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Abstract. In this paper, we present an approach using problem frames to 
analyse security problems in order to determine security threats and 
vulnerabilities. We use problem frames to capture and bound the base system 
that is to be protected. We consider threats to this base problem frame from the 
point of view of the attacker. For each class of threats, their successful 
realisation is regarded as the anti-requirement in an abuse frame. Anti-
requirements are quantified existentially: that is, the attacker succeeds by 
realising the threat in any one instance. For a threat to be realised, its abuse 
frame must be composed with the base problem frame in the sense that the asset 
attacked in the abuse frame must overlap, or be identified with, a domain of the 
base problem frame. We explain the process of composition and some of its 
variations. We illustrate and assess our approach using a case study of a 
medical information system, and suggest how abuse frames can provide a 
means for bounding the scope of and reasoning about security problems in 
order to analyse security threats and identify vulnerabilities. We conclude with 
an agenda for future work. 

1 Introduction 
The security engineering community has developed a variety of techniques for 
managing and protecting computer-based information. These techniques focus 
primarily on design and implementation issues, such as security mechanisms for 
detecting attacks and countermeasures for reacting to security breaches. They also 
focus on the notion of threats, driven by risk-analyses carried out at the later stages of 
the development process life-cycle, but the results are often unsatisfactory [7, 9, 28]. 
This has limited the support for effective reasoning about security objectives during 
the early stages of the development process. 

To address these problems, the requirements engineering community [29] has 
started to investigate systematic approaches to analysing security threats [3, 12, 13, 
17, 21, 27, 34] and security requirements [4, 5, 13, 15, 24, 28]. However, current 
techniques for analysing and reasoning about security requirements are still 
preliminary [28, 30]. They often lack the explicit notion of a security threat posed by 
malicious attackers. Without this, many security threats cannot be expressed 
explicitly and security measures cannot be determined effectively. A well defined 
system boundary enables systems engineers to focus on the characteristics of problem 
domains and their interactions. Non-trivial security vulnerabilities can be uncovered 
more easily and security threats reduced by selecting appropriate security measures. 
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In this paper we present an approach using problem frames [19] to analyse 
security threats and identify security vulnerabilities. Our approach introduces two 
conceptual tools – anti-requirements and abuse frames – and deploys these 
systematically to explore security problems in a medical information system. The 
paper is structured as follows. The next section briefly introduces problem frames and 
the relevant issues of security engineering and security requirements. Section 3 
describes our approach, including patterns for different classes of security threats. 
Section 4 describes a case study of a medical information system to illustrate and 
assess our approach. Section 5 discusses related work, and section 6 concludes the 
paper. 

2. Background 
2.1 Problem Frames 

A problem frame defines an identifiable problem class in terms of its context and the 
characteristics of its domains, interfaces, and requirements. Domain and interface 
characteristics are based on an identification of phenomena—element of what can be 
observed in the world. Phenomena may be individuals or relations. Individuals are 
entities, events, or values. Relations are roles, states, or truths. 

Domains can be one of three types – causal, lexical, or biddable [18, 19]. A 
causal domain is one whose properties include predictable causal relationships among 
its phenomena. A causal domain may control some, all, or none of the shared 
phenomena at an interface with another domain. A biddable domain consists of 
entities that lack positive predictable internal causality (e.g., people). A lexical 
domain is a physical representation of data that is represented as symbolic phenomena 
(e.g., data or information).  

To illustrate the structure (the principal parts) of problem frames, consider a 
simple patient record display system: 
A patient record display system is required as part of the medical information system 
for a hospital. Patient records are stored in a database, and the information of a 
particular patient record is displayed on a screen upon the request of a clinician. 

Based on this, a requirement (Req) may be identified: Information from a patient 
record should be displayed correctly upon the request of a clinician. 

Figure 1 overleaf is an information display problem frame diagram describing the 
problem. In the figure, the plain rectangles represent problem domains, and the 
connecting lines represent interfaces between them. A rectangle with two double 
vertical stripes represents the machine to be developed. This machine is built in the 
form of software and deployed by running the software on a general-purpose 
computer. The dashed oval represents the requirement; Req in this example. The 
dashed lines connecting the oval to a problem domain represent a requirement 
reference; that is, the requirement refers to certain phenomena of the problem domain. 

