
T e c h n i c a l R e p o r t N o : 2 0 0 3 / 1 0

Analysing Security Threats and Vulnerabilities Using

Abuse Frames

L.Lin
B.A.Nuseibeh

D.C.Ince
M.Jackson
J.D.Moffett

October 2003

Department of Computing
Faculty of Mathematics and Computing
The Open University
Walton Hall,
Milton Keynes
MK7 6AA
United Kingdom

http://computing.open.ac.uk

l

 1

Analysing Security Threats and Vulnerabilities Using
Abuse Frames

L. Lin, B. Nuseibeh, D. C. Ince, M. Jackson, J. D. Moffett1

Department of Computing, The Open University, Walton Hall, Milton Keynes MK7 6AA
{L.C.Lin, B.A.Nuseibeh, D.C.Ince, M.Jackson}@open.ac.uk

1Department of Computer Science, University of York, Heslington, York Y010 5DD
jdm@cs.york.ac.uk

Abstract. In this paper, we present an approach using problem frames to
analyse security problems in order to determine security threats and
vulnerabilities. We use problem frames to capture and bound the base system
that is to be protected. We consider threats to this base problem frame from the
point of view of the attacker. For each class of threats, their successful
realisation is regarded as the anti-requirement in an abuse frame. Anti-
requirements are quantified existentially: that is, the attacker succeeds by
realising the threat in any one instance. For a threat to be realised, its abuse
frame must be composed with the base problem frame in the sense that the asset
attacked in the abuse frame must overlap, or be identified with, a domain of the
base problem frame. We explain the process of composition and some of its
variations. We illustrate and assess our approach using a case study of a
medical information system, and suggest how abuse frames can provide a
means for bounding the scope of and reasoning about security problems in
order to analyse security threats and identify vulnerabilities. We conclude with
an agenda for future work.

1 Introduction
The security engineering community has developed a variety of techniques for
managing and protecting computer-based information. These techniques focus
primarily on design and implementation issues, such as security mechanisms for
detecting attacks and countermeasures for reacting to security breaches. They also
focus on the notion of threats, driven by risk-analyses carried out at the later stages of
the development process life-cycle, but the results are often unsatisfactory [7, 9, 28].
This has limited the support for effective reasoning about security objectives during
the early stages of the development process.

To address these problems, the requirements engineering community [29] has
started to investigate systematic approaches to analysing security threats [3, 12, 13,
17, 21, 27, 34] and security requirements [4, 5, 13, 15, 24, 28]. However, current
techniques for analysing and reasoning about security requirements are still
preliminary [28, 30]. They often lack the explicit notion of a security threat posed by
malicious attackers. Without this, many security threats cannot be expressed
explicitly and security measures cannot be determined effectively. A well defined
system boundary enables systems engineers to focus on the characteristics of problem
domains and their interactions. Non-trivial security vulnerabilities can be uncovered
more easily and security threats reduced by selecting appropriate security measures.

 2

In this paper we present an approach using problem frames [19] to analyse
security threats and identify security vulnerabilities. Our approach introduces two
conceptual tools – anti-requirements and abuse frames – and deploys these
systematically to explore security problems in a medical information system. The
paper is structured as follows. The next section briefly introduces problem frames and
the relevant issues of security engineering and security requirements. Section 3
describes our approach, including patterns for different classes of security threats.
Section 4 describes a case study of a medical information system to illustrate and
assess our approach. Section 5 discusses related work, and section 6 concludes the
paper.

2. Background
2.1 Problem Frames

A problem frame defines an identifiable problem class in terms of its context and the
characteristics of its domains, interfaces, and requirements. Domain and interface
characteristics are based on an identification of phenomena—element of what can be
observed in the world. Phenomena may be individuals or relations. Individuals are
entities, events, or values. Relations are roles, states, or truths.

Domains can be one of three types – causal, lexical, or biddable [18, 19]. A
causal domain is one whose properties include predictable causal relationships among
its phenomena. A causal domain may control some, all, or none of the shared
phenomena at an interface with another domain. A biddable domain consists of
entities that lack positive predictable internal causality (e.g., people). A lexical
domain is a physical representation of data that is represented as symbolic phenomena
(e.g., data or information).

To illustrate the structure (the principal parts) of problem frames, consider a
simple patient record display system:
A patient record display system is required as part of the medical information system
for a hospital. Patient records are stored in a database, and the information of a
particular patient record is displayed on a screen upon the request of a clinician.

Based on this, a requirement (Req) may be identified: Information from a patient
record should be displayed correctly upon the request of a clinician.

Figure 1 overleaf is an information display problem frame diagram describing the
problem. In the figure, the plain rectangles represent problem domains, and the
connecting lines represent interfaces between them. A rectangle with two double
vertical stripes represents the machine to be developed. This machine is built in the
form of software and deployed by running the software on a general-purpose
computer. The dashed oval represents the requirement; Req in this example. The
dashed lines connecting the oval to a problem domain represent a requirement
reference; that is, the requirement refers to certain phenomena of the problem domain.

A dashed arrow denotes the requirement reference as a constraining reference –
meaning that the requirement stipulates some desired relationships or behaviour
involving the domain phenomena. A causal domain is indicated by a C in the bottom
right corner. The Clinician is biddable and is indicated by a B in the bottom right
corner, whereas the PR domain is a lexical domain and is indicated by an X.

