subseteq H_{\alpha}$
- refer to the literature
- $T_{2 n-1} \rightarrow p$ and $T_{2 n} \rightarrow q$

The Stern-Stolz SERIES

Parabola Theorem

Stern-Stolz series

Recall the Parabola Theorem

Suppose $a_{n} \in P_{\alpha}$.

Recall the Parabola Theorem

Suppose $a_{n} \in P_{\alpha}$. Then $\mathbf{K}\left(a_{n} \mid 1\right)$ converges if and only if the Stern-Stolz series diverges.

Recall the Parabola Theorem

Then $\mathbf{K}\left(a_{n} \mid 1\right)$ converges if and only if the Stern-Stolz series diverges.

The Stern-Stolz series

$$
\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots
$$

Convergence of the Stern-Stolz series

$$
t_{n}(z)=\frac{a_{n}}{1+z} \quad \sim \quad s_{n}(z)=\frac{a_{n}}{z}
$$

MÖBIUS TRANSFORMATIONS

$$
s_{n}(z)=\frac{a_{n}}{z}
$$

MÖBIUS TRANSFORMATIONS

$$
\begin{gathered}
s_{n}(z)=\frac{a_{n}}{z} \\
S_{n}=s_{1} \circ s_{2} \circ \cdots \circ s_{n}
\end{gathered}
$$

Convergence of the Stern-Stolz series

$$
\text { Is } S_{n} \sim T_{n} \text { ? }
$$

Recall supremum metric

RECALL SUPREMUM METRIC

- χ chordal metric

Recall supremum metric

- χ chordal metric
- \mathcal{M} Möbius group

Recall supremum metric

- χ chordal metric
- \mathcal{M} Möbius group
- $\chi_{0}(f, g)=\sup _{z \in \mathbb{C}_{\infty}} \chi(f(z), g(z))$

Recall supremum metric

- χ chordal metric
- \mathcal{M} Möbius group
- $\chi_{0}(f, g)=\sup _{z \in \mathbb{C}_{\infty}} \chi(f(z), g(z))$
- χ_{0} right-invariant

Recall supremum metric

- χ chordal metric
- \mathcal{M} Möbius group
- $\chi_{0}(f, g)=\sup _{z \in \mathbb{C}_{\infty}} \chi(f(z), g(z))$
- χ_{0} right-invariant
- $\left(\mathcal{M}, \chi_{0}\right)$ a topological group

RECALL SUPREMUM METRIC

- χ chordal metric
- \mathcal{M} Möbius group
- $\chi_{0}(f, g)=\sup _{z \in \mathbb{C}_{\infty}} \chi(f(z), g(z))$
- χ_{0} right-invariant
- $\left(\mathcal{M}, \chi_{0}\right)$ a topological group
- $\left(\mathcal{M}, \chi_{0}\right)$ a complete metric space

The Stern-Stolz series

$$
\mu_{1}=\frac{1}{a_{1}} \quad \mu_{2}=\frac{a_{1}}{a_{2}} \quad \mu_{3}=\frac{a_{2}}{a_{1} a_{3}} \ldots
$$

The Stern-Stolz series

$$
\begin{gathered}
\mu_{1}=\frac{1}{a_{1}} \quad \mu_{2}=\frac{a_{1}}{a_{2}} \quad \mu_{3}=\frac{a_{2}}{a_{1} a_{3}} \ldots \\
\left|\mu_{1}\right|+\left|\mu_{2}\right|+\left|\mu_{3}\right|+\cdots
\end{gathered}
$$

The Stern-Stolz series

$$
\begin{gathered}
\mu_{1}=\frac{1}{a_{1}} \quad \mu_{2}=\frac{a_{1}}{a_{2}} \quad \mu_{3}=\frac{a_{2}}{a_{1} a_{3}} \cdots \\
\left|\mu_{1}\right|+\left|\mu_{2}\right|+\left|\mu_{3}\right|+\cdots \\
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z
\end{gathered}
$$

Conjugation

$$
\mu z \circ(1+z) \circ \mu^{-1} z=\mu+z
$$

Conjugation

$$
\begin{aligned}
& \quad \mu z \circ(1+z) \circ \mu^{-1} z=\mu+z \\
& S_{2 n} \circ(1+z) \circ S_{2 n}^{-1}(z)
\end{aligned}
$$

Conjugation

$$
\begin{gathered}
\mu z \circ(1+z) \circ \mu^{-1} z=\mu+z \\
S_{2 n} \circ(1+z) \circ S_{2 n}^{-1}(z)=\mu_{2 n}+z
\end{gathered}
$$

Conjugation

$$
\begin{gathered}
\mu z \circ(1+z) \circ \mu^{-1} z=\mu+z \\
S_{2 n} \circ(1+z) \circ S_{2 n}^{-1}(z)=\mu_{2 n}+z \\
h(z)=\frac{1}{z}
\end{gathered}
$$

