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ABSTRACT 

Abstraction is a fundamental tool of human thought in every context. This essay briefly reviews some 
manifestations of abstraction in every day life, in engineering and mathematics, and in software and 
system development. Vertical and horizontal abstraction are distinguished and characterised. The use 
of vertical abstraction in top-down and bottom-up program development is discussed, and also the use 
of horizontal abstraction in one very different approach to program design. The ubiquitous use of 
analogical models in software is explained in terms of analytical abstractions. Some aspects of the 
practical use of abstraction in the development of computer-based systems are explored. The necessity 
of multiple abstractions is argued from the essential nature of abstraction, which by definition focuses 
on some concerns at the expense of discarding others. Finally, some general recommendations are 
offered for a consciously thoughtful use of abstraction in software development.  
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1 INTRODUCTION 

Abstraction is a fundamental human faculty for perception, action and thought at every level. It is 
manifested everywhere in the growth and exercise of our practical intellect from birth. It is a vital tool 
in the evolution and practice of science, mathematics and engineering. The development of software 
for programmable digital computers, in particular, presents imperative demands and irresistible 
opportunities for the exercise and study of abstraction. Writers on software development [Dijkstra72, 
JacksonD06, Kramer07] have regarded appropriate use of abstraction as a fundamental skill. This is 
why a discussion of abstraction is relevant to this special issue of the SoSyM journal on software 
development and modelling.  

Because abstraction is found everywhere in our intellectual landscape, a short discussion can scarcely 
aim at a comprehensive survey of its value and practice. In this essay the approach is informal, and 
focuses chiefly on abstraction in software development. The discussion falls into three main sections. 
Section 2 offers a preliminary account of the development of certain aspects and uses of abstraction, 
and mentions some illustrative examples. Section 3 draws on this background in discussing different 
dimensions and forms of abstraction, purposes that it can serve, and the practical intellectual 
structures it can suggest and support. Section 4 examines some critical aspects of abstraction as it is 
commonly practised in the development of computer-based systems. A final section draws together 
some general observations, and recommends a carefully thoughtful use of this fundamental 
intellectual tool.  

2 A PRELIMINARY ACCOUNT 

The essence of abstraction is simple and unsurprising: to abstract is to set aside what is less relevant, 
focusing attention on what we judge more important for the purpose in hand. To recognise a persistent 
entity we focus on what persists, and abstract away what varies from one encounter to another. We 
recognise classes of entities by abstracting away the differences among their members, and by a 
further exercise of abstraction we may recognise a superclass of some classes already recognised. We 
identify a quality common to many instances of different kinds, and—in the spirit of Plato—regard 
the abstract quality itself as an individual thing. The abstractions that we acquire in our everyday 
lives, by exercising our own faculties and by learning from others in our society, furnish—quite 
literally—our view of the world. It is well established that the larger part of the scene that we think we 
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see with our eyes is in fact supplied by mental activity in which we interpret the purely optical signals 
in the light of abstractions and expectations formed from past experience. As Richard Gregory writes 
[Gregory05]: “Without the computing power and memory that brains bring to bear, retinal images 
would be meaningless patterns of limited use—hence the importance of knowledge for seeing.”  

Abstractions are closely interwoven with theories about how the world is and how it works. We equip 
ourselves with a usable—though not always well-founded—repertoire of abstractions and associated 
theories. The theories are based on what we believe to be the properties and behaviour of the material 
reality from which we have drawn our abstractions. These are grounded abstractions: they spring from 
our experience and perception of the world and our efforts to understand it. Ostensibly the criterion of 
their validity is an objective correspondence to material reality; but in truth the criterion is how well 
they work in practice for the purposes we want them to serve. In early societies these purposes are 
primarily social, rather than intellectual, scientific, or technical, and the criterion of validity is 
therefore a general social acceptance. From this intuitive, tacit and informal purpose, repertoires of 
grounded abstractions grow by unguided evolution, and may evolve to embrace such notions as magic 
spells and witchcraft, or prophecy by examining the entrails of sacrificed animals. Social acceptance 
of the associated theories—for example, that crop failure is always traceable to the action of a nearby 
malicious witch—is unquestioned: members of the society “reason excellently in the idiom of their 
beliefs but they cannot reason outside, or against, their beliefs because they have no other idiom in 
which to express their thoughts” [Evans-Pritchard37].  

A society that adopts ambitious engineering purposes—building royal tombs, temples, bridges, ships 
and irrigation schemes—must submit at least some of its grounded abstractions to more stringent tests 
of objective practical validity. Trade, especially between merchants from different societies, submits 
the accepted abstractions of value and exchange to tests of willingness between traders and of success 
and failure in each merchant’s ambition for wealth. Large engineering projects demand not only 
careful attention to predictable behaviour of static structures, but also accurate calculation of the 
resources necessary for construction and of the taxation that can collect these resources. Engineers, 
traders and tax collectors are highly motivated to recognise, discover or invent new and better 
grounded abstractions to meet these more objective criteria of validity. In this way, commerce, 
building and land surveying stimulated the beginnings of geometry and arithmetic in ancient Egypt. 
Babylonians developed a workable number system, and knew many calculational procedures and 
heuristics. They knew that (3,4,5), (5,12,13), (65,72,97) and many other integer triples correspond to 
the lengths of the sides of right triangles.  

These were large practical achievements, applying a substantial repertoire of grounded mathematical 
abstractions. For the ancient Greeks the theories associated with mathematical abstractions had an 
intellectual interest far beyond their immediate practical uses, and they began the conscious process 
by which grounded abstractions could free themselves from their worldly origins and become objects 
of intrinsic mathematical interest and focused study. The criteria of success in this study are no longer 
practical utility and fidelity to a specific physical reality, but elegance, internal consistency, 
intellectual richness and a fruitful connection to other mathematical ideas. The evolution of such free 
abstractions, dissociated from their material ground in the world, naturally tends to increase formality, 
because formality supports a precision of thought that promises greater certainty in reasoning and 
therefore greater power in developing theories. A clear distinction emerges between grounded and 
free abstractions. A grounded abstraction is satisfactory only if reasoning about the abstraction can be 
expected to produce results that are true of the subject in which it is grounded. A free abstraction is 
not to be judged by this criterion: a proposed non-Euclidean geometry cannot be proved 
unsatisfactory by showing that there is no physical reality that it describes. For a pure free abstraction, 
any correspondence to physical reality is irrelevant. As David Hilbert is reported [Weyl44] as saying:  

“It must be possible to replace in all geometric statements the words point, line, plane, by table, 
chair, mug.”  

Yet free abstractions may still be brought to bear on practical non-formal problems. If the objects and 
relationships in a practical worldly context can be convincingly mapped to objects and relationships 
of a free abstraction, then the theory of the abstraction may apply—at least approximately—to the 
world. The relationship between the free abstraction and the physical world is described [Hardy40] by 
the mathematician G. H. Hardy:  
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“The geometer offers to the physicist a whole set of maps from which to choose. One map, 
perhaps, will fit the facts better than others, and then the geometry which provides that 
particular map will be the geometry most important for applied mathematics. I may add that 
even a pure mathematician may find his appreciation of this geometry quickened, since there 
is no mathematician so pure that he feels no interest at all in the physical world; but, in so far 
as he succumbs to this temptation, he will be abandoning his purely mathematical position.” 

The effective practical application of mathematics to material reality often demands large efforts of 
calculation. Calculation was eased by mathematicians’ development of better algorithms and 
eventually by printed tables of logarithms and other functions. From the seventeenth century and even 
earlier, inventors devised calculating machines to perform simple arithmetical operations: Pascal’s 
was perhaps the most famous. In the 1820s Babbage conceived his Difference Engine as a machine to 
calculate and print mathematical tables, and later he conceived the Analytical Engine as a machine to 
execute general calculations specified by programs; but full working versions of these machines were 
never built. From around 1850 various desktop machines were devised that could conveniently 
execute individual arithmetic operations, but it was not until the development of digital electronic 
computers in the 1940s that general programmed calculations could be effectively and reliably 
mechanised. 

Against this background, electronic computers were naturally seen at first as a tool for numerical 
calculations. The essence of the program’s task was to take the place of the human calculator, 
instructing the computer to perform the desired calculation by specifying an appropriate sequence of 
arithmetic operations. Programming was a mathematical endeavour purely because the work to be 
mechanised was mathematical. Nonetheless, a deeper and more fruitful view gradually became widely 
understood and adopted. As Dijkstra wrote, looking back much later [Dijkstra76]: “It used to be the 
program’s purpose to instruct our computers; it became the computer's purpose to execute our 
programs.” Gradually, the digital computer was recognised as a machine that can take any formal 
abstraction, suitably expressed in a programming language, and exhibit a behaviour in which that 
abstraction becomes a physical reality, realised in the dynamic fabric of the computer itself.  