 3

a: PR!{Char}
b: PRD!{Signal}
c: CL!{ViewRecordRequest()}
d: PR!{Prescribed(), PatientID()}
e: MON!{PatientPrescription()}

Figure 1: The problem frame diagram for a patient record display system
Interface phenomena are annotated to show the sets of shared phenomena between

two domains. For example, the shared phenomenon PR!{Char} represents the set of
characters that represents the symbolic states (Prescribed(), PatientID()) of the PR
and is accessible by the PR Displayer. The prefix PR! also shows that Char is
controlled by the PR; that is, the PR Displayer cannot cause Char to change.

To show that a problem can be solved, the systems engineer needs to derive a
specification of the machine and produce a correctness argument that fits
requirements, specification, and the problem world. The correctness argument should
show that, given the machine specification (S) and all possible behaviours in the
world (W), the requirement (R) is always satisfied. That is: S, W R. This relies on
the fact that the W is strictly bounded by the problem frame diagram. For Figure 1, a
correctness argument demonstrates that a Patient Record will be displayed correctly
on the Display as requested by the Clinician.

2.2 Security Engineering and Security Requirements

In traditional security engineering, a threat is the potential for abuse of assets, and is
characterised in terms of an attacker, a presumed attack method, any vulnerabilities
that are exploited by the attack, and the asset under attack. An attack is a sequence of
events resulting in a threatening phenomenon. An attacker is a malicious user, not
necessarily a human, causing an attack. A vulnerability is the condition of a system
exploited by an attacker to cause a security violation [11].

The security engineering community often partitions security for information
systems into three categories: confidentiality is the protection of information assets
against unauthorised access; integrity is the protection of assets from unauthorised
alteration and corruption, while availability is the prevention of unauthorised
degradation of the accessibility of assets.

Information security is achieved by introducing security measures that satisfy a
system’s security requirements. A security requirement—often a constraint on
functional requirement—ensures that a particular security violation cannot happen
[28]. In Figure 2, we represent a security requirement (SR) as a requirement in a
problem frame.

E3 identifies the potential shared phenomena between the Security Machine and an
Attacker. It can be regarded as the phenomena that describe the attacks from the
Attacker and the reactions from the Security Machine.

ReqPR Displayer
(PRD)

Monitor
(MON)

X

a

b

c

e

c

d
C

Machine
Specification

Problem World

Requirement

Patient Record
(PR)

Clinician
(CL)

B

 4

The Security Machine is the machine
to be built. The specification of the
Security Machine—E2 and E3—
represents the security measure to
counteract attacks from the Attacker.
E1 identifies the desirable phenomena
of the Asset that is under attack.

Figure 2: A security problem
frame diagram

The correctness argument of the security problem frame must show that, in the
presence of an attacker, the specification of the Security Machine satisfies the
security requirement. However, an immediate difficulty arises in that the frame
diagram in Figure 2 provides no explicit indication of the scope of the problem
domain, nor does it describe the underlying vulnerabilities to the threats imposed by
the attacker. Without these, a detailed specification of the Security Machine cannot be
determined. To address these issues, we need to describe the behaviours of attackers
and analyse security vulnerabilities in such a bounded scope.

3. Introducing Abuse Frames
In [12], we introduced the notion of anti-requirements (AR) to represent the
requirements of malicious attackers. Anti-requirements are expressed in terms of the
problem domain phenomena and are quantified existentially: an anti-requirement is
satisfied when the security threats imposed by the attacker are realised in any one
instance of the problem. In this paper, we incorporate anti-requirements into abuse
frames (Figure 3). The purpose of abuse frames is to represents security threats and to
facilitate the analysis of the conditions in the system in which a security violation
occurs. They allow the examination of a system’s vulnerabilities to different kinds of
security threats in a bounded context. Abuse frames share the same notation as the
normal problem frames, but each domain is now associated with a different meaning.

The Asset (AS) is the domain under
attack. The Malicious Machine (M/M)
domain acts as the interface between the
attacker and the Asset domain. Its
behaviour allows the attacker to achieve
the anti-requirement. The Attacker
domain represents the domain that is
imposing the threat.

Figure 3: A generic abuse frame diagram.

The shared phenomenon AS!E1 represents the undesirable phenomenon in the
victim domain as the result of an attack. It also shows that the phenomenon is
controlled by the Asset domain (prefix AS!). The M/M is an abstract machine that is
to be specified during abuse frame analysis. The M/M can be assigned to an existing
domain, or a domain that is introduced into the problem world in order to reflect that
an attacker can utilise the existing domains or other tools (e.g., a virus) that are not
originally in the problem world W.

A security vulnerability is identified as the conditions in the problem world that
combined with the Malicious Machine specification, will satisfy the anti-requirements.
Because anti-requirements are existentially quantified, this means that a vulnerability

SR

Attacker

Security
Machine

E3

Asset E2 E1

E3

AR

Attacker
(AT)

Malicious
Machine
 (M/M)

E3

Asset
(AS) E2 E1

E3

Problem World

M/M
Specification

Anti-
Requirement

 5

is an instance of the problem world that gives rise to an opportunity for attacks. To
show that a threat can be realised by the vulnerability, an abuse frame argument
(ABA) must be constructed to show that the malicious machine specification (MS),
with some behaviour in the problem world that satisfies the vulnerability conditions
(v(W)), will achieve the anti-requirement: MS, v(W) AR. The argument relies on
the fact that W is strictly bounded by the problem frame diagram; that is, any
phenomena that are not explicitly shown on the diagram are not within the scope of W
and, therefore, are not included in W. The vulnerability conditions v is expressed as
the relations between the domain phenomena in W.

3.2 Abuse Frame Classes

In problem frames each frame describes a particular problem class (e.g., Information
Display, Workpiece, and Required Behaviour frames). Similarly, abuse frames
describe classes of security violation and include: interception, modification, and
denial of access. Each represents a threat that can violate a particular security goal.