A dashed arrow denotes the requirement reference as a constraining reference – 
meaning that the requirement stipulates some desired relationships or behaviour 
involving the domain phenomena. A causal domain is indicated by a C in the bottom 
right corner. The Clinician is biddable and is indicated by a B in the bottom right 
corner, whereas the PR domain is a lexical domain and is indicated by an X. 
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a: PR!{Char} 
b: PRD!{Signal}   
c: CL!{ViewRecordRequest()} 
d: PR!{Prescribed(), PatientID()} 
e: MON!{PatientPrescription()} 
 

 
 

Figure 1: The problem frame diagram for a patient record display system 
Interface phenomena are annotated to show the sets of shared phenomena between 

two domains. For example, the shared phenomenon PR!{Char} represents the set of 
characters that represents the symbolic states (Prescribed(), PatientID()) of the PR 
and is accessible by the PR Displayer. The prefix PR! also shows that Char is 
controlled by the PR; that is, the PR Displayer cannot cause Char to change.  

To show that a problem can be solved, the systems engineer needs to derive a 
specification of the machine and produce a correctness argument that fits 
requirements, specification, and the problem world. The correctness argument should 
show that, given the machine specification (S) and all possible behaviours in the 
world (W), the requirement (R) is always satisfied. That is: S, W  R. This relies on 
the fact that the W is strictly bounded by the problem frame diagram. For Figure 1, a 
correctness argument demonstrates that a Patient Record will be displayed correctly 
on the Display as requested by the Clinician. 

2.2 Security Engineering and Security Requirements 

In traditional security engineering, a threat is the potential for abuse of assets, and is 
characterised in terms of an attacker, a presumed attack method, any vulnerabilities 
that are exploited by the attack, and the asset under attack. An attack is a sequence of 
events resulting in a threatening phenomenon. An attacker is a malicious user, not 
necessarily a human, causing an attack. A vulnerability is the condition of a system 
exploited by an attacker to cause a security violation [11]. 

The security engineering community often partitions security for information 
systems into three categories: confidentiality is the protection of information assets 
against unauthorised access; integrity is the protection of assets from unauthorised 
alteration and corruption, while availability is the prevention of unauthorised 
degradation of the accessibility of assets. 

Information security is achieved by introducing security measures that satisfy a 
system’s security requirements. A security requirement—often a constraint on 
functional requirement—ensures that a particular security violation cannot happen 
[28]. In Figure 2, we represent a security requirement (SR) as a requirement in a 
problem frame. 

E3 identifies the potential shared phenomena between the Security Machine and an 
Attacker. It can be regarded as the phenomena that describe the attacks from the 
Attacker and the reactions from the Security Machine. 
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The Security Machine is the machine 
to be built. The specification of the 
Security Machine—E2 and E3— 
represents the security measure to 
counteract attacks from the Attacker. 
E1 identifies the desirable phenomena 
of the Asset that is under attack. 

Figure 2: A security problem 
frame diagram

The correctness argument of the security problem frame must show that, in the 
presence of an attacker, the specification of the Security Machine satisfies the 
security requirement. However, an immediate difficulty arises in that the frame 
diagram in Figure 2 provides no explicit indication of the scope of the problem 
domain, nor does it describe the underlying vulnerabilities to the threats imposed by 
the attacker. Without these, a detailed specification of the Security Machine cannot be 
determined. To address these issues, we need to describe the behaviours of attackers 
and analyse security vulnerabilities in such a bounded scope.  

3. Introducing Abuse Frames 
In [12], we introduced the notion of anti-requirements (AR) to represent the 
requirements of malicious attackers. Anti-requirements are expressed in terms of the 
problem domain phenomena and are quantified existentially: an anti-requirement is 
satisfied when the security threats imposed by the attacker are realised in any one 
instance of the problem. In this paper, we incorporate anti-requirements into abuse 
frames (Figure 3). The purpose of abuse frames is to represents security threats and to 
facilitate the analysis of the conditions in the system in which a security violation 
occurs. They allow the examination of a system’s vulnerabilities to different kinds of 
security threats in a bounded context. Abuse frames share the same notation as the 
normal problem frames, but each domain is now associated with a different meaning. 

The Asset (AS) is the domain under 
attack. The Malicious Machine (M/M) 
domain acts as the interface between the 
attacker and the Asset domain. Its 
behaviour allows the attacker to achieve 
the anti-requirement. The Attacker 
domain represents the domain that is 
imposing the threat. 

 
Figure 3: A generic abuse frame diagram. 

The shared phenomenon AS!E1 represents the undesirable phenomenon in the 
victim domain as the result of an attack. It also shows that the phenomenon is 
controlled by the Asset domain (prefix AS!). The M/M is an abstract machine that is 
to be specified during abuse frame analysis. The M/M can be assigned to an existing 
domain, or a domain that is introduced into the problem world in order to reflect that 
an attacker can utilise the existing domains or other tools (e.g., a virus) that are not 
originally in the problem world W.  