In the 1950s and 1960s computers increased in size, reliability and speed. Programs became more 
ambitious, more complex, and—not infrequently—impenetrably obscure. Work on program 
development method focused on program intelligibility, on specification and correctness, and on 
program design. Structured programming advocated an abstraction of control structure that could 
bring program text and program execution into a clearer relationship with each other and with the 
problem to be solved. The programming language Simula 67 [Dahl+72], motivated as its name 
suggests by programming for simulation problems, introduced the idea of a program component 
designed to capture an abstraction of an entity in the world to be simulated, such as a bus or a truck, or 
a customer in a busy post office: the software component’s behaviour would reflect the behaviour of 
the real-world entity.  

Simula 67 also encouraged a general view of program design as an exercise in designing a structure of 
abstractions, a view adopted by Dijkstra in the design [Dijkstra68b] of the THE operating system. In 
this view, there is a conceptual gap between the high-level abstractions germane to the problem and 
the low-level abstractions offered by the programming language. This vertical gap must be bridged by 
a hierarchy of abstractions, each grounded in the abstractions at the next lower level. Whether the 
bridge is built in the top-down or bottom-up direction, or by a combination of both, the proposed 
technique is largely an exercise in inventing abstractions. A design process in the top-down direction, 
in which an abstraction is formulated before the ground from which it abstracts has been explored, is a 
form of what is called refinement. If there are multiple levels of design, this is stepwise refinement.  

Stepwise refinement became enormously influential in various forms, including many manifestations 
of top-down program and system design. Simula 67’s notion of program components as abstractions 
of real-world entities was even more influential, stimulating the development of object-oriented 
programming languages and of abstract data types as a vehicle for software specification. Object 
classes and abstract data types can be designed to capture—though often only approximately—some 
properties of entities specific to a simulated or modelled reality, such as a bank account or the 
components of a radiation therapy machine. They can also capture free abstractions drawn from the 
discrete mathematics of programming—such as sets and stacks and queues—that can prove useful in 
program design.  
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The same ideas have continued to influence the development of computer-based systems. These are 
systems in which the computer interacts directly with the material problem world about which it 
computes and whose behaviour it must monitor and control. In such a system the success of the 
software is judged by whether it evokes the desired behaviour in the world: its development is 
therefore a task crucially different from programming.  

In programming, narrowly understood, the computer is insulated from the physical reality—if any—
of its subject matter. The programmer’s task is to satisfy a formal specification of the computation 
result, expressed as a relation between computer inputs and outputs or between a precondition and 
postcondition on program variables. Of course every computation has some subject matter, which 
may be abstract or concrete, and the program design must rely on some abstraction of its subject 
matter. An abstraction which embodies a contradiction is likely to cause the program to fail. But a 
program based on an abstraction which self-consistently misrepresents its subject matter will not fail 
for that reason alone: the specification may be ill-chosen but the program may be correct. Dijkstra saw 
a formal functional specification [Dijkstra89] as a firewall to separate these two distinct concerns: the 
‘pleasantness’ question whether a program satisfying that specification is desirable, and the 
‘correctness’ question of how to design such a program. The programmer, qua programmer, is not 
required to consider the various aspects of the pleasantness question: Is the abstraction faithful to the 
reality? Does the computer input correctly represent the state of that reality? What use will be made of 
the computed results?  

For a computer-based system these questions can be neither delegated nor evaded: their answers are 
tightly integrated with the development of the software. Because the computer is directly interfaced to 
the problem world by sensors and actuators, its behaviour at the input-output interface is ipso facto a 
behaviour of some part of the physical problem world and also a cause of behaviour of other parts. 
For the whole functionality of a computer-based system, Dijkstra’s proposed separation is impractical: 
one might as well try to separate the two sides of a densely meaningful human conversation. In such a 
system, the complexity of the problem world and of the behaviour that the software must evoke in it 
present a major challenge at every level to the effective use of abstraction.  

3 PURPOSES, DIMENSIONS AND FORMS OF ABSTRACTION 

Abstraction, taking many forms and serving many purposes, can be considered from many points of 
view and structured in many ways. In this section different particular perspectives are adopted to 
address a different particular aspects or uses of abstraction.  

3.1 Vertical Abstraction for Recognition and Theory-Building 

It is common to speak of levels or layers of abstraction, suggesting a vertical dimension. A higher 
level of abstraction is characterised by the possession of concepts of larger granularity and greater 
power—intellectual constructs built upon the less powerful concepts of a lower level.  

A vertical abstraction recognises that a subset of phenomena in the subject matter forms a cluster that 
is highly significant for some purpose. The recognition of any coherent entity—even the newborn 
baby’s recognition of its mother—is an exercise of vertical abstraction. Where there are multiple 
instances of the recognised cluster, the clusters themselves become phenomena of a new class in our 
conceptual alphabet, distinct from the constituent lower level phenomena whose associations and 
relationships they embody. In Euclidean plane geometry the notion of a circle is a vertical abstraction: 
it is a plane figure bounded by a closed line such that there is one point of the figure—called the 
circle’s centre—that is equidistant from every point on the line. The reward of a vertical abstraction is 
the richness of the associated theory. Many interesting theorems can be proved about plane figures 
constructed of circles and straight lines; and many useful terms can be defined, such as diameter, 
radius, tangent, and semicircle. The use of the circle concept, and of the associated terminology and 
theorems, increases the economy, and hence the potential power, of discourse in Euclidean geometry.  

Vertical abstraction does not in itself imply either encapsulation or information hiding [Parnas72]: no 
part of the subject matter of the lower level becomes hidden in the higher level. In the example of the 
circle, the basic constituent phenomena of the circle abstraction are the centre point and the set of 
equidistant points at the lower level: these are not discarded in the abstraction, but remain visible and 
directly available, along with all other phenomena of the lower level, as participants in constructions 
and theorems applying to circles. The circle abstraction raises the level simply by introducing an 
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additional fruitful concept that was not explicitly named and available at the lower level. Information 
hiding and encapsulation, by contrast, are disciplines for software development that allow 
programming abstractions to be devised and used independently of their implementation. They 
conceal the implementation—which could be considered the ground of the abstraction—by hiding it 
behind an impenetrable wall. Their purpose is to ensure that users of an abstraction are prevented both 
from damaging the detailed implementation and from illicitly exploiting any peculiar contingent 
properties it may have.  

3.2 Horizontal Abstraction for Description 

The commonest and simplest exercise of abstraction is the purposeful selection that is inherent in 
making any description. No new concepts or phenomena are introduced, and no new relationships 
among those already existing: the description is merely restricted to those selected as significant for 
the purpose in hand. In contrast to vertical abstraction we may call this horizontal abstraction. In 
terms of abstraction levels, a horizontal abstraction and its subject matter are on the same level.  

Harry Beck’s famous 1933 map of the London Underground system, appositely cited by Jeff Kramer 
in [Kramer07], was the product of a conscious horizontal abstraction. From 1889, earlier 
Underground maps [TubeMaps11] had shown the growing network of lines and stations 
superimposed on the background of a conventional street map of London. Over the following thirty 
years this background of streets became gradually fainter and less detailed in successive maps, and in 
1920 it was abandoned altogether. But for the next ten or twelve years, even maps in which no streets 
were shown still placed the lines and stations with precise topographical accuracy, against a faintly 
depicted background of a few famous landmarks. Beck, perhaps influenced by his work as an 
electrical draughtsman, decided that this topographical accuracy was unimportant. His Underground 
lines ran straight up and down the map, or across it, or on 45 diagonals, and stations and lines were 
spaced for maximum clarity.  

Beck had rightly distinguished two subsets of phenomena relevant to the Underground users. The first 
subset contains the phenomena of precise geographical location, which allowed users to identify the 
stations nearest to their destination and starting points and to estimate the journey distance as the crow 
flies. The second subset contains the phenomena of stations sequenced along each line and of line 
intersections at certain stations, which allowed users who already knew their destination and starting 
stations to plan a journey that minimised the number of intervening stations or the number of changes 
from line to line. In his abstraction, Beck judged the second purpose to be more important than the 
first: so he discarded the geographical phenomena to allow the journey phenomena to be shown in the 
clearest and most useful way. Planning a journey with his map usually proved very easy. The map 
was a brilliant success, and its design was copied for rail transport systems in many other countries. 
Harry Beck personally continued until 1960 to produce maps of the continually evolving network, and 
today’s Underground maps still adhere to the basic principles of his design.  

