
A Discipline of Description
(Keynote Talk)

M. A. Jackson

Independent Consultant
101 Hamilton Terrace, London, England, jacksonma@acm.org

Abstract

Software engineers, and especially requirements engineers, are vitally concerned with describing the world.
Description merits recognition as a discipline in its own right. In this talk some aspects of this putative discipline are
briefly explored.

1 Introduction

Software engineering problems are problems of
constructing machines to serve useful purposes in the
world. The product of successful software development is
a machine that interacts with its human users and with
other parts of the world. The machine is physically
embodied in a general-purpose computer built by
hardware engineers; but the software describes the
particular machine needed for the purpose in hand, and
transforms the computer into that machine.

The general form of the software engineering problem is
presented in [Jackson 95] and shown in Figure 1.

The striped rectangle represents the physical machine we
must build by specialising a general-purpose computer.
The plain rectangle represents the part of the world that
interacts with the machine. The solid line connecting the
two rectangles represents an interface of shared
phenomena — for example, shared events and shared
state. The dotted ellipse represents the intangible
requirement, the dotted arrow indicating that the
requirement is a description over the phenomena of the
world. The task of the software engineer is to construct a
machine such that its interactions with the world will
ensure satisfaction of the requirement.

Although the end product is a description of the
machine, a successful result can rarely be achieved by
describing the machine alone. In general we need to
make at least the following descriptions:

• The requirement R  is an explicit description of the
behaviour and properties that we want the world to
have as a result of its interaction with the machine.
R  is a description in the optative mood — that is, it
expresses what we would like to be true. It is a
description over the phenomena of the world that are
of interest to the customer of the development: it
captures the purpose for which the machine is to be
built and installed. In general, the requirement is not

concerned primarily with phenomena at the
interface between the machine and the world: the
customer is usually interested in effects that are felt
some distance from the machine.

• The unconditional behaviour and properties of the
world that do not depend on the machine are
expressed in a world description W. W  is an
indicative description — that is, it expresses what is
true of the world regardless of its interaction with
the machine. It is a description over any phenomena
of the world whose relationships are significant for
the purpose in hand; in particular, it is not restricted
to phenomena shared with the machine.

• The specification S  describes the behaviour and
properties that we want the machine to have at its
interface with the world. S  is an optative
description. It is a description over the shared
phenomena at the interface, consistent with the
properties of the world and satisfiable by appropriate
action of the machine.

• The program P  describes the behaviour and
properties that we want the machine to have,
without restriction to its interface with the world.
Again, P  is an optative description. It is a
description of the phenomena of the machine,
including those private machine phenomena that are
in the scope of the programming language but not
externally observable.

These descriptions constitute a complete statement of the
original problem. To demonstrate that it has been solved,
we must have

S  ∧ W  → R

That is: if the machine achieves the behaviour S  at its
interface with the world and the properties of the world
are as described by W, then the requirement R  will be
satisfied. Also, we must be able to construct a program P
such that the machine can execute P  and, by doing so,
will guarantee to ensure satisfaction of the specification
S.   

Thus we show that execution of the program P will
ensure the behaviour S at the machine’s interface with
the world, and the properties of the world described inW
will ensure satisfaction of the requirement R.

The
World

The
Machine

The
Requirement

Figure 1
The General SE Problem

Proceedings of CEIRE98, Special Issue of Requirements Engineering Volume 3 Number 2, pages 73-78, 1998.



2 The Formal and the Informal

In any system of this kind it is important to recognise
that the machine is completely formal, while the world is
almost invariably mostly informal. The machine has
been carefully constructed so that its fundamentally
informal physical nature has been tamed and brought
under control. The hardware engineers have succeeded
in using continuously varying voltages to achieve
entirely reliable representions of binary storage states
and entirely reliable logic gate devices. This achievement
allows the computer and its programs to become fully
formal. That is, they can be completely and precisely
described by formal finite descriptions. We can then
reason formally about the computer and its behaviour,
and rely on the conclusions of that reasoning.

This is why some eminent computer scientists very
properly wish to treat programming in a fully formal
way. The programmer’s main task is to create a program
— a formal description in a mathematically sound
language — and to demonstrate formally that it meets its
formal specification [Dijkstra 89].