A security vulnerability is identified as the conditions in the problem world that 
combined with the Malicious Machine specification, will satisfy the anti-requirements. 
Because anti-requirements are existentially quantified, this means that a vulnerability 
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is an instance of the problem world that gives rise to an opportunity for attacks. To 
show that a threat can be realised by the vulnerability, an abuse frame argument 
(ABA) must be constructed to show that the malicious machine specification (MS), 
with some behaviour in the problem world that satisfies the vulnerability conditions 
(v(W)), will achieve the anti-requirement: MS, v(W)  AR. The argument relies on 
the fact that W is strictly bounded by the problem frame diagram; that is, any 
phenomena that are not explicitly shown on the diagram are not within the scope of W 
and, therefore, are not included in W. The vulnerability conditions v is expressed as 
the relations between the domain phenomena in W. 

3.2 Abuse Frame Classes 

In problem frames each frame describes a particular problem class (e.g., Information 
Display, Workpiece, and Required Behaviour frames). Similarly, abuse frames 
describe classes of security violation and include: interception, modification, and 
denial of access. Each represents a threat that can violate a particular security goal. 

Interception, also known as information disclosure, arises whenever there is some 
information asset in the physical world that an attacker wishes to obtain, thus 
violating confidentiality. The abuse problem is to find a malicious machine that 
allows the attacker to achieve this. Figure 4 shows a standard interception frame. 

 
Figure 4: A standard interception abuse frame. 

The Attacker domain is not shown in the frame diagram because we assume the 
attacker has access to the Display domain. 

Modification arises whenever there is an information asset in the physical world 
that an attacker wishes to change. The problem is to find a modification machine that 
allows an attacker to achieve it. Modification violates integrity. Figure 5 shows a 
standard modification frame. 

 
Figure 5: A standard modification abuse frame. 

Denial of access arises whenever there is some information asset in the physical 
world that an attacker wishes to make unavailable or unusable. Denial of access 
violates availability. Figure 6 shows a standard denial of access frame. 
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Figure 6: A standard denial of service abuse frame. 

The classification of security problems in this way allows the exploration of the 
correspondences between standard problem frames and abuse frames (e.g., Table 1).  

Problem Frames Abuse Frames 
Information Display Interception 

Workpiece Modification 
Required behaviour Denial of Access 

Table 1: Some correspondences between problem frames and abuse frames. 
Each row in the table suggests a correspondence between a problem class and an 
abuse frame class, and each correspondence indicates that there is a direct mapping 
between the principal parts of the corresponding frame diagrams. 

3.3 Abuse Frame Analysis 

The purpose of abuse frame analysis is to analyse the threats to a base problem, 
which is the system to be protected and bounded by a problem frame, and to identify 
security vulnerabilities. Threats imposed by an attacker are represented by an abuse 
frame that captures the anti-requirement of an attacker. The abuse frame is then 
composed with the base problem. 

To show that a threat is realisable, an abuse frame argument is constructed 
demonstrating the anti-requirement is satisfied by a sequence of interactions of 
domain phenomena. The security vulnerability is then identified as the conditions on 
the base problem that allow this sequence of interactions to take place. 

3.3.1 Abuse Frame Composition 

Abuse frames are composed with a base problem by mapping domains in an abuse 
frame to those in the base problem. Composition may be of two forms. The first 
applies when a base problem contains machine domains that can be abused directly 
by an attacker, without the introduction of additional domains, i.e. the attacker 
exploits the vulnerability that already exists in the base problem. This form of 
composition requires a direct correspondence between the principal parts of the base 
problem and those of the corresponding abuse frames. Table 1 suggests that the 
principal parts of an Interception abuse frame and an information display problem 
frame can be mapped directly. So the composition can proceed as follows: 
 The Information Asset (IA) domain in the interception frame is mapped to the 

monitored domain, whose phenomena are monitored and displayed in the 
information display base problem. 

 The Display (DSP) domain in the interception frame is mapped to the Display 
domain that displays the phenomena of the monitored domain in the information 
display base problem. 

 The Malicious Machine in the Interception frame is mapped to the Information 
Machine, which is the machine domain in the information display base problem. 