Interception, also known as information disclosure, arises whenever there is some
information asset in the physical world that an attacker wishes to obtain, thus
violating confidentiality. The abuse problem is to find a malicious machine that
allows the attacker to achieve this. Figure 4 shows a standard interception frame.

Figure 4: A standard interception abuse frame.

The Attacker domain is not shown in the frame diagram because we assume the
attacker has access to the Display domain.

Modification arises whenever there is an information asset in the physical world
that an attacker wishes to change. The problem is to find a modification machine that
allows an attacker to achieve it. Modification violates integrity. Figure 5 shows a
standard modification frame.

Figure 5: A standard modification abuse frame.

Denial of access arises whenever there is some information asset in the physical
world that an attacker wishes to make unavailable or unusable. Denial of access
violates availability. Figure 6 shows a standard denial of access frame.

InterceptionModification
M/M

Information
Asset
(IA)

 Attacker
(AT)

MM!E1

AT!E3

Y4

X

C

E3

IA!Y2

InterceptionInterception
M/M

Information
Asset
(IA)

Display
(DSP)

IA!Y1

IM!E2

Y3

X

C

Y4

 6

Figure 6: A standard denial of service abuse frame.

The classification of security problems in this way allows the exploration of the
correspondences between standard problem frames and abuse frames (e.g., Table 1).

Problem Frames Abuse Frames
Information Display Interception

Workpiece Modification
Required behaviour Denial of Access

Table 1: Some correspondences between problem frames and abuse frames.
Each row in the table suggests a correspondence between a problem class and an
abuse frame class, and each correspondence indicates that there is a direct mapping
between the principal parts of the corresponding frame diagrams.

3.3 Abuse Frame Analysis

The purpose of abuse frame analysis is to analyse the threats to a base problem,
which is the system to be protected and bounded by a problem frame, and to identify
security vulnerabilities. Threats imposed by an attacker are represented by an abuse
frame that captures the anti-requirement of an attacker. The abuse frame is then
composed with the base problem.

To show that a threat is realisable, an abuse frame argument is constructed
demonstrating the anti-requirement is satisfied by a sequence of interactions of
domain phenomena. The security vulnerability is then identified as the conditions on
the base problem that allow this sequence of interactions to take place.

3.3.1 Abuse Frame Composition

Abuse frames are composed with a base problem by mapping domains in an abuse
frame to those in the base problem. Composition may be of two forms. The first
applies when a base problem contains machine domains that can be abused directly
by an attacker, without the introduction of additional domains, i.e. the attacker
exploits the vulnerability that already exists in the base problem. This form of
composition requires a direct correspondence between the principal parts of the base
problem and those of the corresponding abuse frames. Table 1 suggests that the
principal parts of an Interception abuse frame and an information display problem
frame can be mapped directly. So the composition can proceed as follows:
 The Information Asset (IA) domain in the interception frame is mapped to the

monitored domain, whose phenomena are monitored and displayed in the
information display base problem.

 The Display (DSP) domain in the interception frame is mapped to the Display
domain that displays the phenomena of the monitored domain in the information
display base problem.

 The Malicious Machine in the Interception frame is mapped to the Information
Machine, which is the machine domain in the information display base problem.

Denial of Access
M/M

Denial of Access Asset
(AS)

DAM!C1 ¬ C3

AS!C2 C

 7

Any remaining unmapped domains in the base problem also remain in the composed
abuse frame. Figure 7 shows an example of the patient record display base problem
(Figure 1) composed with the interception frame (Figure 4). In this example, the IA in
the interception frame is mapped to the Patient Record (PR), which is the monitored
domain in the patient record display base problem. The DSP in the interception frame
is mapped to the Monitor (MON) domain, which is responsible for displaying the
information of the PR. The interception M/M maps to the machine domain, namely
PRD, in the base problem. The CL domain is unmapped in the base problem, and is
preserved in the composed abuse frame.

a: PR!{Char}
b: PRD!{Signal}
c: CL!{ViewRecordRequest()}
d: PR!{Prescribed(), PatientID()}
e: MON!{PatientPrescription()}

Figure 7: Composed interception abuse frame for a patient record display problem.
In the second form of composition, additional domains are introduced to perturb

the domain(s) in the base problem, i.e. the vulnerability in the base problem is
identified by extending the its scope to include new domains. A perturbation occurs
when a domain outside the scope of the base problem can establish some kind of
interface phenomena with a domain in the base problem. These interface phenomena
are shared between these two domains, and each phenomenon is controlled either by
the new domain or by the perturbed domain but not both. Each phenomenon may also
be related by casual properties, i.e. one phenomenon triggers the happening of
another.

A perturbation mapping needs to be identified before the composition can
proceed. It indicates the mapping from the Asset domain in an abuse frame to the
perturbed domain in the base problem. There are no fixed rules for deciding the
perturbation mapping for a composition⎯different perturbations must be explored.
However, a perturbed domain must be in the base problem and is mapped to the Asset
domain in an abuse frame. Also, only domains in the base problem can be perturbed;
interface phenomena (indicated by a line between domains) cannot be perturbed.

An example of perturbation is shown in Figure 8. Here, the PR is the domain
being perturbed, and it is mapped to the Information Asset in the interception frame.

Figure 8: Perturbing a patient record display problem frame with an interception frame.
Figure 9 shows the resulting composed abuse frame. The newly introduced domains
are the Interception M/M (IMM) and Display.