However, programming is only a part of software
development. Developing requirements and
specifications is a larger part, and arguably more crucial.
These tasks are concerned with the informal real world,
in which it is impossible to give a complete and fully
formal description of the purpose to be served and to
demonstrate formally that a proposed specification will
ensure satisfaction of that purpose. It is, however, the
task of the requirements engineer to give a sufficiently
formal description, and a sufficiently convincing
demonstration. Description technique is concerned with
finding ways to make that task feasible in the particular
context of each particular development. Inevitably, this
means paying serious attention to the world we are
describing, and exerting ourselves to ensure that our
descriptions — which are necessarily only
approximations — are accurate enough for the purpose
in hand.

3 Designations

Designations are a vital tool in describing an informal
reality. A designation has two parts: a formal term —
such as a predicate symbol and the appropriate number
of dummy arguments — and a recognition rule
explaining how to recognise some class of phenomena in
the reality to be described. For example, in the
designation:

mother(m,p) Â m is the genetic mother of p

“mother(m,p)” is the formal term and “m is the genetic
mother of p” is the recognition rule.

The purpose of a designation is twofold. First, writing
designations forces us to decide which phenomena our
descriptions will be about. That is, we are forced to
decide where we will ground our descriptions in reality.
Second, it ties the formal terms we will use to denote
those phenomena to a recognition rule that allows us to
cash our descriptions in real world observations. A
properly written designation precludes the rejoinder to
any description “Well, it all depends on what you mean
by mother.” In short, it forces us to know what we are
talking about.

In general, we have some choice in selecting phenomena
to designate. The situation is similar to the situation that

confronts anyone who gives directions to a stranger. We
do not say “carry on this road for a while, then bear
round towards the more attractive side, and continue
until the scenery becomes fuller.” We know that the
unfortunate stranger will be quite unable to recognise the
distance ‘for a while’, will not know which way to ‘bear
round’, and will be unable to recognise either the ‘more
attractive side’ or the ‘fuller scenery’. So instead we say
“continue to the second traffic lights and turn left there;
then turn right at the second roundabout.” Traffic lights
and roundabouts are more easily recognised. If we are
conscientious we will take some thought to check that
the particular traffic lights and roundabouts we mean to
refer to will not cause difficulty by proving hard to
recognise — that the lights are not pedestrian crossing
lights and the roundabouts are not mini-roundabouts or
double roundabouts.

The need to choose reliably recognisable phenomena is
particularly acute when the application domain has an
established but unsatisfactory terminology. Notable
examples are ‘call’ in telephony and ‘flight’ in airline
operations. The notion of a ‘call’ originated in the
earliest days of telephony, when only POTS — Plain Old
Telephone  Service — was available. A call begins when
the caller lifts the phone and ends either when the callee
proves to be unavailable or when the caller and callee,
having been successfully connected, complete their
conversation and put their phones down. But with the
introduction of a 3-way calling feature the notion breaks
down. Subscriber A calls B, puts B on hold, and calls C.
Then A joins the two calls in a conference, and all three
parties can converse together. Later A puts the phone
down, leaving B and C talking. How many calls is this?

Unsatisfactory terminology can survive in systems that
are partly manual, because human discretion and
initiative can handle the anomalies that arise. In a more
fully automated system the formal nature of the computer
and its software preclude discretion and initiative: the
finite software description strictly bounds the possible
behaviours of the machine. This does not, of course,
mean that the software developers have foreseen
everything that can happen. On the contrary, developers
are often surprised by the behaviour of their programs.
But those programs, however ill understood by their
users and creators, entirely lack the human ability to
respond to new situations in new ways. The requirements
engineer, then, must ensure that the system will not be
surprised by the world.

4 Definitions

Designations are used to capture and name relevant
phenomena of the world. For convenience in description
it is usually necessary to extend the terminology by
defining new terms on the basis of designated or
previously defined terms. For example, having
designated mother(m,p), father(f,p) and male(p), we can
define sibling:

    sibling(p,q) Ò
        ∃ m,f • mother(m,p) ∧ mother(m,q) ∧
                    father(f,p) ∧ father(f,q)

and brother:

    brother(p,q) Ò male(p) ∧ sibling(p,q)

The essential foundation for definition is to distinguish it
from assertion. If we read in a description “StockCount =
cumulative total of item quantities in Issue and Receipt
events”, we must be able to distinguish two entirely



different meanings. In the first, the statement is an
assertion that nothing irregular happens in the
warehouse: there is no theft or evaporation, and no
spontaneous creation of items. For this meaning there
must be three designations:

   Receipt(e,q,t) Â in event e, q items
                                              are received at time t

   Issue(e,q,t) Â in event e, q items are issued at time t

   StockCount(q,t) Â q items are in the
                                              warehouse bin at time t

and the assertion is that for any observation
StockCount(q,t) the value of q is equal to the total of
quantities q in all Receipt and Issue events occurring
before t. This is an empirical statement about the world,
falsifiable by observing a counterexample.