Denial of Access 
M/M 

Denial of Access Asset 
(AS) 

DAM!C1 ¬ C3 

AS!C2 C
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Any remaining unmapped domains in the base problem also remain in the composed 
abuse frame. Figure 7 shows an example of the patient record display base problem 
(Figure 1) composed with the interception frame (Figure 4). In this example, the IA in 
the interception frame is mapped to the Patient Record (PR), which is the monitored 
domain in the patient record display base problem. The DSP in the interception frame 
is mapped to the Monitor (MON) domain, which is responsible for displaying the 
information of the PR. The interception M/M maps to the machine domain, namely 
PRD, in the base problem. The CL domain is unmapped in the base problem, and is 
preserved in the composed abuse frame. 

a: PR!{Char} 
b: PRD!{Signal} 
c: CL!{ViewRecordRequest()} 
d: PR!{Prescribed(), PatientID()} 
e: MON!{PatientPrescription()} 
 

 
 
 

Figure 7: Composed interception abuse frame for a patient record display problem. 
In the second form of composition, additional domains are introduced to perturb 

the domain(s) in the base problem, i.e. the vulnerability in the base problem is 
identified by extending the its scope to include new domains. A perturbation occurs 
when a domain outside the scope of the base problem can establish some kind of 
interface phenomena with a domain in the base problem. These interface phenomena 
are shared between these two domains, and each phenomenon is controlled either by 
the new domain or by the perturbed domain but not both. Each phenomenon may also 
be related by casual properties, i.e. one phenomenon triggers the happening of 
another. 

A perturbation mapping needs to be identified before the composition can 
proceed. It indicates the mapping from the Asset domain in an abuse frame to the 
perturbed domain in the base problem. There are no fixed rules for deciding the 
perturbation mapping for a composition⎯different perturbations must be explored. 
However, a perturbed domain must be in the base problem and is mapped to the Asset 
domain in an abuse frame. Also, only domains in the base problem can be perturbed; 
interface phenomena (indicated by a line between domains) cannot be perturbed. 

An example of perturbation is shown in Figure 8. Here, the PR is the domain 
being perturbed, and it is mapped to the Information Asset in the interception frame.  

 
Figure 8: Perturbing a patient record display problem frame with an interception frame. 
Figure 9 shows the resulting composed abuse frame. The newly introduced domains 
are the Interception M/M (IMM) and Display. 
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a: PR!{Char}  
b: PRD!{Signal} 
c: CL!{ViewRecordRequest()} 
d: IMM!{Signal} 
e: PR!{Prescribed(),PatientID()} 
f: DSP!{ PatientPrescription()} 
 
 

Figure 9:  Composition of an interception abuse frame with the patient record display 
problem frame. 

This form of composition extends the scope of the base problem by introducing new 
domains that will participate in achieving the anti-requirement. The extended scope is 
bounded by the problem context of the composed abuse frame, which is analysed to 
reveal vulnerabilities to the threats imposed by the composed abuse frame. 

The problem world W of the composed abuse frame is the union of the domains in 
the base problem and the new non-machine domains introduced. 

3.3.2 The Abuse Frame Argument 

A composed abuse frame diagram needs to be realised in order to show that the anti-
requirement is satisfied. This is achieved by constructing an abuse frame argument 
(ABA). The central task of constructing such an argument is to investigate and 
describe the properties of the domains in the problem world and to derive the 
Malicious Machine specification. The ABA must fit these descriptions together and 
provide a sequence of interaction of domain phenomena as the evidence that the anti-
requirement can be satisfied. 

For different classes of abuse frames, different descriptions of the properties of 
the domains are needed. Using the composed interception frame in Figure 7 as an 
example, the relevant descriptions are: 

 Derive descriptions of the domains in the problem world. Because there is no non-
machine domain introduced, only the descriptions of the domains in the base 
problem are needed. 

- For the Information Asset, describe the relationship between Char and Prescribed(), and 
the relationship between Char and PatientID(). They are the properties of the PR. 

- For the Display domain, describe the relationship between Signal and 
PatientPrescription(). It is the property of the MON. 

- For the Clinician domain, describe the event phenomena generated by the domain. It is 
the property of the CL. 

 Derive the Malicious Machine specification. In Figure 7, the specification of the 
IMM can be derived through the following steps: 

- Use the property of the PR to determine the set of characters (Char) that resemble the 
information Prescribed(), PatientID() as stated in the anti-requirement. 

- Use the property of the MON to determine the Signal that is required to cause the 
information PatientPrescription() , as stated in the anti-requirement, to be displayed. 

- Derive the relationship between ViewRecordRequest(), Char, and Signal. This is the 
specification of IMM. 
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 The descriptions of IMM and W must be shown to satisfy the anti-requirement, by 
constructing the ABA: IMM, CL, PR, MON  AR. 

Thus, the ABA for Figure 9 will show that PatientPrescription(), which is derived 
from Prescribed() and PatientID() of the PR, will be disclosed if the CL issues the 
request ViewRecordRequest(), because the Attacker has access to the 
PatientPrescription() displayed on the MON. A more detailed account of an ABA is 
provided in the case study in the next section. 