PR Displayer
M/M

Patient Record
(PR)

Monitor
(DSP)

X
C

B

Clinician
(CL)

Interception
M/M

Information
Asset
(IA)

Display
(DSP)

X

C

Interception
Frame

Information Display
base problem

Perturbation
mapping

Disclose
PR

Interception
M/M

Monitor
(MON)

X

a

b

c

e

c

d
C

Patient Record
(PR)

Clinician
(CL)

B

 8

a: PR!{Char}
b: PRD!{Signal}
c: CL!{ViewRecordRequest()}
d: IMM!{Signal}
e: PR!{Prescribed(),PatientID()}
f: DSP!{ PatientPrescription()}

Figure 9: Composition of an interception abuse frame with the patient record display
problem frame.

This form of composition extends the scope of the base problem by introducing new
domains that will participate in achieving the anti-requirement. The extended scope is
bounded by the problem context of the composed abuse frame, which is analysed to
reveal vulnerabilities to the threats imposed by the composed abuse frame.

The problem world W of the composed abuse frame is the union of the domains in
the base problem and the new non-machine domains introduced.

3.3.2 The Abuse Frame Argument

A composed abuse frame diagram needs to be realised in order to show that the anti-
requirement is satisfied. This is achieved by constructing an abuse frame argument
(ABA). The central task of constructing such an argument is to investigate and
describe the properties of the domains in the problem world and to derive the
Malicious Machine specification. The ABA must fit these descriptions together and
provide a sequence of interaction of domain phenomena as the evidence that the anti-
requirement can be satisfied.

For different classes of abuse frames, different descriptions of the properties of
the domains are needed. Using the composed interception frame in Figure 7 as an
example, the relevant descriptions are:

 Derive descriptions of the domains in the problem world. Because there is no non-
machine domain introduced, only the descriptions of the domains in the base
problem are needed.

- For the Information Asset, describe the relationship between Char and Prescribed(), and
the relationship between Char and PatientID(). They are the properties of the PR.

- For the Display domain, describe the relationship between Signal and
PatientPrescription(). It is the property of the MON.

- For the Clinician domain, describe the event phenomena generated by the domain. It is
the property of the CL.

 Derive the Malicious Machine specification. In Figure 7, the specification of the
IMM can be derived through the following steps:

- Use the property of the PR to determine the set of characters (Char) that resemble the
information Prescribed(), PatientID() as stated in the anti-requirement.

- Use the property of the MON to determine the Signal that is required to cause the
information PatientPrescription() , as stated in the anti-requirement, to be displayed.

- Derive the relationship between ViewRecordRequest(), Char, and Signal. This is the
specification of IMM.

PR
Displayer

(PRD)

Patient
Record
(PR)

Monitor
(Mon)

X

C

Display
(DSP)

C

Disclose
PR

Clinician
(Mon)

B

b

c a

Interception
M/M

a

e

f

d

C

 9

 The descriptions of IMM and W must be shown to satisfy the anti-requirement, by
constructing the ABA: IMM, CL, PR, MON AR.

Thus, the ABA for Figure 9 will show that PatientPrescription(), which is derived
from Prescribed() and PatientID() of the PR, will be disclosed if the CL issues the
request ViewRecordRequest(), because the Attacker has access to the
PatientPrescription() displayed on the MON. A more detailed account of an ABA is
provided in the case study in the next section.

If no ABA can be constructed successfully to demonstrate the satisfaction of an
anti-requirement, this indicates that the threats imposed by the abuse frame cannot be
realised within the bounded context.

3.3.3 Identification of Security Vulnerabilities

A security vulnerability is identified as the conditions that describe the participating
domains in the ABA, and their behaviour, that will satisfy the anti-requirement. We
use un to denote the condition on domain n for n to exhibit the behaviours described
in the ABA. un is expressed in terms of the phenomena of n. The vulnerability v in an
ABA is defined as the union of the conditions u on the participating domains. New
domains that are introduced to perturb the base problem during composition are
regarded as outside the scope of the base problem and are not included in v.

It is often helpful if the set of participating domains that are used to identify the
vulnerability is minimal. A set of domains is said to be minimal when the removal of
any domains from the set will result in the failure to construct the ABA (i.e. failing to
satisfy the anti-requirement). For example, the minimal set of participating domains
for the ABA for Figure 7 is the set {CL, PRD, PR, MON}. The condition on each
domain is denoted by uCL , uPRD, uPR, and uMON, respectively. uCL represents the
condition that the CL issues ViewRecordRequest(). uPR represents the condition that
the PR is non-empty, i.e. the PR contains some patient information. UMON represents
the condition that the attacker has access to the domain. No conditions are required on
the PRD (assuming perfect reliability of the PRD, MON, and PR), and therefore uPRD
always holds. The vulnerability condition v is therefore the set {uCL , uPR,, uPRD, uMON}.

The reason for representing vulnerability as a set of conditions on each
participating domain is to allow each participating domain to be treated individually
when the vulnerability is being addressed. Addressing vulnerabilities is done through
the addition of new security requirements (e.g., only allowing non-sensitive patient
information to be displayed on the Monitor) or the revision of existing requirements
(e.g., substituting the Monitor with an output device to which the attacker has no
access). In both cases, systems engineers need to show that the anti-requirement
cannot be satisfied in the context of the new system.

4 Case Study
This section illustrates and assesses our approach by using it to analyse part of a
medical information system (MIS). The case study is from the British Medical
Association policy model proposed in [2], and is an example of a real practical
system with important security requirements.