In the second meaning, the statement is a definition of
the new term StockCount. There are only two
designations:

   Receipt(e,q,t) Â in event e, q items
                                              are received at time t

   Issue(e,q,t) Â in event e, q items are issued at time t

The two designations are used to define the new term:

   StockCount(q1,t1)  Ò q1 =
     (Σ e,q,t | t < t1 ∧ (Receipt(e,q,t) ∨ Issue(e,q,t)) • q)

The definition says nothing about the world. It only says
how the term StockCount(q,t) will be used and
understood.

Definitions can be used to extract and rebuild useful
meanings of unsatisfactory domain terminology. They
also allow descriptions to be grounded in the world by
the smallest possible number of designations. The bridge
between the world and our descriptions of it becomes
much more manageable because it is both precise and
economical.

5 Description Structures

Usually the world and the problem requirement are too
complex to be treated as single wholes. We must
decompose the world into domains. In the notation of
Figure 1, a decomposition of the world into three
domains gives the configuration shown in Figure 2:

As in Figure 1, the solid lines connecting the machine M
to the world denoted interfaces of shared phenomena.
The diagram shows that no phenomena of interest are
shared between the domains WA, WB and WC into
which the world has been decomposed. In Figure 2 the

world is decomposed, but the requirement R is not. The
problem is still being regarded as a whole, although the
world it concerns is structured into the three domains
WA, WB and WC. Decomposition of the problem
requirement is represented in a diagram such as Figure
3:

Here the requirement R has been decomposed into two
requirements R1 and R2, each corresponding to a
recognised subproblem. The domain WB appears in both
subproblems, but not all of its phenomena are relevant to
both. The two projections WB1 and WB2 represent the
two partial views of WB that are appropriate to each
subproblem [Jackson 95, Jackson 96].

In some problem classes it is necessary to introduce a
new domain into the problem that was not present in the
original formulation. Since we are concerned with
software engineering and not with physical systems
engineering, the new domain will always be a part of the
machine we are building, and will be constructed in
software. One very common example of such a new
domain is a model of a part of the given world. To
provide information about phenomena that are in the
past at the time when the information is produced, or are
otherwise inaccessible [Balzer 82], it is often appropriate
that the machine should create, maintain and use an
analogic model of a given domain. Figure 4 shows such a
problem structure.

The problem is to provide a display (WC) in a hotel
lobby of the current positions of the lifts and the
currently outstanding requests for service at the different
floors (WA). To solve this problem it is necessary to
introduce a model  (WB) of the lifts. The original

Figure 2
Decomposing the World into Three Domains

M RWB

WA

WC

Figure 3
Decomposing the Requirement

M1 R1WB1

WA

M2 R2WB2

WC

Figure 4
Introducing a Model Domain

R1M1

M2 R2

Lift Model (WB1)

Lift Car &c (WA)

Lift Model (WB2)

Display (WC)



problem is decomposed into two subproblems: the
subproblem requirement R1 is to create and maintain the
model, while the subproblem requirement R2 is to use
the model to maintain the lobby display. As in Figure 3,
the model has different projections in the two
subproblems. The projection WB1 is concerned only with
the creation and maintenance of the model; the
projection WB2 is concerned only with its use to
maintain the lobby display.

6 Models

It is a great misfortune in software development that the
word ‘model’ has become so devalued. In common usage
it means no more than ‘description’. But in the problem
decomposition of Figure 4 the model domain WB is not a
description: it is an analogic model in which each
relevant phenomenon of the modelled reality WA has a
corresponding model phenomenon in WB. Because
models are often used in solving software engineering
problems, this analogical relationship, and its
implications for description, are of great importance.

We may illustrate the point by a simpler example.
Suppose that we need to have a model of nineteenth-
century English novels. Our model, as often, will take
the form of a database. Our view of the world is that each
novel has a unique author; we will represent the novels
and authors by N-records and A-records respectively,
and authorship by a pointer from an N-record to an A-
record.

The essence of the analogical relationship is that one
description is true both of the reality and of the model. In
predicate logic this description is:

∀ x : N(x) • ∃! y : A(y) • P(x,y)

That is: for any x of which N(x) is true, there is a unique
y of which A(y) is true such that P(x,y) is true. To
interpret this description we must apply the appropriate
sets of designations: one for the real world of authors and
novels, and one for the database domain of records and
pointers.