Conjugation

$$
\begin{gathered}
\mu z \circ(1+z) \circ \mu^{-1} z=\mu+z \\
S_{2 n} \circ(1+z) \circ S_{2 n}^{-1}(z)=\mu_{2 n}+z \\
h(z)=\frac{1}{z} \\
S_{2 n-1} \circ(1+z) \circ S_{2 n-1}^{-1}(z)
\end{gathered}
$$

Conjugation

$$
\begin{gathered}
\mu z \circ(1+z) \circ \mu^{-1} z=\mu+z \\
S_{2 n} \circ(1+z) \circ S_{2 n}^{-1}(z)=\mu_{2 n}+z \\
h(z)=\frac{1}{z} \\
S_{2 n-1} \circ(1+z) \circ S_{2 n-1}^{-1}(z)=h \circ\left(\mu_{2 n-1}+z\right) \circ h
\end{gathered}
$$

Calculation

$$
\chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)
$$

Calculation

$$
\chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)=\chi_{0}\left(S_{n} t_{n}^{-1}, S_{n-1}\right)
$$

Calculation

$$
\begin{aligned}
\chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right) & =\chi_{0}\left(S_{n} t_{n}^{-1}, S_{n-1}\right) \\
& =\chi_{0}\left(I, S_{n-1} t_{n} S_{n}^{-1}\right)
\end{aligned}
$$

Calculation

$$
\begin{aligned}
\chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right) & =\chi_{0}\left(S_{n} t_{n}^{-1}, S_{n-1}\right) \\
& =\chi_{0}\left(I, S_{n-1} t_{n} S_{n}^{-1}\right) \\
& =\chi_{0}\left(I, S_{n} \circ(1+z) \circ S_{n}^{-1}\right)
\end{aligned}
$$

Calculation

$$
\begin{aligned}
\chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right) & =\chi_{0}\left(S_{n} t_{n}^{-1}, S_{n-1}\right) \\
& =\chi_{0}\left(I, S_{n-1} t_{n} S_{n}^{-1}\right) \\
& =\chi_{0}\left(I, S_{n} \circ(1+z) \circ S_{n}^{-1}\right) \\
& =\chi_{0}\left(I, \mu_{n}+z\right)
\end{aligned}
$$

Calculation

$$
\begin{aligned}
\chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right) & =\chi_{0}\left(S_{n} t_{n}^{-1}, S_{n-1}\right) \\
& =\chi_{0}\left(I, S_{n-1} t_{n} S_{n}^{-1}\right) \\
& =\chi_{0}\left(I, S_{n} \circ(1+z) \circ S_{n}^{-1}\right) \\
& =\chi_{0}\left(I, \mu_{n}+z\right) \\
& \sim\left|\mu_{n}\right|
\end{aligned}
$$

Summary

$$
\begin{gathered}
\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots<+\infty \\
\text { if and only if }
\end{gathered}
$$

$$
\sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
$$

Convergence of the Stern-Stolz series

Convergence of the Stern-Stolz series

$$
\sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
$$

Convergence of the Stern-Stolz series

$$
\sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
$$

There exists Möbius f such that $\chi_{0}\left(S_{n} T_{n}^{-1}, f\right) \rightarrow 0$.

Convergence of the Stern-Stolz series

$$
\sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
$$

There exists Möbius f such that $\chi_{0}\left(S_{n} T_{n}^{-1}, f\right) \rightarrow 0$.

$$
\text { Let } g=f^{-1} \text {. }
$$

Convergence of the Stern-Stolz series

$$
\sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
$$

There exists Möbius f such that $\chi_{0}\left(S_{n} T_{n}^{-1}, f\right) \rightarrow 0$.

$$
\begin{gathered}
\text { Let } g=f^{-1} \text {. } \\
\chi_{0}\left(g S_{n}, T_{n}\right) \rightarrow 0
\end{gathered}
$$

Oscillation

$$
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z
$$

Oscillation

$$
\begin{gathered}
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z \\
\mu_{n} \rightarrow 0
\end{gathered}
$$

Oscillation

$$
\begin{gathered}
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z \\
\mu_{n} \rightarrow 0 \\
S_{2 n-1} \rightarrow \infty \quad S_{2 n} \rightarrow 0
\end{gathered}
$$

Oscillation

$$
\begin{gathered}
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z \\
\mu_{n} \rightarrow 0 \\
S_{2 n-1} \rightarrow \infty \quad S_{2 n} \rightarrow 0
\end{gathered}
$$

So if $T_{n} \sim g S_{n}$ then $T_{2 n-1} \rightarrow g(\infty)$ and $T_{2 n} \rightarrow g(0)$.