 10

One primary task of an MIS is to provide medical information to clinicians. The
medical records of each patient are stored as electronic clinical records in an
information system, and are only accessible to clinicians responsible for that patient.
Each patient is associated with an access control list (ACL), and the MIS must
prevent anyone not on the ACL from accessing the patient’s records in anyway. Only
a designated clinician can modify the ACL. Part of the case study concerned with the
display of patient records is shown in Figure 10 as an information display problem
frame.

a: PR!{MsgWrite()} b: NW!{header, content} c: PRD!{MsgWrite()}
d: PR!{PatientPrescription()} e: PR!{Prescribed(), PatientID()} f: PRD!{Signal}
g: CL!{ViewRecordRequest()} h: ACL!{AssignedTo()}

Figure 10: A display frame for displaying patient records in the MIS.
The PR is connected to the PRD through an internal network. The PR and PRD
communicate by sharing a network Message domain. To view the information of a
particular patient Pname (we assume each Pname is unique), the CL issues
ViewRecordRequest() command to the PRD, which then accesses the information
AssignedTo() of the ACL to verify whether the clinician is responsible for that patient.
The PRD also has direct access to the PR. The PRD causes the event phenomena
Signal to the Monitor to produce the required phenomena PatientPrescription().

The Message domain consists of two major parts: the header and content. The
header contains the identifications of the sender and receiver, and the content contains
the information to be transmitted. We use Msg(h, c) to denote a state that holds if and
only if h is the header, and c is the content of the message, and we use the notation
h.sender to identify the sender (e.g., h.sender = PRD), and h.receiver to identify the
receiver.

4.1 Abuse Frame Analysis

Suppose an attacker wishes to intercept the network messages to disclose information
of the patient record that is transmitted through the network. We call this anti-
requirement “Network Interception”, which stipulates that the information
PatientPrescription() shall be obtained from the network messages between the PR
and the PRD and present them on an output device. This threat is represented in an
interception abuse frame (Figure 4). The composed abuse frame diagram of Figure 4
and 10 is shown in Figure 11.

Message
(NW)

X

Patient Record
(PR)

C

Display Patient
Records

a

e

PR Displayer
(PRD)

C

Monitor
(MON)

Clinician
(CL)

C

ACL

X

c

f

g

h b

b

d

C

 11

a: PR!{MsgWrite()} d: PR!{PatientPrescription()} g: CL!{ViewRecordRequest()}
b: NW!{header, content} e: PR!{Prescribed(), PatientID()} h: NIM!{Signal}
c: PRD!{MsgWrite()} f: PRD!{Signal} i: ACL!{AssignedTo()}

 Figure 11: Abuse frame for network interception
The PR is represented as a causal domain, as it generates network messages to be
transmitted to the PRD. The newly introduced domains in the composed abuse frame
diagram are the Network Interception Machine (NIM) and the Display. The perturbed
domain is the Message domain, with which the NIM shares the symbolic states
header and content, which are controlled by the Message domain.

4.2 The Abuse Frame Argument

To construct the ABA, we need to describe the properties of the domains in the base
problem (NW, PR, ACL, PRD, CL), the newly introduced domain (DSP), and the
malicious machine (NIM). We then develop the ABA from which vulnerabilities are
identified. Due to page constraints, domain descriptions are presented in the appendix.

4.2.1 Specification of NIM

We assume that the NIM has a simple built-in local memory to store temporary
symbolic phenomenon. (i.e. temporary data). The specification of the NIM is
developed by iterating through the following four steps.
1. Recognise the header h and content c for each message Msg(h, c). Examine h to identify the

sender and receiver.
2. If h.sender = PR and h.receiver = PRD, the NIM examines the content c to retrieve the

information, which is either Prescribed(P_ID, med) or PatientID(P_ID, Pname).
3. If c = Prescribed(P_ID, med), the NIM accesses PatientID(P_ID, Pname) in its local memory,

and derive PatientPrescription(Pname, med), using the property of the PR.
If c = PatientID(P_ID, Pname), the NIM stores PatientID(P_ID, Pname) in local memory and
return to 1.

4. The NIM generates Signal to display the derived information PatientPrescription(Pname, med)
on the DSP.

4.3 The Abuse Frame Argument

In the following ABA, we use PR_PRD to represent the header of the message that is
transmitted from the PR to the PRD, and we use PRD_PR to represent the header of
the message that is transmitted from the PRD to the PR. The underlined descriptions
describe the behaviours of the newly introduced domains (NIM, DSP).

Messages
(NW)

X

b

b

Patient Record
(PR)

Network
Interception

Machine

Display
(DSP)

C

Network
Interception

h

d

a

e

PR Displayer
(PRD)

C

Monitor
(MON)

C

Clinician
(CL)

C

ACL

X

c

f

g

i b

b

C

 12

1. Once the CL imitates the event ViewRecordRequest(Pname, C_ID), the PRD produces a
network message Msg(PRD_PR, c1), where c1 = QueryID(Pname).

2. Once received the query from the PPD, the PR produces a network message Msg(PR_PRD,
c2), where c2 = PatientID(P_ID, Pname).

3. The NIM intercepts the network message and interprets c2 to obtain PatientID(P_ID, Pname).
4. The PRD verifies whether the state AssignedTo(P_ID, C_ID) holds in the ACL.
5. If the state AssignedTo(P_ID, C_ID) holds in the ACL, the PRD produces a network message

Msg(PRD_PR, c3), where c3 = QueryP(P_ID).
6. Once received the query from the PPD, the PR produces a network message Msg(PR_PRD,

c4), where c4 = PatientP(P_ID, med).
7. The NIM intercepts the network message and interprets c4 to obtain PatientP(P_ID, med).
8. The NIM derives PatientPrescription(Pname, med) from PatientP(P_ID, med) and

PatientID(P_ID, Pname).
9. The NIM sends Signal events to the DSP according to the information derived, and the DSP

shows the information of the patient record that is transmitted through the network.