Horizontal abstraction of this kind is often applied to an instance—in this case, the London 
Underground system—rather than a class. Its product is a description of the subject matter. We might 
say that it is the purest form of abstraction because its essential effect is to discard some part of the 
subject matter: it adds no new concept to the existing repertoire, and in itself reveals no property and 
provides no associated theory that was not already available. Its aim and benefit is clarity and focus, 
achieved by discarding what is irrelevant to the particular purpose in hand.  

3.3 Abstraction for Formal Analysis 

By contrast, a more formal kind of abstraction can serve the specific purpose of demonstrating a 
desired property of its subject. This kind of abstraction has been of the greatest importance in the 
development of programming, allowing proof that a program satisfies its specification.  

In a talk [Turing49] given in Cambridge in 1949 Alan Turing used a flowchart to explain a program 
and prove it correct. Given n, the program computed n! on a machine without a hardware multiplier. 
The flowchart served very well as a bridge between the machine-code program and the computation it 
was intended to perform: it provided a common intelligible abstraction both of the list of machine 
instructions and of the arithmetic calculation. Turing recognised that the flowchart abstracted from the 
machine-code program, observing that he could not show the ‘routine for this process in full’. That is, 
he could not show the actual list of machine instructions, because ‘there is no coding system 
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sufficiently generally known’: every computer of the time had its own unique order code. So the flow 
diagram would have to serve as a substitute: it was a grounded abstraction of the specific pattern of 
machine behaviour evoked by the program.  

The elements of the computation were abstracted in the flowchart by a simple notation. Turing 
showed the allocation of the program’s variables s, r, n, u and v to the machine’s storage locations 27 
through 31 respectively; and he used the variable names in simple arithmetic operations—for example 
“r:=1; u:=1” and “test s>r”—in the process and decision nodes. The theme of the talk was program 
correctness: “How can one check a routine in the sense of making sure that it is right?” With each 
significant process node of the flowchart he associated an assertion of the program variable values 
held in each storage location on entry to the node and on exit to each possible successor node. The 
assertions at the program’s entry and exit nodes constituted a program specification in the form of a 
precondition and postcondition pair: if all assertions on the intermediate nodes hold separately, then 
when the machine halts this specification is satisfied. (Turing used a separate argument to show that 
the machine must indeed halt.)  

Like Beck’s map, Turing’s flowchart provided clarity and focus, but additionally it provided a basis 
for formal proof of the program’s correctness. In principle the same proof could have been applied to 
the machine code listing by regarding the machine state as consisting of its storage locations and 
registers together with the program counter. In practice the proof would then have been considerably 
complicated by the distracting intricacies of the machine code instructions. Of course the flowchart 
abstraction, while grounded in the machine code program, was not derived from it de novo. In some 
form it was no doubt in Turing’s mind, and possibly already on paper, when the machine code 
program was written. So while the arithmetic operations can be regarded as vertical abstractions 
firmly grounded in the corresponding sequences of machine code operations, they may also have 
served as named design elements from which segments of the machine code program were refined.  

3.4 Multiple Horizontal Abstractions 

The form of horizontal abstraction so effectively practised by Harry Beck becomes more interesting 
and significant when multiple horizontal abstractions are made of the same subject matter and must be 
reconciled in some way. Are the different abstractions compatible? That is: is there a reality of which 
they are all faithful abstractions? 

When two abstractions are fully grounded in the same existent physical reality, as Beck’s abstractions 
were, the question of their compatibility comes down to the fidelity of the abstractions to the reality. If 
both abstractions are simultaneously sufficiently faithful to their subject, the physical existence of 
their common physical ground is an incontrovertible proof of their compatibility. However, 
compatibility in the physical reality may be implicitly conditional on a separation of the contexts of 
the different abstractions. Both of two horizontal abstractions may be true in the reality, but not at the 
same time. In this sense two horizontal abstractions may not be compositional. That is: the 
combination of the two abstractions may not possess all the properties of each abstraction considered 
in isolation.  

Horizontal abstraction can capture a separation of the subject matter into contexts distinguished by 
purpose and circumstance. An identified context becomes an exclusive focus of attention in its own 
right. Contexts are not disjoint: some phenomena of the subject matter will be relevant to more than 
one context, and common phenomena will play distinct roles in distinct contexts. Program slicing is 
one example of horizontal abstraction.  

Another example of horizontal abstraction, drawn from everyday life, is the separation of our 
experience and behaviour into distinct social contexts. An adult may separate working life from 
family life; a child may separate school from home. Different contexts bring with them different 
experiences, different purposes, and different expectations. To a great extent, we hope and expect that 
the different contexts will be neatly separated in time. This temporal separation is valuable. For 
practical reasons, and for emotional and intellectual comfort, we want to neglect what is irrelevant in 
the current context: it can only complicate matters. The discomfort felt by a child—and often not only 
the child—when parents appear at school, or when a teacher from school appears as a guest at the 
family dinner table, reflects the difficulties of simultaneously managing distinct contexts that the child 
had expected to keep apart. The different roles that the participants are expected to play in the 
different contexts are hard to reconcile.  
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The child’s embarrassment precociously demonstrates an awareness of an intellectual problem that 
besets software development: horizontal abstraction aims to separate contexts and concerns, but the 
separation can rarely be perfect. In realistic computer-based systems the horizontal dimension of 
abstraction is fundamental, and often there is no temporal separation. Several horizontal abstractions 
must coexist in time, because the multiplicity of system features and functions, and of normal and 
exceptional conditions and modes of operation, does not fall into any neat hierarchical temporal 
structure. The structure of system functionality is more like a colour separation than it is like an 
assembly of parts. Horizontal abstractions—albeit imperfectly separated—are essential. We will 
return to this problem in the following main section.  

3.5 Program Design: Top-Down and Bottom-Up 

Program design, as widely advocated in the 1960s and 1970s, aimed at developing a hierarchical 
structure of abstractions to bridge the gap between the computational abstractions offered by the 
programming language and the abstractions most clearly associated with the problem to be solved. 
This gap appeared to be self-evidently a vertical gap: so the abstractions sought were vertical 
abstractions, each layer populated by abstractions of elements of the layer below it. Naturally the 
question arose: should design proceed from the top downwards, from the bottom upwards, or by some 
mixture of the two? Clarifying the distinction more precisely in terms of abstraction: top-down design 
begins with an abstraction and works to provide successively lower-level subjects in which it can be 
directly and indirectly grounded, while bottom-up begins with the ground and forms successively 
higher-level vertical abstractions until a top-level ‘solve-the-whole-problem’ abstraction has been 
constructed.  

A kind of consensus arose almost immediately that top-down design—essentially some form of 
stepwise refinement—was the right choice. This consensus was strongly influenced by work on the 
design of small terminating programs. The specifications of many of these programs were very 
simple: the complete specification could be tersely and exactly expressed in a precondition and 
postcondition on the program variables. The classic problem corpus included: sorting an integer array; 
finding the greatest common divisor of two integers by Euclid’s algorithm; building and maintaining a 
balanced tree; printing the first thousand primes; placing eight queens on the chessboard so that none 
is attacking any other; finding the convex hull of a set of points in three-space; and other similar 
problems. Brilliant design techniques were invented and described, and some brilliant solutions were 
found to problems in the repertoire.  

In this setting the top-down consensus has an obvious appeal. The starting point of each program 
development is one simple abstraction: it is a terse formal specification that can form the root of a 
refinement tree, giving the developer a clearly identified anchor at the top end of the vertical gap. 
Certainly there may be choices to be made at the early steps, both in formalising the specification and 
in selecting the solution algorithm; but for a small program there are usually few candidate choices, 
and once each choice has been made it provides a firm anchor for the next refinement step.  

The bottom end of the vertical gap is furnished by the defined elements and built-in structures of the 
programming language. This end is weakly structured with respect to the problem: the eventual need 
to form an assemblage of programming language statements rarely constrains the program 
specification at the root. Of course, this weak structuring is an advantage: it springs from, and reflects, 
the huge versatility of the programming language and its purposeful flexibility in realising almost any 
procedural abstraction. Developers who begin at the top end of the vertical gap know their starting 
point, and have the programming language readily in mind; they can feel confident that few or no 
barriers will emerge as they near their goal of an executable program. Developers who begin at the 
bottom have apparently more difficulty. The programming language level itself offers little or no 
obvious help in suggesting abstractions that can form the next level above; and often it is hard to 
determine when good progress is being made towards the top-level goal. For the top-down 
programmer the starting point is known, and there are many acceptable final destinations: for the 
bottom-up programmer it is harder to know where to start, but only one destination is acceptable.  