If no ABA can be constructed successfully to demonstrate the satisfaction of an 
anti-requirement, this indicates that the threats imposed by the abuse frame cannot be 
realised within the bounded context. 

3.3.3 Identification of Security Vulnerabilities 

A security vulnerability is identified as the conditions that describe the participating 
domains in the ABA, and their behaviour, that will satisfy the anti-requirement. We 
use un to denote the condition on domain n for n to exhibit the behaviours described 
in the ABA. un is expressed in terms of the phenomena of n. The vulnerability v in an 
ABA is defined as the union of the conditions u on the participating domains. New 
domains that are introduced to perturb the base problem during composition are 
regarded as outside the scope of the base problem and are not included in v. 

It is often helpful if the set of participating domains that are used to identify the 
vulnerability is minimal. A set of domains is said to be minimal when the removal of 
any domains from the set will result in the failure to construct the ABA (i.e. failing to 
satisfy the anti-requirement). For example, the minimal set of participating domains 
for the ABA for Figure 7 is the set {CL, PRD, PR, MON}. The condition on each 
domain is denoted by uCL , uPRD, uPR, and uMON, respectively. uCL represents the 
condition that the CL issues ViewRecordRequest(). uPR represents the condition that 
the PR is non-empty, i.e. the PR contains some patient information. UMON represents 
the condition that the attacker has access to the domain. No conditions are required on 
the PRD (assuming perfect reliability of the PRD, MON, and PR), and therefore uPRD 
always holds. The vulnerability condition v is therefore the set {uCL , uPR,, uPRD, uMON}. 

The reason for representing vulnerability as a set of conditions on each 
participating domain is to allow each participating domain to be treated individually 
when the vulnerability is being addressed. Addressing vulnerabilities is done through 
the addition of new security requirements (e.g., only allowing non-sensitive patient 
information to be displayed on the Monitor) or the revision of existing requirements 
(e.g., substituting the Monitor with an output device to which the attacker has no 
access). In both cases, systems engineers need to show that the anti-requirement 
cannot be satisfied in the context of the new system.  

4 Case Study 
This section illustrates and assesses our approach by using it to analyse part of a 
medical information system (MIS). The case study is from the British Medical 
Association policy model proposed in [2], and is an example of a real practical 
system with important security requirements.  
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One primary task of an MIS is to provide medical information to clinicians. The 
medical records of each patient are stored as electronic clinical records in an 
information system, and are only accessible to clinicians responsible for that patient. 
Each patient is associated with an access control list (ACL), and the MIS must 
prevent anyone not on the ACL from accessing the patient’s records in anyway. Only 
a designated clinician can modify the ACL. Part of the case study concerned with the 
display of patient records is shown in Figure 10 as an information display problem 
frame. 

 
a: PR!{MsgWrite()}              b: NW!{header, content}        c: PRD!{MsgWrite()} 
d: PR!{PatientPrescription()}  e: PR!{Prescribed(), PatientID()}   f: PRD!{Signal}  
g: CL!{ViewRecordRequest()}  h: ACL!{AssignedTo()} 

Figure 10: A display frame for displaying patient records in the MIS. 
The PR is connected to the PRD through an internal network. The PR and PRD 
communicate by sharing a network Message domain. To view the information of a 
particular patient Pname (we assume each Pname is unique), the CL issues 
ViewRecordRequest() command to the PRD, which then accesses the information 
AssignedTo() of the ACL to verify whether the clinician is responsible for that patient. 
The PRD also has direct access to the PR. The PRD causes the event phenomena 
Signal to the Monitor to produce the required phenomena PatientPrescription(). 

The Message domain consists of two major parts: the header and content. The 
header contains the identifications of the sender and receiver, and the content contains 
the information to be transmitted. We use Msg(h, c) to denote a state that holds if and 
only if h is the header, and c is the content of the message, and we use the notation 
h.sender to identify the sender (e.g., h.sender = PRD), and h.receiver to identify the 
receiver. 

4.1 Abuse Frame Analysis 

Suppose an attacker wishes to intercept the network messages to disclose information 
of the patient record that is transmitted through the network. We call this anti-
requirement “Network Interception”, which stipulates that the information 
PatientPrescription() shall be obtained from the network messages between the PR 
and the PRD and present them on an output device. This threat is represented in an 
interception abuse frame (Figure 4). The composed abuse frame diagram of Figure 4 
and 10 is shown in Figure 11. 
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a: PR!{MsgWrite()}  d: PR!{PatientPrescription()}      g: CL!{ViewRecordRequest()} 
b: NW!{header, content}  e: PR!{Prescribed(), PatientID()} h: NIM!{Signal} 
c: PRD!{MsgWrite()}  f:  PRD!{Signal}       i: ACL!{AssignedTo()} 

 Figure 11: Abuse frame for network interception 
The PR is represented as a causal domain, as it generates network messages to be 
transmitted to the PRD. The newly introduced domains in the composed abuse frame 
diagram are the Network Interception Machine (NIM) and the Display. The perturbed 
domain is the Message domain, with which the NIM shares the symbolic states 
header and content, which are controlled by the Message domain. 