Thus, we have shown that the anti-requirement Network Interception is satisfied, and
a security vulnerability exists.

4.4 Identification of Security Vulnerability

For the above ABA, the minimal set of participating domains after removing the new
domains introduced (NIM and DSP) is {PR, NW, PRD, CL, ACL}. The condition on
each domain is listed as the follows:

uPR : the PR contains patient information.
uNW : the symbolic state Msg(header, content) of NW is accessible to and

interpretable by the NIM.
uCL : the CL causes the event ViewRecordRequest(Pname, C_ID).
uACL: the state AssingedTo(P_ID, C_ID) holds, i.e. the Clinician C_ID is

responsible for the patient P_ID.
The vulnerability v for the ABA is {uPR , uNW, uCL , uACL}. Informally, v states that a
vulnerability exists because the NIM has access to network messages and is able to
interpret the messages transmitted through network, and that the patient information
is transmitted across this network.

After the security vulnerability is identified, the properties of each participating
domain in v should be investigated to determine the appropriate treatment to address
the vulnerability. This is beyond the scope of this paper.

5 Related Work
van Lamsweerde suggests that threats can be treated as obstacles to goals [23]. An
obstacle defines a set of undesired behaviours that violate a positive goal. However,
this implies a particular boundary of security attacks, and may cause some wider
security threats to be overlooked. In [24], the notion of anti-goals is introduced. This
is similar in spirit to our notion of anti-requirements, but anti-goals are still derived
from the traditional security objectives, whereas anti-requirements exist as long as
there are users of the envisaged system whose requirements conflict with a system’s
requirements, and may potentially abuse the system.

 13

The i* framework [26] takes an organisational view by modelling trustworthiness
as softgoals to be satisfied . Attacks by malicious users are modelled as negative
contributions that obstruct these softgoals. i* has also been applied to assess the
criticality and complexity of actors to model security vulnerabilities in a multi-agent
system [8]. However, i* focuses on analysis of security threats imposed by internal
actors at the organisational level, whereas our approach complements this by
analysing both internal and external threats in software systems problem domains.

The GBRAM framework comprises a set of techniques for extracting high level
goals from various data sources and subsequently refining them into detailed
requirements specifications based on a set heuristics and guidelines [6]. Chung [9, 10],
treats security requirements as softgoals, that are identified and refined based on a
knowledge catalogue of decomposition methods, security techniques for satisficing
softgoals, and correlation rules. Both approaches focus on the elicitation process of
high level security goals, which, again we regard as complementary to our approach.

Attack trees [31], adopt a goal-oriented approach to refining a root goal into a goal
tree to derive scenarios. They are applied late in the design phase when a mature
system design is available, and the construction of an attack tree usually requires
extensive knowledge in security analysis. Similarly, software fault trees [17] allow
systematic analysis of security attacks, but they are best suited to design.

Misuse cases [1, 33] and abuse cases [27] have been suggested as tools for threat
analysis. However, we argue that these typically represent instances of attacks that are
often described in the language of implementation. Abuse frames on the other hand,
treat the solution domain as a black box and focus on the problem domain.

Research on reusable patterns for security analysis has also received attention
recently. At the enterprise level, Kis proposes using anti-patterns [21] as patterns of
vulnerabilities for enterprise-wise security requirements analysis. This is analogous to
abuse frames, but our focus is on software system issues rather than business issues.
Sindre et al. propose using reuse cases [35] for security analysis. A reuse is a pair of
generic misuse and use cases. Application-specific misuse and uses cases are derived
by applying the pair to the context of an envisaged system. However, as with misuse
and abuse cases, reuse cases are most suited at the design level.

Firesmith also suggests specifying security requirements from reusable templates
of commonly identified security requirements [14]. Our approach focuses on
analysing threats and identifying security vulnerabilities, and is complementary to this
approach.

Security patterns such as [22] and [32] are variants of design patterns for
specifying security measures. Each design pattern addresses a particular category of
security concerns. Design patterns are generally used after security requirements
analysis, whereas our work specifically focuses on identifying security threats and
vulnerabilities during the requirements analysis.

SCR has been applied to develop a formal specification of a communication
security device [20] and a user authentication system [16]. The specification describes
normal behaviour of the device plus the actions that should be taken in response to an
undesired event, such as equipment failures or physical tampering. However, our
work focuses on the notion of malicious attackers, which is not addressed explicitly
by SCR.

 14

Finally, hazard analysis techniques from the safety engineering literature [25]
share with security engineering the need to analyse undesirable phenomena. However,
the introduction of users with malicious intent into security engineering means that
scope of problems is harder to bound.

6 Discussion and Conclusions
We have presented a requirements-based approach for analysing security problems.
We introduced anti-requirements and abuse frames, and shown how their integration
into requirements analysis enables the explicit representation of security threats and
facilitates early discovery of potential security vulnerabilities. Our approach provides
a means of early structuring and bounding the scope of security problems when the
requirements of the envisaged system are being elaborated and only partial
information is available. We demonstrated this in the case study by structuring part of
an MIS system using problems frames, and then composing these with abuse frames.

An important benefit of our approach is the discovery of some security
vulnerabilities and requirements, though not all. Abuse frames are not a substitute for
other traditional security engineering techniques. We have found them to be useful in
complementing such techniques when deployed during requirements analysis. We
have also noted that even though our analysis is currently informal, it is nevertheless
systematic and repeatable. We are currently conducting a larger case study to explore
a number of open issues. In particular, we are examining a more rigorous and
systematic approach to constructing and expressing ABAs that lie at the heart of
identifying vulnerabilities. We are also examining ways of deriving and revising
security requirements once vulnerabilities have been identified. Preliminary
investigations suggest that trust assumptions about domains in the problem context
play a significant part in both identifying vulnerabilities and corresponding security
requirements [15].

