Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000000	00000

Hyperbolic geometry and continued fraction theory II

Ian Short 16 February 2010

http://maths.org/ims 25/maths/presentations.php

990

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

BACKGROUND

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
●00000000000	0000000	0000000000000000	000000000000000	00000

Schematic diagram

Schematic diagram

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	0000000000000000	000000000000000	00000

Möbius group

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000	00000

Möbius group

$\circ\,$ Group of hyperbolic isometries of $\mathbb{H}^3.$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Möbius group

- Group of hyperbolic isometries of \mathbb{H}^3 .
- \circ Group of conformal automorphisms of \mathbb{C}_{∞} .

STEREOGRAPHIC PROJECTION

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	0000000000000000	000000000000000	00000

STEREOGRAPHIC PROJECTION

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	0000000000000000	000000000000000	00000

STEREOGRAPHIC PROJECTION

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

STEREOGRAPHIC PROJECTION

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

The chordal metric

$$\chi(w,z) = \frac{2|w-z|}{\sqrt{1+|w|^2}\sqrt{1+|z|^2}} \qquad \chi(w,\infty) = \frac{2}{\sqrt{1+|w|^2}}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	00000

The chordal metric

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

The supremum metric

Denote the Möbius group by \mathcal{M} .

<ロト < 課 ト < 注 ト < 注 ト 三 三 のへで</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000	00000

The supremum metric

Denote the Möbius group by \mathcal{M} .

$$\chi_0(f,g) = \sup_{z \in \mathbb{C}_\infty} \chi(f(z),g(z))$$

 $f,g \in \mathcal{M}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000	00000

The supremum metric

Denote the Möbius group by \mathcal{M} .

$$\chi_0(f,g) = \sup_{z \in \mathbb{C}_\infty} \chi(f(z),g(z))$$

 $f,g \in \mathcal{M}$

The metric of uniform convergence.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000	00000

Möbius group

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
0000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Möbius group

•
$$(\mathcal{M}, \chi_0)$$
 is a complete metric space

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000	00000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Möbius group

(M, χ₀) is a complete metric space
(M, χ₀) is a topological group

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	00000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Möbius group

- $\circ (\mathcal{M}, \chi_0)$ is a complete metric space
- (\mathcal{M}, χ_0) is a topological group
- \circ right-invariant: $\chi_0(fk,gk) = \chi_0(f,g)$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
0000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Möbius group

- $\circ (\mathcal{M}, \chi_0)$ is a complete metric space
- (\mathcal{M}, χ_0) is a topological group
- \circ right-invariant: $\chi_0(fk,gk) = \chi_0(f,g)$
- $\circ~h(z)=1/z$ is a chordal isometry: $\chi_0(hf,hg)=\chi_0(f,g)$

The Stern-Stolz Theorem

Theorem. If $\sum_{n} |b_n|$ converges then $\mathbf{K}(1|b_n)$ diverges.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

NOTATION

$$t_n(z) = \frac{1}{b_n + z}$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000000	00000

NOTATION

$$t_n(z) = \frac{1}{b_n + z}$$

$$T_n = t_1 \circ t_2 \circ \cdots \circ t_n$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	00000000000000000	00000

NOTATION

$$t_n(z) = \frac{1}{b_n + z}$$
$$T_n = t_1 \circ t_2 \circ \cdots \circ t_n$$

$$h(z) = \frac{1}{z}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
0000000000000	0000000	0000000000000000	000000000000000	00000

Hyperbolic geometry proof (Beardon)

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

TOPOLOGICAL GROUPS PROOF

 $\sum_{n} \chi_0(T_n, T_{n+2}) \leqslant \sum_{n} |b_n|$ nn

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

TOPOLOGICAL GROUPS PROOF

$$\sum_{n} \chi_0(T_n, T_{n+2}) \leqslant \sum_{n} |b_n|$$

$$T_{2n-1} \to g \qquad T_{2n} \to gh$$

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

TOPOLOGICAL GROUPS PROOF

$$\sum_{n} \chi_0(T_n, T_{n+2}) \leqslant \sum_{n} |b_n|$$
$$T_{2n-1} \to g \qquad T_{2n} \to gh$$
$$T_{2n-1}(0) \to g(0) \qquad T_{2n}(0) \to g(\infty)$$

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	000000000000000000000000000000000000000	00000000000000000	00000

The Parabola Theorem

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	000000000000000000000000000000000000000	00000000000000000	00000