Two remarks are in order about top-down and bottom-up design. First, the physicist Richard 
Feynman, in his personal observations about the Challenger disaster [Feynman86] castigated the top-
down approach to the development of the shuttle engine, and, by implication, to system development 
in general. Along with other comments, he wrote “A further disadvantage of the top-down method is 
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that, if an understanding of a fault is obtained, a simple fix, such as a new shape for the turbine 
housing, may be impossible to implement without a redesign of the entire engine.” Second, it must be 
said that a rigorous distinction between top-down and bottom-up design is misconceived. Neither 
approach is feasible unless the designer looks far ahead in the design process, even to the extent of 
forming a clear mental conception of the complete program at the outset. What then proceeds in one 
direction or the other is the overt written representation of the levels of the program as already 
conceived and of their exact details.  

3.6 Program Design: Horizontal Abstractions 

The virtues and benefits of top-down development depend crucially on the simplicity of the problem 
to be solved, characterised by a complete program specification in the form of one terse simple 
abstraction. The refinement structure by a progression of abstractions can then be a tree, in which 
each link between neighbouring steps is in the vertical direction.  

When the program specification is not so simple, horizontal abstraction becomes inescapable from the 
outset. Discussing the development of programs from specifications, Burstall and Goguen wrote 
[Goguen+80]:  

“...the process of implementing a large program from its specification has a two-dimensional 
structure. One dimension of structure, the horizontal, corresponds to the structure of the 
specification. The second dimension, the vertical, corresponds to the sequence of successive 
refinements of the specification into actual code; the specification is at the top, and the code is 
at the bottom.”  

The ‘structure of the specification’—the horizontal dimension—arises from the richness of parallel 
concerns that may often be required in a large program. This richness must be addressed by multiple 
horizontal abstractions. Arising in one program, they are unlikely to be disjoint: like the embarrassed 
school child, the program designer may find it hard to reconcile them in one coherent design. When 
horizontal abstraction appears at any refinement node it threatens to complicate the whole 
subhierarchy rooted at that node.  

It may be thought that a need for horizontal abstraction rarely appears in a small program, but this is 
not so. The design of any program that processes sequential input and output streams—of records, 
messages, or even single characters—can benefit greatly from appropriate horizontal abstractions. A 
suitable program design method for such programs, based on horizontal abstraction, was described by 
the present author [JacksonM75, JacksonM76]. Each input and output stream is the subject of a 
horizontal abstraction in which its sequential structure is described as a labelled regular expression. 
The program structure is then formed by composing these abstractions according to the 
correspondences among the parts of the streams at several levels. If the criteria for a satisfactory 
composition cannot be satisfied the design method invites a further horizontal composition in which 
the production of outputs from inputs is split into two or more parts interacting by appropriately 
chosen intermediate streams introduced for the purpose. This further horizontal abstraction—in effect, 
a pipe-and-filter design—closely parallels the introduction of intermediate vertical abstraction levels 
in top-down or bottom-up design.  

In computer-based systems the need for horizontal abstraction is ubiquitous, and is exacerbated there 
by other considerations peculiar to those systems. We will return to this topic in the following main 
section.  

3.7 Symbolic and Analogical Models 

Russell Ackoff distinguishes [Ackoff62] three kinds of model: iconic, analogue and symbolic. An 
iconic model, as its name suggests, represents properties of its subject visually, as in a photograph or 
map. An iconic model is primarily a concrete thing whose properties can be visually inspected—for 
example, a portrait sculpture or a three-dimensional map; but it may also be stored in an intangible 
form—for example, as the bit pattern of a digital map or photograph—from which the concrete icon 
can be reconstructed for visual inspection.  

A symbolic model is abstract: it represents the subject’s properties in symbols, perhaps in a set of 
equations, a mathematical relation, or a logical formula. A formal symbolic model is intended to 
support formal reasoning about the subject. A symbolic model can, of course, be represented 
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concretely, but the physical attributes of the representation are of no significance whatsoever. For 
example, a state machine can be drawn as a diagram, but the sizes and dispositions of the symbols on 
the page are not significant.  

An analogue model is in principle concrete: as its name suggests, it represents properties of its subject 
by analogy with its own properties. For example, a hydraulic system may serve as an analogue model 
of an electrical system: the pipes are analogous to wires, and the flow of water to the flow of current. 
Like an iconic model an analogue model is primarily a concrete thing, but may be represented 
intangibly. For example, an assemblage of programming objects may constitute an analogue model, 
represented in the programming language; but, strictly speaking, the assemblage fulfils its function as 
an analogue model only when the program is executed.  

Some models may combine iconic and analogue characteristics. Two dimensional maps, for example, 
often represent elevation by coloured contours whose gradation from green to red through brown 
represents increasing elevation by analogy. A photograph necessarily has properties such as the 
proportion and relative position of the subject’s features that are clearly analogues of the reality. For 
this reason, the distinction between iconic and analogue models is blurred. It is comparatively 
unimportant for our purpose here, and we will neglect it, referring to both as analogical models. 
Symbolic models are more clearly distinguished. In general, a symbolic model is a pure abstraction of 
its subject: nothing in a symbolic model need look like the modelled subject or be in any other way 
analogous to it. This why the exact meaning of the model can be preserved under suitable symbolic 
manipulations that are useful in reasoning.  

Where the purpose of software is to mechanise calculation, as it was in the earliest days of electronic 
computers, symbolic models and their known manipulation methods are the essential basis of program 
design. The earliest typical users were mathematicians and scientists. They understood programming 
as the task of presenting a symbolic mathematical model to the computer in a form in which the 
computer could solve the equations and evaluate the formulae of the model. The first high-level 
programming language, Fortran, was so named because it was conceived as a formula translator.  

When the purpose of software is expanded to involve a more direct relationship with the human and 
physical world it becomes necessary for programs to embody data structures that can be used as 
mutable models, capturing the changing states and behaviours of their subject matter more directly. 
Examples of such mutable models include databases, assemblages of objects, process networks, and 
general data structures of the programming language. All these can be analogical models.  

Unlike a symbolic model, an analogical software model is not a pure abstraction of its subject. It is, in 
effect, a material domain in its own right, albeit a domain enclosed within the boundary of the 
computer. This distinction is important, because the model has its own material properties that are 
distinct from those of the modelled domain, and vice versa. The relationship between an analogical 
model and its subject is therefore more complex than the relationship between a symbolic model and 
its subject. The two relationships are depicted in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Symbolic and Analogical Models 

On the left is a symbolic model and its subject. The interpretation S maps the terms used in the 
symbolic model to the parts of the subject. In practice the subject names are often used in the 
abstraction, and the interpretation is then implicit; but in general an interpretation is required to map 
the terms used in the model to the parts of the subject. On the right is an analogical model and its 
subject. The interpretation S maps the terms used in the symbolic model to the parts of the subject, 
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while the interpretation A maps the same terms to the parts of the analogical model. The analogy is 
mediated by the common abstraction captured in the symbolic model.  

In common software development practice the symbolic model is often—even usually—bypassed, 
and the analogical model is treated as if it were itself a symbolic model of the subject. This apparently 
attractive intellectual shortcut exacts a penalty. As always, the subject has properties that are not 
captured in the abstract symbolic model; but an analogical model—unlike a symbolic model—also 
has its own concrete properties that are not captured in the symbolic model. These properties may 
correspond, roughly or exactly, to properties of the subject, or they may simply be artifacts 
necessitated by the programming language or designed for efficient computation. For example, a 
database forming an analogical model may have such properties such as indexing, ordering of tuples 
in tables, deletion of inactive tuples, creation of new tuples, and the use of a null value in a field when 
no correct value has been entered into the system. A database null value, for example, may represent 
incomplete data entry; but it may also represent the value undefined in a three-valued logic. When the 
symbolic model is ignored the significance of these additional properties becomes a source of 
difficulty and confusion. The resulting analogical models embody ad hoc expedients or demand 
obscure workarounds “often making it difficult for uninitiated readers of the model to understand 
which aspects of the model are meant to be accurate reflections of the problem domain and which are 
just accidental properties of the particular workaround” [Atkinson+08].  