4.2 The Abuse Frame Argument 

To construct the ABA, we need to describe the properties of the domains in the base 
problem (NW, PR, ACL, PRD, CL), the newly introduced domain (DSP), and the 
malicious machine (NIM). We then develop the ABA from which vulnerabilities are 
identified. Due to page constraints, domain descriptions are presented in the appendix. 

4.2.1 Specification of NIM 

We assume that the NIM has a simple built-in local memory to store temporary 
symbolic phenomenon. (i.e. temporary data). The specification of the NIM is 
developed by iterating through the following four steps. 
1. Recognise the header h and content c for each message Msg(h, c). Examine h to identify the 

sender and receiver. 
2. If h.sender = PR and h.receiver = PRD, the NIM examines the content c to retrieve the 

information, which is either Prescribed(P_ID, med) or PatientID(P_ID, Pname). 
3. If c = Prescribed(P_ID, med), the NIM accesses PatientID(P_ID, Pname) in its local memory, 

and derive PatientPrescription(Pname, med), using the property of the PR. 
If c = PatientID(P_ID, Pname), the NIM stores PatientID(P_ID, Pname) in local memory and 
return to 1. 

4. The NIM generates Signal to display the derived information PatientPrescription(Pname, med) 
on the DSP. 

4.3 The Abuse Frame Argument 

In the following ABA, we use PR_PRD to represent the header of the message that is 
transmitted from the PR to the PRD, and we use PRD_PR to represent the header of 
the message that is transmitted from the PRD to the PR. The underlined descriptions 
describe the behaviours of the newly introduced domains (NIM, DSP). 
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1. Once the CL imitates the event ViewRecordRequest(Pname, C_ID), the PRD produces a 
network message Msg(PRD_PR, c1), where c1 = QueryID(Pname). 

2. Once received the query from the PPD, the PR produces a network message Msg(PR_PRD, 
c2), where c2 = PatientID(P_ID, Pname). 

3. The NIM intercepts the network message and interprets c2 to obtain PatientID(P_ID, Pname). 
4. The PRD verifies whether the state AssignedTo(P_ID, C_ID) holds in the ACL. 
5. If the state AssignedTo(P_ID, C_ID) holds in the ACL, the PRD produces a network message 

Msg(PRD_PR, c3), where c3 = QueryP(P_ID). 
6. Once received the query from the PPD, the PR produces a network message Msg(PR_PRD, 

c4), where c4 = PatientP(P_ID, med). 
7. The NIM intercepts the network message and interprets c4 to obtain PatientP(P_ID, med). 
8. The NIM derives PatientPrescription(Pname, med) from PatientP(P_ID, med) and 

PatientID(P_ID, Pname). 
9. The NIM sends Signal events to the DSP according to the information derived, and the DSP 

shows the information of the patient record that is transmitted through the network. 

Thus, we have shown that the anti-requirement Network Interception is satisfied, and 
a security vulnerability exists. 

4.4 Identification of Security Vulnerability 

For the above ABA, the minimal set of participating domains after removing the new 
domains introduced (NIM and DSP) is {PR, NW, PRD, CL, ACL}. The condition on 
each domain is listed as the follows: 

uPR :  the PR contains patient information. 
uNW : the symbolic state Msg(header, content) of NW is accessible to and 

interpretable by the NIM. 
uCL : the CL causes the event ViewRecordRequest(Pname, C_ID). 
uACL: the state AssingedTo(P_ID, C_ID) holds, i.e. the Clinician C_ID is 

responsible for the patient P_ID. 
The vulnerability v for the ABA is {uPR , uNW, uCL , uACL}. Informally, v states that a 
vulnerability exists because the NIM has access to network messages and is able to 
interpret the messages transmitted through network, and that the patient information 
is transmitted across this network. 

After the security vulnerability is identified, the properties of each participating 
domain in v should be investigated to determine the appropriate treatment to address 
the vulnerability. This is beyond the scope of this paper. 