The Parabola Theorem

'The queen of the convergence theorems' (Lorentzen)

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	000000000000000	000000000000000	00000

The Parabola Theorem

'The queen of the convergence theorems' (Lorentzen)

Topological groups techniques and hyperbolic geometry

ション ふゆ ア キョン キョン しょうく

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geome
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

The Parabola Theorem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Background	Parabola Theorem	Parabolic region	Stern-Stolz series	Hyperbolic geometry
000000000000	●0000000	000000000000000000000000000000000000000	000000000000000	00000

CONTINUED FRACTIONS

$$\mathbf{K}(a_n|1) = \frac{a_1}{1 + \frac{a_2}{1 + \frac{a_3}{1 + \frac{a_4}{1 + \dots}}}}$$

▲ロト ▲目ト ▲ミト ▲ミト 三三 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

PARABOLIC REGION

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	Parabolic region	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000	00000

The Stern-Stolz series

$$\left|\frac{1}{a_1}\right| + \left|\frac{a_1}{a_2}\right| + \left|\frac{a_2}{a_1a_3}\right| + \left|\frac{a_1a_3}{a_2a_4}\right| + \left|\frac{a_2a_4}{a_1a_3a_5}\right| + \cdots$$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000000000000000000000000000	00000

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

The Parabola Theorem

Suppose that $a_n \in P_\alpha$ for $n = 1, 2, \ldots$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

The Parabola Theorem

Suppose that $a_n \in P_\alpha$ for n = 1, 2, ... Then $\mathbf{K}(a_n | 1)$ converges if and only if the series

$$\left|\frac{1}{a_1}\right| + \left|\frac{a_1}{a_2}\right| + \left|\frac{a_2}{a_1a_3}\right| + \left|\frac{a_1a_3}{a_2a_4}\right| + \left|\frac{a_2a_4}{a_1a_3a_5}\right| + \cdots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

diverges.

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

00000000000000000000000000000000000000	Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
	000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

LONG HISTORY OF THE PARABOLA THEOREM

• Scott and Wall (Trans. Amer. Math. Soc., 1940)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	0000000000000000	000000000000000	00000

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)
- Paydon and Wall (Duke Math. J., 1942)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	0000000000000000	000000000000000	00000

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)
- Paydon and Wall (Duke Math. J., 1942)
- Thron (Duke Math. J., 1943, 1944)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	0000000000000000	000000000000000	00000

Dac

- Scott and Wall (Trans. Amer. Math. Soc., 1940)
- Leighton and Thron (Duke Math. J., 1942)
- Paydon and Wall (Duke Math. J., 1942)
- Thron (Duke Math. J., 1943, 1944)
- Thron (J. Indian Math. Soc., 1963)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

UNDERSTANDING THE THEOREM

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

UNDERSTANDING THE THEOREM

What is the significance of the parabolic region?

ション ふゆ ア キョン キョン しょうく

UNDERSTANDING THE THEOREM

What is the significance of the parabolic region?

What is the significance of the series?

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000000000000000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Split the theorem in two.

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Split the theorem in two.

Theorem involving the parabolic region.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	00000000	000000000000000000000000000000000000000	0000000000000000	00000

Split the theorem in two.

Theorem involving the parabolic region.

Theorem involving the Stern–Stolz series.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Schematic diagram

Parabola Theorem

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000000000000000000000000000	00000

Schematic diagram

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem
000000000000	0000000

PARABOLIC REGION

Stern-Stolz series

HYPERBOLIC GEOMETRY

THE PARABOLIC REGION

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	•00000000000000	000000000000000000000000000000000000000	00000

Schematic diagram

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Möbius transformations

$$t_n(z) = \frac{a_n}{1+z}$$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Möbius transformations

$$t_n(z) = \frac{a_n}{1+z}$$

$$T_n = t_1 \circ t_2 \circ \cdots \circ t_n$$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Convergence using Möbius transformations

The continued fraction $\mathbf{K}(a_n|1)$ converges if and only if $T_1(0), T_2(0), T_3(0), \ldots$ converges.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

QUESTION

What does the condition $a \in P_{\alpha}$ signify for the map t(z) = a/(1+z)?