3.8 Formal Abstractions of a Non-Formal Reality 

Formal abstractions provide the most reliable domains of reasoning that are available to us. 
Disregarding Gödel we are able to reason with great confidence in many formal systems, relying on 
proven theorems to calculate about instances; mathematicians or logicians may also add to the corpus 
of proven theorems. We have no fear that someone will one day discover that the set of primes is 
finite, or find some particular triangle in the Euclidean plane the sum of whose interior angles is not π. 
Our purpose in constructing formal abstractions of non-formal realities is to impart a similar degree of 
confidence to our reasoning about those realities.  

However, there is a severe limitation on the confidence that can be achieved. A properly constructed 
formal system is bounded by its defining set of axioms. But a non-formal reality such as the natural, 
human and engineered world is bounded by no defining set of axioms—at least, not at the scales of 
interest for practical life in general and software development in particular. To formalise is inevitably 
to place a bound on the phenomena, attributes, relationships and possible behaviours that we are 
prepared to consider. Unfortunately, those that we have oversimplified, ignored or neglected may 
prove relevant enough to invalidate our formal abstraction. More generally, any formal abstraction of 
a non-formal subject matter is at best an approximation to the reality in which it is grounded. The 
unpalatable consequence is that formal reasoning in a non-formal setting can signal the presence of 
error but cannot prove its absence. The abstractions that suffice for the premiss may fail for the 
logically sound conclusion: it must be tested by interpretation in the ground reality.  

The history of the traditional engineering branches abounds in examples of failed abstractions. Leonid 
Moisseiff, the designer of the Tacoma Narrows bridge, gave careful consideration to the possibility of 
wind-induced horizontal oscillation of the roadway; but he neglected the vertical oscillation, which 
destroyed the bridge a few months after it opened in 1940. The designers of the de Havilland DH106 
Comet 1 jet airliner were careful to consider all sources of stress on the aircraft’s fuselage. They made 
separate and extensive calculations and tests to ensure that the fuselage would not fail when subjected 
either to the torsional stresses of flight or to the stresses of the compression and decompression 
necessitated by the great height at which the aircraft was designed to fly. Unfortunately, it was the 
untested simultaneous combination of both sources of stress which caused metal fatigue, spreading 
from stress singularities sited at the corners of the aircraft’s square windows. The consequent rapid 
spread of metal fatigue in the structure caused several aircraft to disintegrate in mid-air. In another 
famous engineering failure in 1978 [Hartford11], the roof of the Civic Center in Hartford Connecticut 
collapsed. The roof structure was a space frame design that had been formally validated by what was 
then a state-of-the-art computer analysis. However, the abstraction on which the analysis was based 
took no account of certain aspects of the proposed design. It ignored the special cases at the outer 
boundaries of the roof, and also the possibility of failure by buckling of certain critical members. 
Worse—and very relevant to software development—when the space frame proved hard to assemble 
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on the ground before being hoisted into its final position, the subcontractor for the roof overcame the 
difficulty by some seemingly minor changes to the joints between certain members. These minor 
changes had an unpredicted major effect on the properties of the structure: the roof collapsed when 
loaded by an unexceptional fall of snow.  

Even in the most modest abstraction there is scope for failure. Harry Beck’s Underground map is an 
analogical model. It is not itself a formal abstraction, but nonetheless it illustrates some of the 
difficulties of even a partial formalisation of a non-formal reality. It seems obvious that the 
Underground system consists of stations connected by tracks. But immediately the notion of station 
confronts us with a difficulty. What, exactly, is a station? At first sight Edgware Road is a station; but 
on closer inspection it appears to be two stations: to change trains there requires leaving the 
Underground system, walking 150 yards along the street and re-entering the Underground system at 
‘the other Edgware Road’. Bank and Monument are distinct named stations; but they have been linked 
into one since they were originally built in the nineteenth century.  

Anomalies and exceptions of this kind are characteristic of non-formal realities. They arise from the 
interpretation of formal terms, which are the very foundation of any abstraction: what counts as a 
station? They arise also from peculiar corner cases of reality that present counterexamples to almost 
any satisfyingly elegant theory associated with the chosen abstraction. They arise from the difficulties 
of constructing a physical reality to conform faithfully to its design abstraction. They arise from the 
untoward combination in reality of two horizontal abstractions such as the two stress analyses of the 
Comet aircraft.  

These difficulties arise for an engineered system like the London Underground, and even more 
strongly for the complex and arbitrary organisational, commercial, manufacturing, legal, and fiscal 
realities that make up the problem world for many large systems. In a non-formal world, clean 
abstraction for a purpose presents a discouraging dilemma. The cleaner the abstraction the more 
anomalies will emerge to reduce its fidelity to the reality from which it sprang and which it purports 
to describe.  

3.9 Abstractions and Monsters  

Anomalies and counterexamples, characteristic of abstraction in non-formal domains, may be 
encountered also in dealing with a formal mathematical domain. Lakatos recounts [Lakatos76] the 
mathematical history of Euler’s formula V – E + F = 2 relating the numbers of Vertices, Edges and 
Faces of a polyhedron. He introduces a series of solid figures, proposed as counterexamples to the 
conjectured theorem implicit in the formula. Successively he introduces: a hollow cube whose interior 
faces form a smaller cube; a ‘crested cube’ having a smaller cube projecting from the middle of one of 
its faces; a pair of tetrahedra sharing only one edge; a pair of tetrahedra sharing only one vertex; a 
‘star polyhedron’; and several others. 

A central theme in the discussion is ‘monster-barring’. Some mathematicians, to preserve the 
conjecture, rejected putative counterexamples as ‘monsters’—solid figures, but not polyhedra. 
Challenged to define polyhedron, they defended the formula by producing over time a sequence of 
successive definitions carefully modified to exclude each successive proposed monster. With the 
hindsight of the history of Euler’s formula we may fault the mathematicians for being insufficiently 
careful in formalising the polyhedron abstraction. But in dealing with the phenomena of the physical 
and human world at the granularity of interest to engineers and software engineers, the existence of 
monsters, challenging any proposed abstraction and its associated theory, is undeniable: for every 
definition there are hard cases somewhere in the world; and for every theorem there are 
counterexamples.  

How, then, can we proceed in practice if our abstractions and theories are so fragile? How can we 
avoid the monsters that lie in wait for us? We can adopt various strategies according to our purposes 
and circumstances. For example: 

 We may simply accept some degree of approximation and a consequent level of imperfection and 
even failure. The anomalies of certain stations will inconvenience some Underground passengers; 
but not many passengers, and not often.  

 We may rethink or elaborate the abstraction to preserve the associated theory, in the spirit of the 
successive definitions of polyhedron. The efforts of mathematicians to preserve Euler’s conjecture 
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against the challenge of successive monsters find some echo in the energetic efforts of engineers 
to eliminate the risks of successively identified sources of failure in such safety-critical artifacts as 
cars, power stations and aeroplanes. National tax authorities work hard to close the successive 
fiscal loopholes found by ingenious lawyers and accountants.  

 We may supplement the abstraction and the implementation of the theory by allowing an 
overriding human judgment for the hard cases. This is the usual practice in a good legal system. 
The law relies on abstractions of many kinds of human behaviour, and stipulates rules, rights, 
obligations, and penalties in terms of those abstractions. When an abstraction or theory breaks 
down because it is not clear how it should apply to the facts of a particular case, the matter is 
settled by the judgment of a court.  

 We may apply the abstraction and the accompanying theory only in a strictly limited context in 
which we are confident that no monsters are to be found. In the context of all human life the 
commonplace abstraction chair is very problematical. Is a bar stool a chair? A bean bag? The seat 
of a swing? A bicycle saddle? A park bench? The T-bar of a ski lift? But in the context of the 
sales system of a furniture factory with a narrow product range it may work perfectly.  

Strategies of these kinds are essential in the development of computer-based systems. The last 
strategy—context restriction—is particularly important: developers of a computer-based system must 
not aim at an unattainable and pointless universality.  

4 ABSTRACTION IN COMPUTER-BASED SYSTEMS 

In a computer-based system the computer monitors and controls parts of the human, physical and 
engineered world outside itself, evoking and imposing some required behaviours in that world. This is 
its purpose: its own internal behaviour, and its participatory behaviour in its direct interactions with 
the world, are merely the means to that end [JacksonM02].  