5 Related Work 
van Lamsweerde suggests that threats can be treated as obstacles to goals [23]. An 
obstacle defines a set of undesired behaviours that violate a positive goal. However, 
this implies a particular boundary of security attacks, and may cause some wider 
security threats to be overlooked. In [24], the notion of anti-goals is introduced. This 
is similar in spirit to our notion of anti-requirements, but anti-goals are still derived 
from the traditional security objectives, whereas anti-requirements exist as long as 
there are users of the envisaged system whose requirements conflict with a system’s 
requirements, and may potentially abuse the system. 
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The i* framework [26] takes an organisational view by modelling trustworthiness 
as softgoals to be satisfied . Attacks by malicious users are modelled as negative 
contributions that obstruct these softgoals. i* has also been applied to assess the 
criticality and complexity of actors to model security vulnerabilities in a multi-agent 
system [8]. However, i* focuses on analysis of security threats imposed by internal 
actors at the organisational level, whereas our approach complements this by 
analysing both internal and external threats in software systems problem domains. 

The GBRAM framework comprises a set of techniques for extracting high level 
goals from various data sources and subsequently refining them into detailed 
requirements specifications based on a set heuristics and guidelines [6]. Chung [9, 10], 
treats security requirements as softgoals, that are identified and refined based on a 
knowledge catalogue of decomposition methods, security techniques for satisficing 
softgoals, and correlation rules. Both approaches focus on the elicitation process of 
high level security goals, which, again we regard as complementary to our approach. 

Attack trees [31], adopt a goal-oriented approach to refining a root goal into a goal 
tree to derive scenarios. They are applied late in the design phase when a mature 
system design is available, and the construction of an attack tree usually requires 
extensive knowledge in security analysis. Similarly, software fault trees [17] allow 
systematic analysis of security attacks, but they are best suited to design. 

Misuse cases [1, 33] and abuse cases [27] have been suggested as tools for threat 
analysis. However, we argue that these typically represent instances of attacks that are 
often described in the language of implementation. Abuse frames on the other hand, 
treat the solution domain as a black box and focus on the problem domain. 

Research on reusable patterns for security analysis has also received attention 
recently. At the enterprise level, Kis proposes using anti-patterns [21] as patterns of 
vulnerabilities for enterprise-wise security requirements analysis. This is analogous to 
abuse frames, but our focus is on software system issues rather than business issues. 
Sindre et al. propose using reuse cases [35] for security analysis. A reuse is a pair of 
generic misuse and use cases. Application-specific misuse and uses cases are derived 
by applying the pair to the context of an envisaged system. However, as with misuse 
and abuse cases, reuse cases are most suited at the design level. 

Firesmith also suggests specifying security requirements from reusable templates 
of commonly identified security requirements [14]. Our approach focuses on 
analysing threats and identifying security vulnerabilities, and is complementary to this 
approach. 

Security patterns such as [22] and [32] are variants of design patterns for 
specifying security measures. Each design pattern addresses a particular category of 
security concerns. Design patterns are generally used after security requirements 
analysis, whereas our work specifically focuses on identifying security threats and 
vulnerabilities during the requirements analysis.  

SCR has been applied to develop a formal specification of a communication 
security device [20] and a user authentication system [16]. The specification describes 
normal behaviour of the device plus the actions that should be taken in response to an 
undesired event, such as equipment failures or physical tampering. However, our 
work focuses on the notion of malicious attackers, which is not addressed explicitly 
by SCR. 
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Finally, hazard analysis techniques from the safety engineering literature [25] 
share with security engineering the need to analyse undesirable phenomena. However, 
the introduction of users with malicious intent into security engineering means that 
scope of problems is harder to bound. 

6 Discussion and Conclusions 
We have presented a requirements-based approach for analysing security problems. 
We introduced anti-requirements and abuse frames, and shown how their integration 
into requirements analysis enables the explicit representation of security threats and 
facilitates early discovery of potential security vulnerabilities. Our approach provides 
a means of early structuring and bounding the scope of security problems when the 
requirements of the envisaged system are being elaborated and only partial 
information is available. We demonstrated this in the case study by structuring part of 
an MIS system using problems frames, and then composing these with abuse frames.  

An important benefit of our approach is the discovery of some security 
vulnerabilities and requirements, though not all. Abuse frames are not a substitute for 
other traditional security engineering techniques. We have found them to be useful in 
complementing such techniques when deployed during requirements analysis. We 
have also noted that even though our analysis is currently informal, it is nevertheless 
systematic and repeatable. We are currently conducting a larger case study to explore 
a number of open issues. In particular, we are examining a more rigorous and 
systematic approach to constructing and expressing ABAs that lie at the heart of 
identifying vulnerabilities. We are also examining ways of deriving and revising 
security requirements once vulnerabilities have been identified. Preliminary 
investigations suggest that trust assumptions about domains in the problem context 
play a significant part in both identifying vulnerabilities and corresponding security 
requirements [15]. 
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Appendix 
This appendix supplements the case study section by providing the descriptions of the 
domain properties in the base problem frame (Figure 10) and of the Display domain, 
which is introduced in the composed abuse frame (Figure 11). 