Background	Parabola Theorem	Parabolic region	Stern-Stolz series	Hyperbolic geometry
000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

Answer

The coefficient *a* belongs to P_{α} if and only if *t* maps a half-plane H_{α} within itself.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	Parabolic region	Stern-Stolz series	Hyperbolic geometry
0000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

BACKGROUN	D PARABOLA THEO	REM PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000	00000 0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

BACKGROUN	D PARABOLA THEO	REM PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000	00000 0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

$$t(H) \subset H \Longleftrightarrow |a - 0| \leqslant |a - \partial H|$$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000000	00000

$t(H) \subset H \Longleftrightarrow |a-0| \leqslant |a-\partial H|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	00000

Parabola $|a - 0| = |a - \partial H|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000	00000

ORIGINAL CONDITION

$$a_n \in P_\alpha$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000000	00000

NEW CONDITION

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$t_n(-1) = \infty$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$t_n(-1) = \infty \qquad t_n(\infty) = 0$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$t_n(-1) = \infty$$
 $t_n(\infty) = 0$ $t_n(H_\alpha) \subset H_\alpha$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$t_n(-1) = \infty$$
 $t_n(\infty) = 0$ $t_n(H_\alpha) \subset H_\alpha$

Does $T_n = t_1 \circ t_2 \circ \cdots \circ t_n$ converge at 0?

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

• Hillam and Thron (Proc. Amer. Math. Soc., 1965)

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

• Hillam and Thron (Proc. Amer. Math. Soc., 1965)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

• Baker and Rippon (Complex Variables, 1989)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

• Hillam and Thron (Proc. Amer. Math. Soc., 1965)

- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)
- Beardon (Comp. Methods. Func. Theory, 2001)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)
- Beardon (Comp. Methods. Func. Theory, 2001)
- Beardon, Carne, Minda, and Ng (Ergod. Th. & Dynam. Sys., 2004)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

- Hillam and Thron (Proc. Amer. Math. Soc., 1965)
- Baker and Rippon (Complex Variables, 1989)
- Baker and Rippon (Arch. Math., 1990)
- Beardon (Comp. Methods. Func. Theory, 2001)
- Beardon, Carne, Minda, and Ng (Ergod. Th. & Dynam. Sys., 2004)

• Lorentzen (Ramanujan J., 2007)

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

CONCLUSION

If $a_n \in P_{\alpha}$ then there are points p and q in H_{α} such that T_{2n-1} converges on H_{α} to p, and T_{2n} converges on H_{α} to q.

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	00000000000000000	000000000000000	00000

DIVERGENCE

Action of T_{2n-1}

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	00000000000000000	000000000000000000000000000000000000000	00000

DIVERGENCE

Action of T_{2n}

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	00000000000000	000000000000000000000000000000000000000	00000

SUMMARY

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	00000000000000	000000000000000	00000

SUMMARY

$$\circ a_n \in P_{\alpha}$$

・ロト・4日ト・4日ト・4日ト 日 900

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	00000000000000	000000000000000	00000

SUMMARY

$$\circ \ a_n \in P_\alpha$$

$$\circ \ t_n(H_\alpha) \subseteq H_\alpha$$

- ロ ト - 4 目 ト - 4 目 ト - 1 - 9 0 0

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	00000000000000	000000000000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

SUMMARY

- $\circ a_n \in P_{\alpha}$
- $\circ t_n(H_\alpha) \subseteq H_\alpha$
- $\circ\,$ refer to the literature

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	00000000000000	000000000000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

SUMMARY

- $\circ a_n \in P_{\alpha}$
- $\circ t_n(H_\alpha) \subseteq H_\alpha$
- $\circ\,$ refer to the literature

$$\circ T_{2n-1} \to p \text{ and } T_{2n} \to q$$

Background Parabola Theore 00000000000 00000000 PARABOLIC REGION

STERN-STOLZ SERIES

Hyperbolic geometry 00000

The Stern-Stolz series

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Schematic diagram

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Recall the Parabola Theorem

Suppose $a_n \in P_{\alpha}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

RECALL THE PARABOLA THEOREM

Suppose $a_n \in P_{\alpha}$. Then $\mathbf{K}(a_n | 1)$ converges if and only if the Stern–Stolz series diverges.

・ロト ・四ト ・モト ・モト - 王

RECALL THE PARABOLA THEOREM

Then $\mathbf{K}(a_n | 1)$ converges if and only if the Stern–Stolz series diverges.