Developers of such systems cannot restrict their focus to the clean and formal computational 
structures quarantined within the bounds of aseptic program texts executed by a machine that reliably 
implements a formal instruction set. In such developments abstraction remains a vital intellectual tool; 
but its power is comparatively diminished in relation to the overall task. Of course, most realistic 
system development projects involve subsidiary tasks of formal specification and program design; but 
these tasks are overshadowed by larger concerns. The exercise of abstraction in system development 
demands more judgment, more scepticism, more insight, more versatility, and more hard work. For 
example, the non-formal nature of the problem world calls almost every proposed abstraction into 
question. In a formal world, after the instruction sequence 

“x := P; y := x; x := y”, 

the condition “x = P” will certainly hold. But in the material world, after the instruction sequence  

“x := P; Arm.moveTo(x);  x := Arm.currentPosition”, 

the condition “x = P” may not hold. Moving the arm and sensing its position both involve state 
changes in the problem world. Movement of the arm will be imprecise, and the resulting position will  
be imperfectly sensed by the computer and further approximated by a floating-point number. This 
kind of difficulty is exacerbated by the multitude of potentially conflicting system requirements to be 
satisfied by a realistic system and by the further complexities they add at almost every level.  

This section discusses some aspects of the use of abstraction in the particular context of computer-
based systems development. First some of the salient characteristics of computer-based systems are 
identified and briefly discussed. Then, in the remaining subsections, some of their implications for the 
use of abstraction are explored.  

4.1 Characteristics of Computer-Based Systems 

Computer-based systems are very various. Few characteristics are common to them all, and few of 
them exhibit all the characteristics identified here; but wherever these characteristics are found they 
are likely to complicate the use of abstraction in system development in some way and diminish its 
utility.  

Many people and organisations—the ‘stakeholders’ in the accepted jargon of requirements 
engineering—may be in some way involved in the system operation: their various needs must 
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therefore contribute to determining the system requirements. For example, a radiation therapy system 
involves therapists, patients, oncologists, radiologists, medical physicists and maintenance engineers: 
the behaviour of the system must allow each of them to play their part successfully. If the system is 
safety-critical, a safety authority is also a stakeholder, demanding that the developers show 
convincingly that the system is acceptably safe.  

The problem world of the system is likely to be a heterogeneous assemblage of problem domains. 
Some are mechatronic devices engineered to published specifications. Some are human participants, 
ranging from carefully selected and highly trained operators such as aircraft pilots and train drivers to 
uninformed customers, randomly selected casual users, and medical patients. Some are parts of the 
natural or built environment such as airport runways, a tanker terminal, the earth’s atmosphere at 
various elevations, or a network of railway tracks. Some are existing systems such as the internet, the 
telephone system or the Global Positioning System. Each problem domain has its own given 
properties, which the system must respect and exploit and the developers must therefore understand 
and analyse.  

One system has many features. For example, an automotive system may have driving assistance 
features such as electronic suspension control, start-stop, anti-skid braking, cruise control, maximum 
speed regulation, lane departure warning, and automatic parking. These features can interact by 
requirement conflict: in some circumstances two features may require contradictory behaviours. They 
can also interact through common problem domains that are not explicitly mentioned in the individual 
features’ requirements: for example, by imposing excessive demands on engine or battery power. In 
general, the relationship between problem domains and the behavioural features in which they 
participate is many-to-many.  

The system may have multiple modes of operation demanding different functional behaviour. The 
behaviours of a radiotherapy system must include, for example: acquiring and validating an 
oncologist’s prescription for a patient; determining the position of the patient for a first treatment 
according to the prescription; repeating a previously determined position for a subsequent treatment; 
managing the radiation dose in a treatment; initial setup and calibration; and operation under control 
of a maintenance engineer.  

Inescapably, any system is designed to function in a restricted context that affords certain 
assumptions. For a motor car, for example, explicit context restrictions may specify such obvious 
factors as fuel, ambient temperature, tyre pressures, regular oil changes, and so on. Other context 
restrictions may be implicit: few car manuals state explicitly that the car will not function under water 
or on the moon, cannot be satisfactorily driven on sand dunes, will not climb a 1-in-1 gradient, and 
will not carry a load of ten tons. Many context restrictions are left to be understood by common sense, 
or expressed in such phrases as ‘normal use’.  

Context is important because both the requirements and the given problem domain properties depend, 
in general, on the context of system operation. Natural phenomena may sometimes exhibit unexpected 
behaviour such as a gale or a tsunami. Engineered devices may wear out and cease to function as 
specified. The assumed bounds of human operators’ behaviour may be exceeded—for example, input 
speed may increase with long familiarity with the system. The maximum permitted length of a 
railway train may increase over time, changing its relationship to the length of a track segment. 
Different contexts are likely to demand different abstractions.  

The operational context and its accompanying assumptions are not global to the system. A critical 
system must be designed to take proper account of variations in context: the operational context at any 
point in time is a set of overlapping current subcontexts. Fault-tolerance is merely one particular 
example: the fault presents a subcontext for which the system has a specified behaviour, perhaps 
providing a degraded functionality or shutting the system down completely according to the severity 
of the fault. For a passenger lift system, the presence of a fire in the building presents another 
subcontext: the system must provide a form of lift service specifically designed for the needs of the 
firefighters. Obviously, the fault and fire subcontexts are not mutually exclusive. An automotive 
system must behave in different ways when the car is in normal use, when it has been involved in a 
collision, and when it is in a repair workshop. The more critical the system the more various and 
extreme the subcontexts in which it is required to behave in specified safe ways. The design of a 
nuclear power plant was recently criticised for failing when a tsunami and an earthquake of magnitude 
8.9—both rare events—occurred simultaneously.  
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4.2 Abstractions and Purposes  

We make an abstraction to serve a purpose, and its value and success are to be judged by how well 
they serve that purpose. Developing a computer-based system is a task in which many different 
purposes must be pursued, and it follows that many different abstractions will be needed. This 
profusion of purposes is, in general, not found in the development of small programs whose subject 
matter is a mathematical abstraction. For these programs the given properties of the subject matter—
or problem world—are well known, or can be reliably learned by consulting a mathematical text. The 
developer can exploit different aspects of the given properties by relying on a corpus of proven 
theorems. Essentially, the only abstraction to be invented is an abstraction of the program behaviour 
in terms suited to the chosen programming language.  

For a computer-based system, by contrast, it is necessary to capture, at a suitable level of abstraction, 
the relevant given properties of each problem domain, perhaps as they vary with the operational 
context. Even where a problem domain is a device engineered to an explicit specification, there will 
still be a need to identify the properties on which the system can rely in each of its various operational 
contexts and modes. This is, evidently, a task of abstracting for description. In some cases the task 
may be essentially one of selection, presenting itself as horizontal abstraction. For example, it may be 
very useful to make separate abstractions of faulty and fault-free behaviour: the faulty behaviour is 
significant for fault detection and diagnosis, while the fault-free behaviour is significant for normal 
operation. In other cases description may involve vertical abstraction, abstracting and analysing a 
higher-level behavioural property from concrete lower-level behaviour. In neither case can the 
abstraction be adequately treated top-down—that is, as a task of refinement rather than abstraction. 
Refinement is a process of inventing and constructing something new, not a process of describing an 
given existing reality.  

Invention and construction is the process for developing the system’s behaviour—or, more properly—
its many behaviours. Once a sufficient set of given problem domain properties has been captured by a 
process of abstraction, it may become practicable to devise a desired system behaviour from the top 
down, just as it may be possible to design a program from the top down once the programming 
language elements are known. However, there is a crucial side condition. Strict top-down 
development is feasible only when the required behaviour can be tersely specified to define the goal 
of the first refinement step. For the overall behaviour of a computer-based system this is rarely—
perhaps never—possible. The overall behaviour is an assemblage of several functional behaviours that 
must come into play in response to changing operational circumstances and potentially unpredictable 
user demands. This overall behaviour as a whole cannot be usefully abstracted to give an effective 
starting point for refinement. Instead the individual functional behaviours may be separately designed, 
each taking explicit account of the subcontexts in which it is required. Recombining these separately 
designed behaviours becomes a further development task.  

A third purpose, along with description and construction, is analysis. Given an existing reality—
whether the result of description or of construction—analysis makes an abstraction with the purpose 
of validating a claim that the reality possesses some desired property or exhibits some desired 
behaviour. If the abstraction and the validation process are formal the validation may proceed by 
proof or model-checking, and is then usually called verification, the term verification connoting a 
degree of confidence associated with a mathematical demonstration. The use of this term is fully 
appropriate for the mathematical demonstration itself; but, of course, it is quite inappropriate to the 
question whether the formal abstraction corresponds faithfully to the reality in which it is ultimately 
grounded and in which the purpose of the system is located.  