Acknowledgements
The financial support of Leverhulme Trust is gratefully acknowledged. We are also grateful to
Charles Haley, Axel van Lamsweerde, and Nabukazu Yoshioka for their comments and
insights.

References
1. I.F. Alexander, "Misuse cases: use cases with hostile intent", IEEE Software, 2003, 20(1):

58-66.
2. R. Anderson, "A Security Policy Model for Clinical Information Systems", Proceeding of

IEEE Symposium on Security and Privacy, USA, 6-8 May 1996.
3. R. Anderson, "How to Cheat at the Lottery", invited talk at the 12th Annual Computer

Security Applications Conference, USA, 9-13 Dec 1999.
4. A.I. Anton and J.B. Earp, "Strategies for Developing Policies and Requirements for Secure

E-Commerce Systems", 1st ACM Workshop on Security and Privacy in E-Commerce (CCS
2000), Greece, 1-4 Nov 2000.

5. A.I. Anton, J.B. Earp and T.A. Alspaugh, "The Role of Policy and Privacy Values in
Requirements Engineering", IEEE 5th International Symposium on Requirements
Engineering (RE'01), Canada, 27-31 Aug 2001.

 15

6. A.I. Anton, J.B. Earp and A. Reese, "Analyzing Web Site Privacy Requirements Using a
Privacy Goal Taxonomy", IEEE Joint Requirements Engineering Conference (RE'02),
Germany, 9-13 Sep 2002.

7. R. Baskerville, "Information Systems Security Design methods: Implications for
Information Systems Development", ACM Computing Surveys, 1993, 25(4): 375-414.

8. P. Bresciani, P. Giorgini and H. Mouratidis, "On Security Requirements Analysis for
Multi-Agent Systems", Proceedings of 2nd International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems SELMAS 2003 in conjunction with the
25th International Conference on Software Engineering (ICSE 2003), USA, May 3-4, 2003.

9. L. Chung, "Dealing with Security Requirements During the Development of Information
Systems", 5th Int. Conf. Advanced Information Systems Engineering (CAiSE'93), 1993.

10. L. Chung, B. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in Software
Engineering, Kluwer, 2000.

11. Common Criteria for Information Technology Security Evaluation, Version 2.1, August,
1999. http://www.commoncriteria.org

12. R. Crook, D. Ince, L. Lin and B. Nuseibeh, "Security Requirements Engineering: When
Anti-requirements Hit the Fan", Proceeding of the 10th Requirements Engineering
Conference (RE'02), Germany, 9-13 Sep 2002.

13. D. Firesmith, "Engineering Security Requirements", Journal of Object Technology, 2003,
2(1).

14. D.G. Firesmith, "Analyzing and Specifying Reusable Security Requirements", RE'03
International Workshop on Requirements for High Assurance Systems, USA, 9 Sep 2003.

15. C. Haley, R. Laney, B. Nuseibeh and J.D. Moffett, "Using Trust Assumptions in Security
Requirements Engineering", Second Internal iTrust Workshop On Trust Management In
Dynamic Open Systems, Imperial College, London, 15-17 Sept. 2003.

16. C. Heitmeyer, "Applying 'Practical' Formal Methods to the Specification and Analysis of
Security Properties", Proceeding of Information Assurance in Computer Networks (MMM-
ACNS 2001), Russia, 21-23 May 2001.

17. G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller and R. Lutz, "A Software Fault
Tree Approach to Requirements Analysis of an Intrusion Detection System", Requirements
Engineering Journal, 2002, 7(4): 207-220.

18. M. Jackson, "Domain Descriptions", in Proceedings of the IEEE International Symposium
on Requirements Engineering, 1993.

19. M. Jackson, Problem Frames: Analysing and structuring software development problems,
Addison Wesley, 2001.

20. J. Kirby, M. Archer and C. Heitmeyer, "SCR: A Practical Approach to Building a High
Assurance COMSEC System", Proceedings of 15th Annual Computer Security
Applications Conference (ACSAC '99), Dec 1999.

21. M. Kis, "Information Security Antipatterns in Software Requirements Engineering", 9th
Conference on Pattern Language of Programs 2002, USA, 8-12 Sep 2002.

22. S. Konrad, B.H.C. Cheng, L.A. Campbell and R. Wassermann, "Using Security Patterns to
Model and Analyze Security Requirements", RE'03 International Workshop on
Requirements for High Assurance Systems, USA, 9 Sep 2003.

23. A.van. Lamsweerde and E. Letier, "Handling Obstacles in Goal-Oriented Requirements
Engineering", IEEE Transactions on Software Engineering, Special Issue on Exception
Handling, 2000, 26(10): 978-1005.

24. A.van. Lamsweerde, S. Brohez, R.D. Landtsheer and D. Janssens, "From System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements
Engineering", RHAS-03 Workshop, RE'03, USA, 9 Sep 2003.

25. N. Leveson, Safeware: System Safety and Computers, Addison Wesley, 1995.
26. L. Liu, E. Yu and J. Mylopoulos, "Security and Privacy Requirements Analysis within a

Social Setting", International Conference on Requirements Engineering (RE03), USA, 8-
12 Sep 2003.

 16

27. J. McDermott and C. Fox, "Using Abuse Case Models for Security Requirements Analysis",
Annual Computer Security Applications Conference, USA, 6-10 Dec 1999.

28. J. Moffett and B. Nuseibeh, "A Framework For Security Requirements Engineering",
Department of Computer Science, YCS368. University of York, UK, 2003.