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	00000000000000	00000

The Stern-Stolz series

$$\left|\frac{1}{a_1}\right| + \left|\frac{a_1}{a_2}\right| + \left|\frac{a_2}{a_1a_3}\right| + \left|\frac{a_1a_3}{a_2a_4}\right| + \left|\frac{a_2a_4}{a_1a_3a_5}\right| + \cdots$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Convergence of the Stern–Stolz series

$$t_n(z) = \frac{a_n}{1+z} \qquad \sim \qquad s_n(z) = \frac{a_n}{z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

Möbius transformations

$$s_n(z) = \frac{a_n}{z}$$

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

Möbius transformations

$$s_n(z) = \frac{a_n}{z}$$

$$S_n = s_1 \circ s_2 \circ \cdots \circ s_n$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Convergence of the Stern–Stolz series

Is $S_n \sim T_n$?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

RECALL SUPREMUM METRIC

$\circ~\chi$ chordal metric

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

- $\circ~\chi$ chordal metric
- $\circ~\mathcal{M}$ Möbius group

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

- $\circ~\chi$ chordal metric
- $\circ~\mathcal{M}$ Möbius group

$$\circ \ \chi_0(f,g) = \sup_{z \in \mathbb{C}_\infty} \chi(f(z),g(z))$$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

- $\circ~\chi$ chordal metric
- $\circ~\mathcal{M}$ Möbius group
- $\circ \ \chi_0(f,g) = \sup_{z \in \mathbb{C}_\infty} \chi(f(z),g(z))$
- $\circ~\chi_0$ right-invariant

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

- $\circ~\chi$ chordal metric
- $\circ~\mathcal{M}$ Möbius group
- $\circ \ \chi_0(f,g) = \sup_{z \in \mathbb{C}_\infty} \chi(f(z),g(z))$
- $\circ~\chi_0$ right-invariant
- $\circ (\mathcal{M}, \chi_0)$ a topological group

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

RECALL SUPREMUM METRIC

- $\circ~\chi$ chordal metric
- $\circ~\mathcal{M}$ Möbius group
- $\circ \ \chi_0(f,g) = \sup_{z \in \mathbb{C}_\infty} \chi(f(z),g(z))$
- χ_0 right-invariant
- $\circ (\mathcal{M}, \chi_0)$ a topological group
- (\mathcal{M}, χ_0) a complete metric space

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

The Stern-Stolz series

$$\mu_1 = \frac{1}{a_1}$$
 $\mu_2 = \frac{a_1}{a_2}$ $\mu_3 = \frac{a_2}{a_1 a_3} \dots$

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	Parabolic region	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

The Stern-Stolz series

$$\mu_1 = \frac{1}{a_1} \qquad \mu_2 = \frac{a_1}{a_2} \qquad \mu_3 = \frac{a_2}{a_1 a_3} \dots$$
$$|\mu_1| + |\mu_2| + |\mu_3| + \dots$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

The Stern-Stolz series

$$\mu_1 = \frac{1}{a_1} \qquad \mu_2 = \frac{a_1}{a_2} \qquad \mu_3 = \frac{a_2}{a_1 a_3} \dots$$
$$|\mu_1| + |\mu_2| + |\mu_3| + \dots$$
$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1} z} \qquad S_{2n}(z) = \mu_{2n} z$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

$$\mu z \circ (1+z) \circ \mu^{-1} z = \mu + z$$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

$$\mu z \circ (1+z) \circ \mu^{-1} z = \mu + z$$

$$S_{2n} \circ (1+z) \circ S_{2n}^{-1}(z)$$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

$$\mu z \circ (1+z) \circ \mu^{-1} z = \mu + z$$

$$S_{2n} \circ (1+z) \circ S_{2n}^{-1}(z) = \mu_{2n} + z$$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

$$\mu z \circ (1+z) \circ \mu^{-1} z = \mu + z$$
$$S_{2n} \circ (1+z) \circ S_{2n}^{-1}(z) = \mu_{2n} + z$$
$$h(z) = \frac{1}{z}$$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

$$\mu z \circ (1+z) \circ \mu^{-1} z = \mu + z$$

$$S_{2n} \circ (1+z) \circ S_{2n}^{-1}(z) = \mu_{2n} + z$$

$$h(z) = \frac{1}{z}$$

$$S_{2n-1} \circ (1+z) \circ S_{2n-1}^{-1}(z)$$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000	00000

$$\mu z \circ (1+z) \circ \mu^{-1} z = \mu + z$$

$$S_{2n} \circ (1+z) \circ S_{2n}^{-1}(z) = \mu_{2n} + z$$

$$h(z) = \frac{1}{z}$$

$$S_{2n-1} \circ (1+z) \circ S_{2n-1}^{-1}(z) = h \circ (\mu_{2n-1} + z) \circ h$$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000	00000