A fourth purpose arises from the multifarious nature of the stakeholders and their requirements. In a 
computer-based system, many requirements are characterised as ‘non-functional’. A notable example 
is usability. This requirement is in fact purely functional in the sense that its satisfaction or non-
satisfaction can be judged by observing the functional behaviour of the system—including, of course, 
its users, operators and other human participants. But although cognitive and ergonomic research has 
much to say about usability, the judgment still cannot be made by the developers themselves alone: 
the stakeholders or their legitimate representatives must play a decisive part. When developers design 
the whole system behaviour they must therefore make abstractions of that behaviour that capture the 
associated participating behaviours of humans in their various roles. The stakeholders must validate 
their proposed participation by their assent based on a full comprehension. According to the criticality 
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of the system, and the nature of the participation and the stakeholders involved, this comprehension 
may be achieved by examining a symbolic abstraction such as a state machine, by viewing an 
animation, by interacting with a prototype implementation, or by other means.  

For a realistic computer-based system, the multiplicity of purposes which abstraction can serve, 
together with the richness of the system functionality, properties and behaviours, makes it clear that 
many abstractions are necessary to support and embody the development process. In the following 
two subsections two particular abstractions, each an example of a widely used class, are discussed. 
The purpose of each one is briefly explained and some of its virtues and limitations are identified. 
Advocates of each will no doubt be able to enlarge the list of its virtues. The limitations, it must be 
understood, are not presented here as culpable defects: they merely emphasise the truth that one 
abstraction alone cannot suffice.  

4.3 An Example Abstraction: Event-B  

The Event-B refinement method [Abrial10] is based on a formal abstraction of system behaviour. The 
system has a global state that is modified by events. It shares this fundamental abstraction with other 
development methods, including Z [Woodcock96] and VDM [Jones90]. Events have arguments 
denoting elements of the state, and are guarded by predicates on the state. Some predicates on the 
state are defined as invariants that hold in every state. The system is consistent if all invariants hold 
for all possible sequences of events. The purpose of this abstraction is to support a development 
discipline. Starting from a very abstract model, capturing an initial understanding of the problem 
domains and the requirements to be satisfied, the development proceeds by successive refinement 
steps. In each step a more detailed model is constructed and proved to be a refinement of the 
preceding model: that is, while adding detail it preserves the invariants and other properties of the 
more abstract model.  

Formal reasoning with this abstraction is very tractable. To prove that a model is consistent and 
refines its more abstract predecessor it is necessary to complete many small proofs, not all of them 
trivial. The chosen abstraction of system behaviour often allows most of these proofs to be performed 
automatically by specialised software tools, leaving relatively few proofs to be devised and carried 
through by hand. This is a large benefit.  

 Any abstraction has two faces: what is included, and what is discarded. The Event-B abstraction 
discards many phenomena and considerations that are significant for some development purposes. In 
particular:  

 Different parts or domains of the system are not distinguished. No distinction is made between 
events occurring in the computer and events occurring in a problem domain, or between the 
computer’s internal states and internal states of the problem world. These are important 
distinctions in the practical utility of the system. Without them, it is, for example, impossible to 
address a possible divergence between a problem domain state and the state of its analogical 
model in the computer.  

 Causality is ignored. It appears in the model only in the association of an action with an event: 
each occurrence of the event may be imagined to cause the action. Since the initiator of the action 
is not identified this association does not capture causal relationships. Such relationships are 
essential. To understand how the system works, and to demonstrate that it will work reliably, it is 
necessary to trace the causal chains that define its proper working, and to consider the possibilities 
of failure in each link of each chain.  

 An invariant may represent a requirement—for example, “an employee is never in a room for 
which the employee does not hold an access authorisation;” or it may represent a given or 
assumed property of a problem domain—for example, “no pair of rooms is connected by more 
than one door,” or “a train can move out of a track segment only to an adjacent segment.” A 
requirement can be modified by agreement with the stakeholder; a given domain property can be 
modified only by a change in the physical world.  

 The context of system behaviour is assumed to be uniform. However, different behaviours are 
required in different contexts. For example: “two trains never occupy the same track segment” is 
true for train journeys but false when a train is being assembled in preparation for a journey or has 
broken down and is to be towed to a repair shop. The distinction between different contexts can 
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be represented only by adding the context as a state element and conjoining a predicate on its 
value to the affected invariants and event guards. This representation would be very cumbersome 
and error-prone.  

 Sequential behaviours cannot be directly represented in Event-B. Sequencing can be captured 
only by a relationship between the changing system state and the event guards. Sometimes this 
relationship can be defined in terms of state elements clearly associated with problem world 
states; sometimes it requires the introduction of a variable that is, in effect, a partial representation 
of the text pointer of the sequential process. This very indirect ad hoc approach fragments a 
sequential behaviour and may destroy its unity and human intelligibility.  

4.4 An Example Abstraction: Use Cases 

A completely different, informal, abstraction of system behaviour is implicit in the widely practised 
technique of Use Cases [Kruchten99]. A use case is an episode of interaction between an actor—
typically a human user—and the system; for purposes of the use case the actor is regarded not as a 
part of the system but as an external agent. The episode of interaction delivers some result of value to 
the actor: for example, the actor succeeds in booking a theatre seat, or in drawing cash from an ATM. 
A use case is described informally as an interactive sequential process. The process may have many 
variations. For example: the theatre may be fully booked; the user may decide not to accept any of the 
available seats; the ATM cash may be exhausted; the user may fail to enter the correct PIN for the 
card inserted; the user’s account balance may be insufficient; the process may time out; and so on. To 
accommodate common subprocesses such as logging into the system, validating the card inserted, or 
paying by credit card, use cases may be structured to embody or invoke other use cases.  

Use Cases are often understood as the central—sometimes the only—vehicle for describing required 
system behaviour. Philippe Kruchten writes [Kruchten99]:  

“The use-case model is a model of the system’s intended functions and its environment, and it serves 
as a contract between the customer and the developers. It comprises the set of all use cases for the 
system, together with the set of all actors, so that all functionality of the system is covered.”  

The value of use cases is obvious. They describe the experiences that the system must afford to its 
users when they avail themselves of its various user-initiated functions, and allow the developers to 
design those experiences for users’ convenience and satisfaction. 

The use case abstraction, like an Event-B model, discards some significant phenomena and 
considerations: 

 Some system behaviour is evoked not by immediate user interaction but by a change in system 
state—for example, by a change in the relationship between outstanding orders and stock-in-hand 
for a product. Such behaviours are not easily or fruitfully described in terms of delivering a result 
of value to a user.  

 The role of user does not accommodate other important roles that a person may play. For 
example, the behaviour and needs of the recipient of a heart pacemaker are not exactly those of a 
user. Rather, the recipient’s cardiac behaviour is the subject of monitoring and control by the 
embedded computer: the recipient is scarcely more a ‘user’ of the pacemaker than the patient in a 
surgical operation is a ‘user’ of the operating theatre.  

 The fragmentation of user behaviour into use case episodes works well when each use case can be 
regarded as an independent episode rather than as a contribution to a larger purpose that persists 
across distinct use case instances. This assumption largely holds for a telephone system, in which 
each use case can be largely understood in isolation; but it does not hold for the driver-assistance 
functionality of a car or for patient treatment by a radiation therapy machine.  

Discarding significant aspects of a problem is not in itself a fault. On the contrary, it is essential to 
separation of concerns. It becomes a fault only when the abstraction in question is regarded as the 
only abstraction necessary for development.  

4.5 Representation and Comprehension 

The representation chosen for an abstraction plays a large part in its comprehensibility. Since 
programming and system development are essentially human intellectual activities they can be carried 
out most effectively when their content is thoroughly understood by the people involved. The 
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developers must understand the abstractions they construct, and the stakeholders must understand the 
content of the abstractions to which they are asked to assent. An abstraction can be represented in 
more than one way. Whether it is comprehensible depends not only on its formal content but also—
vitally—on its representation.  

To take a well-worn example: a state machine can be represented by a diagram or, equivalently, by a 
list of nodes and transitions. The fragmented list is well suited to processing by computer, but the 
diagram is absolutely essential for human comprehensibility. The distinction runs deep. As the 
mathematician Henri Poincaré wrote [Poincaré08]: 

“When the logician has resolved each demonstration into a host of elementary operations, all of 
them correct, he will not yet be in possession of the whole reality; that indefinable something 
that constitutes the unity of the demonstration will still escape him completely.” 