29. B. Nuseibeh and S. Easterbrook, "Requirements Engineering: A Roadmap", Proceedings of
International Conference on Software Engineering (ICSE-2000), Ireland, 4-11 Jun 2000.

30. J. Rushby, "Security Requirements Specifications: How and What?" Invited paper
presented at Symposium on Requirements Engineering for Information Security (SREIS),
USA, Mar 2001.

31. B. Schneier, Secrets & Lies: Digital Security in a Networked World, Wiley, 2000.
32. M. Schumacher and U. Roedig, "Security Engineering with Patterns", 9th Conference on

Pattern Language of Programs 2002, USA, 8-12 Sep 2002.
33. G. Sindre and A.L. Opdahl, "Eliciting Security Requirements by Misuse Cases", 37th

International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS-PACIFIC 2000), 2000.

34. G. Sindre and A.L. Opdahl, "Templates for misuse case description", In Proceedings of
Seventh International Workshop on Requirements Engineering: Foundation of Software
Quality (REFSQ'2001),, Switzerland, 4-5 Jun 2001.

35. G. Sindre, D.G. Firesmith and A.L. Opdahl, "A Reuse-Based Approach to Determining
Security Requirements", In Proc. 9th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ'03), Austria, 16-17 Jun 2003.

Appendix
This appendix supplements the case study section by providing the descriptions of the
domain properties in the base problem frame (Figure 10) and of the Display domain,
which is introduced in the composed abuse frame (Figure 11).

1. Description of Message
A message comprises of two parts: header and content. We use Msg(h, c) to denote a
state that holds if and only if h is the header, and c is the content of the message. The
header provides the identification of the sender (represented by h.sender) and receiver
(represented by h.receiver). For messages transmitted from the PRD to the PR,
content c comprises either QuaryID(Pname) or QueryP(P_ID). For messages
transmitted from the PR and PRD, the content c comprises one of the symbolic
phenomena PatientID(P_ID, Pname) and Prescribed(P_ID, medication).

We use PR_PRD to represent the header of the message that is transmitted from
the PR to the PRD, and we use PRD_PR to represent the header of the message that is
transmitted from the PRD to the PR.

2. Description of Patient Record
The symbolic states of the PR represent patient information. The PR has any number
of named patients and any number of prescriptions. Each patient may be prescribed to
any number of prescriptions. The resulting symbolic states of PR are therefore:

Prescribed(P_ID, medication): a state that holds if and only if the patient, who is identified by
P_ID, has prescribed to the medication.

PatientID(P_ID, Pname): a state that holds if and only if the patient of the name Pname is
identified by P_ID.

 17

PatientPrescription(Pname, medication): a state which holds if and only if the patient Pname
has the prescription medication.

The three phenomena are related by the relation:
Prescribed(P_ID, medication), PatientID(P_ID, Pname)

PatientPrescription(Pname, medication)

To communicate with the PRD, the PR controls the event phenomena
MsgWrite(msg_part, S). This is an event in which the PR writes the symbolic
phenomenon S to the message part (header or content). The PR recognises two kinds
of query commands from the PRD: QueryP(P_ID) and QuaryID(Pname). The former
queries the prescriptions of the patient identified by P_ID, and the latter queries the
P_ID of the patient Pname. The PR reacts in response to the queries received from
the PRD. That is, for any message Msg(h, c) received from the PRD, the PR creates
the message Msg(r_h, r_c) such that:

 if c == QueryID(Pname), then MsgWrite(PR_PRD, PatientID(P_ID, Pname)).
 if c == QueryP(P_ID), then MsgWrite(PR_PRD, PatientP(P_ID, medication)).

3. Description of ACL
The ACL has any number of named patients and any number of prescriptions. Each
patient is assigned to any number of clinicians. The symbolic state AssignedTo(P_ID,
C_ID) of the ACL indicates a state that holds if and only if the Clinician identified by
C_ID is responsible for the patient identified by P_ID. The phenomenon is controlled
by the ACL, and is shared with the PRD.

4. Description of Clinician and Patient Record Displayer
The PRD controls the event phenomena MsgWrite() and Signal. It shares the event
ViewRecordRequest(Pname, C_ID) with the Clincian. C_ID identifies the Clinician
making the request, and Pname is the patient whose record is displayed. The
behaviour of the PRD is described by iterating through the following steps:
1. Once the CL initiates the event ViewRecordRequest(Pname, C_ID), the PRD produces a

network message Msg(PRD_PR, c1), where c1 = QueryID(Pname).
2. The PRD receives the message Msg(PR_PRD, c2), where c2 = PatientID(P_ID, Pname). The

PRD accesses the ACL to verify whether the state AssignedTo(P_ID, C_ID) holds in the ACL.
3. If the state AssignedTo(P_ID, C_ID) holds in the ACL, the PRD produces a network message

Msg(PRD_PR, c3), where c3 = QueryP(P_ID). Return to 1 otherwise.
4. The PRD receives the message Msg(PR_PRD, c4), where c4 = PatientP(P_ID, med). The

PRD derives PatientPrescription(Pname, med), using the property of the PR.
5. PRD sends Signal events to the MON according to PatientPrescription(Pname, med).

5. Description of Display
The only phenomenon of the DSP that is considered in our analysis is
PatientPrescription(). The DSP is a domain newly introduced during abuse frame
composition. It can be any causal domain that exhibits the symbolic phenomena
recognisable to an attacker. We assume that the DSP is an output device similar to a
monitor. Its symbolic phenomena are caused by the event phenomena Signal, which
are controlled by the NIM.