 $\chi_0(S_nT_n^{-1}, S_{n-1}T_{n-1}^{-1})$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000	00000

$$\chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) = \chi_0(S_n t_n^{-1}, S_{n-1})$$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000	00000

$$\chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) = \chi_0(S_n t_n^{-1}, S_{n-1})$$
$$= \chi_0(I, S_{n-1} t_n S_n^{-1})$$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000	00000

$$\chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) = \chi_0(S_n t_n^{-1}, S_{n-1})$$

= $\chi_0(I, S_{n-1} t_n S_n^{-1})$
= $\chi_0(I, S_n \circ (1+z) \circ S_n^{-1})$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000	00000

$$\begin{split} \chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) &= \chi_0(S_n t_n^{-1}, S_{n-1}) \\ &= \chi_0(I, S_{n-1} t_n S_n^{-1}) \\ &= \chi_0(I, S_n \circ (1+z) \circ S_n^{-1}) \\ &= \chi_0(I, \mu_n + z) \end{split}$$

<ロト < 回 > < 三 > < 三 > < 三 > < ○ < ○</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000	00000

$$\chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) = \chi_0(S_n t_n^{-1}, S_{n-1})$$

= $\chi_0(I, S_{n-1} t_n S_n^{-1})$
= $\chi_0(I, S_n \circ (1+z) \circ S_n^{-1})$
= $\chi_0(I, \mu_n + z)$
 $\sim |\mu_n|$

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

SUMMARY

$$\frac{1}{a_1} \left| + \left| \frac{a_1}{a_2} \right| + \left| \frac{a_2}{a_1 a_3} \right| + \left| \frac{a_1 a_3}{a_2 a_4} \right| + \left| \frac{a_2 a_4}{a_1 a_3 a_5} \right| + \dots < +\infty$$

if and only if
$$\sum_n \chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) < +\infty$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

Convergence of the Stern–Stolz series

Convergence of the Stern-Stolz series

 $\sum \chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) < +\infty$ n

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	00000

Convergence of the Stern-Stolz series

$$\sum_{n} \chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) < +\infty$$

There exists Möbius f such that $\chi_0(S_nT_n^{-1}, f) \to 0$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ へ ()

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	00000

Convergence of the Stern-Stolz series

$$\sum_{n} \chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) < +\infty$$

There exists Möbius f such that $\chi_0(S_nT_n^{-1}, f) \to 0$.

Let $g = f^{-1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ● ●

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	00000

Convergence of the Stern-Stolz series

$$\sum_{n} \chi_0(S_n T_n^{-1}, S_{n-1} T_{n-1}^{-1}) < +\infty$$

There exists Möbius f such that $\chi_0(S_nT_n^{-1}, f) \to 0$.

Let
$$g = f^{-1}$$
.
 $\chi_0(gS_n, T_n) \to 0$

シック・ 川 ・山・ ・山・ ・ ・ ・ ・ ・

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z}$$
 $S_{2n}(z) = \mu_{2n}z$
 $\mu_n \to 0$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$
$$\mu_n \to 0$$

$$S_{2n-1} \to \infty \qquad S_{2n} \to 0$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$
$$\mu_n \to 0$$

$$S_{2n-1} \to \infty \qquad S_{2n} \to 0$$

So if $T_n \sim gS_n$ then $T_{2n-1} \to g(\infty)$ and $T_{2n} \to g(0)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000	00000

Action of T_{2n-1}

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern–Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000	00000

Action of T_{2n}

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
00000000000	0000000	000000000000000000000000000000000000000	0000000000000000	00000

Open Problem III

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000	00000

Open Problem III

What is the significance, if any, of the many other versions of the Parabola Theorem?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000	00000

Open Problem III

What is the significance, if any, of the many other versions of the Parabola Theorem? (See earlier references and Lorentzen and Waadeland book.)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series
000000000000	0000000	000000000000000000000000000000000000000	000000000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	0000000000000000	000000000000000000000000000000000000000	●0000

Hyperbolic space

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000000	00000

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$
$$S_{2n-1}^{-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}^{-1}(z) = \frac{z}{\mu_{2n}}$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$
$$S_{2n-1}^{-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}^{-1}(z) = \frac{z}{\mu_{2n}}$$
$$S_n^{-1}(j) = \frac{j}{|\mu_n|}$$