It is a major misfortune for software and system development that a fragmentary form of an 
abstraction—a list of nodes and transitions, or a collection of elementary operations—is usually more 
tractable by mechanised processing. The danger is that as formal analysis by theorem provers 
becomes more powerful, and therefore more attractive, it leads to a weakening of the crucial demand 
for human understanding. Sequential processes are a fundamental part of human experience in the 
world, and we have all learned to grasp that indefinable something that they convey. A process 
represented by fragments ceases to be humanly comprehensible: the links between fragments formed 
by state variables are no substitute for a coherent representation of the whole process. Dijkstra 
explained their inadequacy in his famous letter [Dijkstra68a] about the structure of a program text:  

“The reason is—and this seems to be inherent to sequential processes—that we can interpret the 
value of a variable only with respect to the progress of the process.” 

To support both human comprehension and machine tractability, more than one representation may be 
necessary for the same abstraction. Effective development support software must at least be capable 
of deriving the comprehensible representation from a more machine-tractable equivalent.  

4.6 Abstraction by Context  

A major feature of a realistic computer-based system is its multiplicity of operational subcontexts. An 
aircraft must behave differently in the different phases of a flight: standing, pushback, taxiing, takeoff, 
climbing, en route, approaching, landing, and so on. A car must behave differently on the highway 
and in the repair shop. A lift in a large multi-purpose building must behave differently when the 
equipment is functioning perfectly and when the equipment is faulty, differently in the morning and 
evening, and differently at the weekend and on weekdays. In these different contexts the system 
requirements will be different, and so also will the envelope of given properties of the problem 
domains—for example, the aircraft engines, the car suspension, the lift users’ behaviour.  

Horizontal abstraction is the necessary tool for separating the different subcontexts. In the absence of 
this separation, the design of any particular functional behaviour can rely only on the weakest 
assumptions. For example, the design and provision of normal lift service behaviour must rely on 
properly functioning equipment. The developer who integrates into this design the detection, 
diagnosis, and handling of equipment faults is addressing a problem that is too complex for reliable 
solution. Almost nothing can be assumed, so at every point in the designed behaviour it is necessary 
to check which of a very large number of possible states currently holds. Eventually the reflective 
developer will find it desirable to structure this complexity by introducing additional state variables: 
Has a fault already been detected? What fault? Is the system already trying to recover from a fault? 
Has normal lift service already been abandoned? Is normal lift service currently in course of being 
abandoned by bringing the lift to a safe floor? This necessary structuring of system state is exactly the 
structuring aimed at by a horizontal abstraction by context.  

Separation of concerns is a generally recognised principle in the mastery of complexity. Less 
generally recognised is the need to recombine the separated concerns to produce a satisfactory overall 
behaviour. Sometimes, in a small non-critical setting, this recombination can be almost completely 
avoided: the designed behaviour is aborted and the system, or the affected part of it, will be restarted 
later from a carefully specified initial state. For example, in the classic use case of withdrawing cash 
from an ATM there are many possible ways of failing: the user’s card may be faulty; the PIN may be 
wrong; the card may have been previously reported stolen; and so on. In the case of such a failure the 
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card may be retained in the machine and the use case is aborted. Dealing with the retained card and 
with the possible explanations for PIN errors are system behaviours that need not be tightly integrated 
into the ATM use case, but can be dealt with elsewhere as a separate behaviour for a separate context. 
However, many systems, including some of the most critical, are required to operate continuously. 
Aborting the current behaviour and restarting elsewhere from a carefully specified initial state is not a 
permissible design choice in automotive or avionic systems. Recombining behaviours separated by 
horizontal abstractions then presents various challenges.  

Here we will mention two recombination challenges. First, when horizontally abstracted behaviours 
can overlap in time one of them may be based on the assumption that the relevant properties of a 
shared problem domain will be unaffected by the other. For example, the scheduling of train services 
may be separated from the scheduling and management of track maintenance, relying on the 
assumption that the separation can be perfect. At any time the rail network can be partitioned into 
those tracks on which services can be scheduled and those on which maintenance work can be 
performed. This assumption may be false. The recombination of the two behaviours then must take 
their mutual interference into account, modifying one or both of them accordingly. The two horizontal 
abstractions are not compositional.  

Second, when horizontally abstracted behaviours are consecutive in time it is necessary to consider 
whether the problem world post-state of the earlier satisfies the assumed problem world pre-state of 
the later. For example, normal lift service and firefighter lift service may be consecutive: during 
normal lift service a fire is detected and the system must be placed under control of the fire brigade. 
But at the moment of detection the lift car may contain passengers, and may be engaged in a journey 
to satisfy their requests and other pending floor requests. It will be necessary to design what may be 
called a switching behaviour to deposit any passengers at a safe floor before handing over the lift to 
fire brigade control.  

Horizontal abstraction by context is not, of course, restricted to computer-based systems. A very 
different example is seen in the parsing of an input text that may contain syntactic errors. The text is a 
problem domain, and its outer boundary of properties in the overall context is constrained by the input 
mechanism: for example, the character set may be constrained by a keyboard. In one horizontal 
abstraction, a syntactically faultless text is assumed, having a well defined structure of which the 
parser takes advantage. An element in this structure may be white space, an abstract lexical token in 
which any unbroken sequence of space, tab, and carriage return characters is equivalent to any other. 
For the most helpful diagnosis of errors, however, it may be important to adopt a different abstraction. 
If the constituent phenomena of white space are not discarded, the physical layout of the text lines can 
be explicitly recognised: mistyping of a right brace is then more easily pinpointed and diagnosed in a 
carefully indented text.  

5 CAREFULLY THOUGHTFUL USE OF ABSTRACTION 

The variety of software development problems is huge, and keeps growing. Some classes of system 
have evolved effective standard designs and development procedures, but many have not. Much 
software development is therefore not a routine activity: it comprises a high proportion of radical, 
rather than normal, design [Vincenti93]. The developer is to that extent unable to rely on a standard 
designs evolved and validated by many practitioners over a long period, and must fall back on a 
personal capacity for invention. This pleasurable innovative activity must be accompanied by a strong 
inclination to self-questioning. From the first investigation of requirements through to system testing 
and installation, developers can benefit from questioning what they are doing: from considering 
explicitly what abstractions they are using, questioning the nature of those abstractions, and 
articulating how they are related to the purposes of their work and the realities in which they are 
ultimately grounded.  

When difficulty is encountered, it is always good to question the abstraction or set of abstractions 
within which the difficulty has arisen. Advocates of aspect-oriented software development speak of 
“the tyranny of the dominant decomposition”, and the need to escape, somehow, from the straitjacket 
it imposes. In the same spirit we may speak of the tyranny of the dominant abstraction. An abstraction 
that serves well for one purpose can easily become ‘sticky’: we become unable to escape when for 
other purposes it becomes a tarpit.  



AbstractionEdited1072.doc 03/07/13 Page 19 

A famous historical example is the Pythagoreans’ dominant abstraction of numbers: all numbers are 
rational. According to tradition, the discovery that the square root of 2 is irrational was more than they 
could bear; it is even said that they murdered Hippasus, its discoverer. Another example, more 
obviously germane to software development, is the idea of a telephone call. A call is an attempt by 
one telephone (the caller) to establish one connection to one other telephone (the callee). When it 
became apparent in the 1990s that telephone systems were becoming more powerful and user features 
were proliferating, an international effort developed a standard conceptual model for telephony based 
entirely on the call abstraction. Unfortunately, many telephone features subvert the one-to-one 
correspondence that is the essence of this abstraction [Zave98]. Conference calls, voicemail, 
automatic callback, credit card calling and many other features simply cannot be clearly described on 
the basis of the call abstraction.  

Simplification is an important use of abstraction. Harry Beck’s map simplified the task of planning a 
route on the London Underground. It also provides an object lesson in one aspect of the dangers of an 
analogical model. Although in principle Beck had discarded the geographical phenomena, top to 
bottom of his map was still, roughly, North to South, and left to right was still West to East. His 
abstraction was therefore partial, in the sense that the geographical phenomena were only partially 
discarded: geographical location still influenced the positions of stations on the map, but imperfectly 
and inconsistently. Inevitably, such a partial abstraction is potentially misleading: some users wrongly 
suppose that distances are exactly preserved. In one extreme case, a user may undertake a journey 
visiting four stations and changing between two Underground lines to travel between two stations that 
are 250 yards apart. Both for the maker and for the user of an abstraction it is vital to understand 
clearly exactly what has been discarded. In the practice of abstraction, the baby is not always easily 
distinguished from the bathwater.  
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