1. Description of Message 
A message comprises of two parts: header and content. We use Msg(h, c) to denote a 
state that holds if and only if h is the header, and c is the content of the message. The 
header provides the identification of the sender (represented by h.sender) and receiver 
(represented by h.receiver). For messages transmitted from the PRD to the PR, 
content c comprises either QuaryID(Pname) or QueryP(P_ID). For messages 
transmitted from the PR and PRD, the content c comprises one of the symbolic 
phenomena PatientID(P_ID, Pname) and Prescribed(P_ID, medication). 

We use PR_PRD to represent the header of the message that is transmitted from 
the PR to the PRD, and we use PRD_PR to represent the header of the message that is 
transmitted from the PRD to the PR.  

2. Description of Patient Record 
The symbolic states of the PR represent patient information. The PR has any number 
of named patients and any number of prescriptions. Each patient may be prescribed to 
any number of prescriptions. The resulting symbolic states of PR are therefore: 

Prescribed(P_ID, medication): a state that holds if and only if the patient, who is identified by 
P_ID, has prescribed to the medication. 

PatientID(P_ID, Pname): a state that holds if and only if the patient of the name Pname is 
identified by P_ID. 
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PatientPrescription(Pname, medication): a state which holds if and only if the patient Pname 
has the prescription medication. 

The three phenomena are related by the relation: 
Prescribed(P_ID, medication), PatientID(P_ID, Pname)  

PatientPrescription(Pname, medication) 

To communicate with the PRD, the PR controls the event phenomena 
MsgWrite(msg_part, S). This is an event in which the PR writes the symbolic 
phenomenon S to the message part (header or content). The PR recognises two kinds 
of query commands from the PRD: QueryP(P_ID) and QuaryID(Pname). The former 
queries the prescriptions of the patient identified by P_ID, and the latter queries the 
P_ID of the patient Pname. The PR reacts in response to the queries received from 
the PRD. That is, for any message Msg(h, c) received from the PRD, the PR creates 
the message Msg(r_h, r_c) such that: 

 if c == QueryID(Pname), then MsgWrite(PR_PRD, PatientID(P_ID, Pname)). 
 if c == QueryP(P_ID), then MsgWrite(PR_PRD, PatientP(P_ID, medication)). 

3. Description of ACL 
The ACL has any number of named patients and any number of prescriptions. Each 
patient is assigned to any number of clinicians. The symbolic state AssignedTo(P_ID, 
C_ID) of the ACL indicates a state that holds if and only if the Clinician identified by 
C_ID is responsible for the patient identified by P_ID. The phenomenon is controlled 
by the ACL, and is shared with the PRD. 

4. Description of Clinician and Patient Record Displayer 
The PRD controls the event phenomena MsgWrite() and Signal. It shares the event 
ViewRecordRequest(Pname, C_ID) with the Clincian. C_ID identifies the Clinician 
making the request, and Pname is the patient whose record is displayed. The 
behaviour of the PRD is described by iterating through the following steps: 
1. Once the CL initiates the event ViewRecordRequest(Pname, C_ID), the PRD produces a 

network message Msg(PRD_PR, c1), where c1 = QueryID(Pname). 
2. The PRD receives the message Msg(PR_PRD, c2), where c2 = PatientID(P_ID, Pname). The 

PRD accesses the ACL to verify whether the state AssignedTo(P_ID, C_ID) holds in the ACL. 
3. If the state AssignedTo(P_ID, C_ID) holds in the ACL, the PRD produces a network message 

Msg(PRD_PR, c3), where c3 = QueryP(P_ID). Return to 1 otherwise. 
4. The PRD receives the message Msg(PR_PRD, c4), where c4 = PatientP(P_ID, med). The 

PRD derives PatientPrescription(Pname, med), using the property of the PR. 
5. PRD sends Signal events to the MON according to PatientPrescription(Pname, med). 

5. Description of Display 
The only phenomenon of the DSP that is considered in our analysis is 
PatientPrescription(). The DSP is a domain newly introduced during abuse frame 
composition. It can be any causal domain that exhibits the symbolic phenomena 
recognisable to an attacker. We assume that the DSP is an output device similar to a 
monitor. Its symbolic phenomena are caused by the event phenomena Signal, which 
are controlled by the NIM.  