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000000	00000

Hyperbolic geometry

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$
$$S_{2n-1}^{-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}^{-1}(z) = \frac{z}{\mu_{2n}}$$
$$S_{n}^{-1}(j) = \frac{j}{|\mu_{n}|}$$

If $|\mu_n| < 1$ then

 $\exp\left[-\rho(j, S_n^{-1}(j))\right]$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シベ⊙

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000000	00000

Hyperbolic geometry

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$
$$S_{2n-1}^{-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}^{-1}(z) = \frac{z}{\mu_{2n}}$$
$$S_{n}^{-1}(j) = \frac{j}{|\mu_{n}|}$$

If
$$|\mu_n| < 1$$
 then
 $\exp\left[-\rho(j, S_n^{-1}(j))\right] = \exp\left[-\log\left(\frac{1}{|\mu_n|}\right)\right]$

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ つへで</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000000	00000

Hyperbolic geometry

$$S_{2n-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}(z) = \mu_{2n}z$$
$$S_{2n-1}^{-1}(z) = \frac{1}{\mu_{2n-1}z} \qquad S_{2n}^{-1}(z) = \frac{z}{\mu_{2n}}$$
$$S_{n}^{-1}(j) = \frac{j}{|\mu_{n}|}$$

If
$$|\mu_n| < 1$$
 then
 $\exp\left[-\rho(j, S_n^{-1}(j))\right] = \exp\left[-\log\left(\frac{1}{|\mu_n|}\right)\right] = |\mu_n|$

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

Dynamics of S_n in hyperbolic space

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Dynamics of S_n in hyperbolic space

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Dynamics of S_n in hyperbolic space

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シベ⊙

Dynamics of S_n in hyperbolic space

・ロト ・ 日 ・ ・ ヨ ト ・ 日 ・ ・ の へ ()・

Dynamics of S_n in hyperbolic space

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シベ⊙

Dynamics of S_n in hyperbolic space

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Background	Parabola Theorem	Parabolic region	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$\left|\frac{1}{a_1}\right| + \left|\frac{a_1}{a_2}\right| + \left|\frac{a_2}{a_1a_3}\right| + \left|\frac{a_1a_3}{a_2a_4}\right| + \left|\frac{a_2a_4}{a_1a_3a_5}\right| + \dots < +\infty$$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	0000000000000000000	00000

$$\left|\frac{1}{a_1}\right| + \left|\frac{a_1}{a_2}\right| + \left|\frac{a_2}{a_1a_3}\right| + \left|\frac{a_1a_3}{a_2a_4}\right| + \left|\frac{a_2a_4}{a_1a_3a_5}\right| + \dots < +\infty$$
$$\sum_n \chi_0(S_n T_n^{-1}, S_{n-1}T_{n-1}^{-1}) < +\infty$$

<ロト < 回 ト < 三 ト < 三 ト こ の < で</p>

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$\left|\frac{1}{a_1}\right| + \left|\frac{a_1}{a_2}\right| + \left|\frac{a_2}{a_1a_3}\right| + \left|\frac{a_1a_3}{a_2a_4}\right| + \left|\frac{a_2a_4}{a_1a_3a_5}\right| + \dots < +\infty$$
$$\sum_n \chi_0(S_n T_n^{-1}, S_{n-1}T_{n-1}^{-1}) < +\infty$$

 $\sum_{n} \exp[-\rho(j, S_n(j))] < +\infty$ and ∞ is the only (conical) limit point of S_n

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000

$$\left|\frac{1}{a_1}\right| + \left|\frac{a_1}{a_2}\right| + \left|\frac{a_2}{a_1a_3}\right| + \left|\frac{a_1a_3}{a_2a_4}\right| + \left|\frac{a_2a_4}{a_1a_3a_5}\right| + \dots < +\infty$$
$$\sum_n \chi_0(S_n T_n^{-1}, S_{n-1}T_{n-1}^{-1}) < +\infty$$

 $\sum_{n} \exp[-\rho(j, S_n(j))] < +\infty$ and ∞ is the only (conical) limit point of S_n

 $\sum_{n} \exp[-\rho(j, T_n(j))] < +\infty$ and ∞ is the only conical limit point of T_n

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Background	Parabola Theorem	PARABOLIC REGION	Stern-Stolz series	Hyperbolic geometry
000000000000	0000000	000000000000000	000000000000000000	00000

4 日 > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H > 4 H >