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The chordal metric

χ(w, z) =
2|w − z|√

1 + |w|2
√

1 + |z|2
χ(w,∞) =

2√
1 + |w|2
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Möbius group

◦ (M, χ0) is a complete metric space
◦ (M, χ0) is a topological group
◦ right-invariant: χ0(fk, gk) = χ0(f, g)
◦ h(z) = 1/z is a chordal isometry: χ0(hf, hg) = χ0(f, g)



Background Parabola Theorem Parabolic region Stern–Stolz series Hyperbolic geometry

The Stern–Stolz Theorem

Theorem. If
∑

n |bn| converges then K(1| bn) diverges.
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Continued fractions

K(an| 1) =
a1

1 +
a2

1 +
a3

1 +
a4

1 + · · ·
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The Stern–Stolz series
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Convergence using Möbius transformations

The continued fraction K(an| 1) converges if and only if
T1(0), T2(0), T3(0), . . . converges.
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Question

What does the condition a ∈ Pα signify for the map
t(z) = a/(1 + z)?
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Answer

The coefficient a belongs to Pα if and only if t maps a
half-plane Hα within itself.
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Proof (α = 0)

Parabola |a− 0| = |a− ∂H|
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Conclusion

If an ∈ Pα then there are points p and q in Hα such that T2n−1

converges on Hα to p, and T2n converges on Hα to q.
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Schematic diagram

Parabola Theorem

Stern-Stolz series
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Suppose an ∈ Pα.

Then K(an| 1) converges if and only if the
Stern–Stolz series diverges.
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Convergence of the Stern–Stolz series

tn(z) =
an

1 + z
∼ sn(z) =

an
z
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Convergence of the Stern–Stolz series

Is Sn ∼ Tn?
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◦ (M, χ0) a topological group
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−1
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= χ0(I, Sn ◦ (1 + z) ◦ S−1
n )

= χ0(I, µn + z)
∼ |µn|
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Summary

∣∣∣∣ 1
a1

∣∣∣∣+
∣∣∣∣a1

a2

∣∣∣∣+
∣∣∣∣ a2

a1a3

∣∣∣∣+
∣∣∣∣a1a3

a2a4

∣∣∣∣+
∣∣∣∣ a2a4

a1a3a5

∣∣∣∣+ · · · < +∞

if and only if∑
n

χ0(SnT−1
n , Sn−1T

−1
n−1) < +∞
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∑
n
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n , Sn−1T

−1
n−1) < +∞

There exists Möbius f such that χ0(SnT−1
n , f)→ 0.

Let g = f−1.

χ0(gSn, Tn)→ 0
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So if Tn ∼ gSn then T2n−1 → g(∞) and T2n → g(0).
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Equivalent conditions

∣∣∣∣ 1
a1

∣∣∣∣+
∣∣∣∣a1

a2

∣∣∣∣+
∣∣∣∣ a2

a1a3

∣∣∣∣+
∣∣∣∣a1a3

a2a4

∣∣∣∣+
∣∣∣∣ a2a4

a1a3a5

∣∣∣∣+ · · · < +∞

∑
n

χ0(SnT−1
n , Sn−1T

−1
n−1) < +∞

∑
n exp[−ρ(j, Sn(j))] < +∞ and ∞ is the only (conical) limit

point of Sn∑
n exp[−ρ(j, Tn(j))] < +∞ and ∞ is the only conical limit

point of Tn
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