Oscillation

Action of $T_{2 n-1}$

Oscillation

Action of $T_{2 n}$

Open Problem III

Open Problem III

What is the significance, if any, of the many other versions of the Parabola Theorem?

Open Problem III

What is the significance, if any, of the many other versions of the Parabola Theorem? (See earlier references and Lorentzen and Waadeland book.)

Hyperbolic geometry

Hyperbolic geometry

$$
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z}
$$

$$
S_{2 n}(z)=\mu_{2 n} z
$$

Hyperbolic geometry

$$
\begin{array}{ll}
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z} & S_{2 n}(z)=\mu_{2 n} z \\
S_{2 n-1}^{-1}(z)=\frac{1}{\mu_{2 n-1} z} & S_{2 n}^{-1}(z)=\frac{z}{\mu_{2 n}}
\end{array}
$$

Hyperbolic geometry

$$
\begin{array}{cl}
S_{2 n-1}(z)=\frac{1}{\mu_{2 n-1} z} & S_{2 n}(z)=\mu_{2 n} z \\
S_{2 n-1}^{-1}(z)=\frac{1}{\mu_{2 n-1} z} & S_{2 n}^{-1}(z)=\frac{z}{\mu_{2 n}} \\
S_{n}^{-1}(j)=\frac{j}{\left|\mu_{n}\right|}
\end{array}
$$

Hyperbolic geometry

$$
\begin{aligned}
S_{2 n-1}(z)= & \frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z \\
S_{2 n-1}^{-1}(z)= & \frac{1}{\mu_{2 n-1} z} \quad S_{2 n}^{-1}(z)=\frac{z}{\mu_{2 n}} \\
& S_{n}^{-1}(j)=\frac{j}{\left|\mu_{n}\right|}
\end{aligned}
$$

If $\left|\mu_{n}\right|<1$ then

$$
\exp \left[-\rho\left(j, S_{n}^{-1}(j)\right)\right]
$$

Hyperbolic geometry

$$
\begin{aligned}
S_{2 n-1}(z)= & \frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z \\
S_{2 n-1}^{-1}(z)= & \frac{1}{\mu_{2 n-1} z} \quad S_{2 n}^{-1}(z)=\frac{z}{\mu_{2 n}} \\
& S_{n}^{-1}(j)=\frac{j}{\left|\mu_{n}\right|}
\end{aligned}
$$

If $\left|\mu_{n}\right|<1$ then

$$
\exp \left[-\rho\left(j, S_{n}^{-1}(j)\right)\right]=\exp \left[-\log \left(\frac{1}{\left|\mu_{n}\right|}\right)\right]
$$

Hyperbolic geometry

$$
\begin{aligned}
S_{2 n-1}(z)= & \frac{1}{\mu_{2 n-1} z} \quad S_{2 n}(z)=\mu_{2 n} z \\
S_{2 n-1}^{-1}(z)= & \frac{1}{\mu_{2 n-1} z} \quad S_{2 n}^{-1}(z)=\frac{z}{\mu_{2 n}} \\
& S_{n}^{-1}(j)=\frac{j}{\left|\mu_{n}\right|}
\end{aligned}
$$

If $\left|\mu_{n}\right|<1$ then

$$
\exp \left[-\rho\left(j, S_{n}^{-1}(j)\right)\right]=\exp \left[-\log \left(\frac{1}{\left|\mu_{n}\right|}\right)\right]=\left|\mu_{n}\right|
$$

Dynamics of S_{n} In hyperbolic space

Equivalent conditions

$$
\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots<+\infty
$$

Equivalent conditions

$$
\begin{aligned}
&\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots<+\infty \\
& \sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
\end{aligned}
$$

Equivalent conditions

$$
\begin{gathered}
\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots<+\infty \\
\sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
\end{gathered}
$$

$\sum_{n} \exp \left[-\rho\left(j, S_{n}(j)\right)\right]<+\infty$ and ∞ is the only (conical) limit point of S_{n}

Equivalent conditions

$$
\begin{gathered}
\left|\frac{1}{a_{1}}\right|+\left|\frac{a_{1}}{a_{2}}\right|+\left|\frac{a_{2}}{a_{1} a_{3}}\right|+\left|\frac{a_{1} a_{3}}{a_{2} a_{4}}\right|+\left|\frac{a_{2} a_{4}}{a_{1} a_{3} a_{5}}\right|+\cdots<+\infty \\
\sum_{n} \chi_{0}\left(S_{n} T_{n}^{-1}, S_{n-1} T_{n-1}^{-1}\right)<+\infty
\end{gathered}
$$

$\sum_{n} \exp \left[-\rho\left(j, S_{n}(j)\right)\right]<+\infty$ and ∞ is the only (conical) limit point of S_{n}
$\sum_{n} \exp \left[-\rho\left(j, T_{n}(j)\right)\right]<+\infty$ and ∞ is the only conical limit point of T_{n}