For the real world:

   N(x) Â x is a novel

   A(x) Â x is an author

   P(x,y) Â x is produced by y

and for the database domain:

   N(x) Â x is an N-record

   A(x) Â x is an A-record

   P(x,y) Â x points to y

It is the existence — even if it is purely implicit and
unrecognised — of these two sets of designations that
makes the model useful. But if they are only implicit
then the model and its common description pose a
danger. In writing and reading the description we may
forget whether we are talking about the world, the
database, or both.

Because any description is partial, there are aspects of
the world that are ignored or distorted in the common
description. For example, some novels have more than
one author, and at least one modern novel has been
produced on the internet in such a way that it has,
arguably, no author at all. We are also ignoring

sequences of novels, characters common to  several
novels, and many other features of the world of novels.
At the same time we are ignoring aspects of the database
world — indexes, placement of records on disk cylinders
and sectors, record deletion, and record ordering. This
situation poses a danger because it is very easy to develop
a description without being completely clear whether we
are describing the world, the database, or both. This
confusion is particularly notable in object models, which
often start out as a more or less conscientious attempt to
describe the world, but easily drift into describing the
object model that will be maintained inside the machine
we are building.

7 The Procedure of Description

Even having recognised and understood the importance
of making sound designations, we may still be tempted to
proceed with our descriptions first, planning to return
later and designate or define our terms explicitly. This
temptation is especially strong when we are writing in a
semi-formal notation such as those incorporated into
UML. The apparently authoritative imprimatur of its
commercially energetic sponsors tells us that use of this
notation is ‘best practice’. What more could we need?

Unfortunately, we need much more. Notations such as
those of UML are very seductive. They make it easy to
cover the screen — or a sheet of paper — with
apparently meaningful symbols. But on returning later to
clarify their meanings we find that it is impossible. The
symbols and names that seemed so obviously meaningful
when we used them prove very hard to relate to the world
we are supposedly describing. Because we are unsure
what the terms denote, the whole description becomes
impossible to validate or criticise. Lacking explicit
designations, we are are compelled to treat the
descriptions themselves as if they were designations. A
rough initial idea of the meaning of a term, suggested by
its natural language interpretation, is fleshed out by
testing it against the assertions contained in the
descriptions that have been read so far.  If the description
fits the putative meaning, that is a partial confirmation;
if not, it is the meaning that must be adjusted. As we
read further, this process of testing and adjusting
interpretations must be carried out, more or less
simultaneously, for every term  used in the description.

Obviously, reading in this way, we can not check the
truth of the assertions we encounter. We are limited to
the traditional feeble response: “Well, it all depends on
what you mean by mother.” An assertion that seems false
leads us merely to adjust our interpretation of the terms
used, rather than to challenge the assertion itself. Only
when the possibilities of interpretation are exhausted can
the assertion be challenged. This will not occur until
either a formal contradiction is discovered or the
interpretation of a term is strained to a point that is no
longer credible.

Another unfortunate effect of casual use of semi-formal
notations is a spurious sense that we are necessarily
describing the requirement because we are using a
notation purportedly designed to capture requirements.
The description of use-cases is a prime culprit here. A
use-case describes essentially what happens at the
interface between the world and the machine, where the
use-case actor interacts directly with the machine. But,
as briefly discussed in Section 2, what happens at the
interface between the world and the machine is the
specification S, not the requirement R. To understand
and capture the requirement we must study and describe



what the actors are doing while they are not interacting
with the machine.

8 The Real Problem

In a wonderful book about mechanical and structural
engineering [Ferguson 92], Eugene Ferguson complains
that many engineering disasters have happened because
modern engineers have been taught to pay too much
attention to calculation and formal analysis of structures
and too little to the physical reality of the world of which
those structures are a part. He writes:

“The real problem of engineering education is the
implicit acceptance of the notion that high-status
analytical courses are superior to those that
encourage the student to develop an intuitive ‘feel’
for the incalculable complexity of engineering
practice in the real world.”

In software engineering we are not inclined to pay too
much attention to ‘high-status analytical courses’, but we
do pay a great deal of attention to techniques that are
essentially notational, leaving us — like the engineers
whose education Ferguson is criticising — paying too
little attention to the incalculable complexity of
engineering practice in the real world. Requirements are
in the world, not in the machine. We must focus on them
directly, and describe them conscientiously.

References

[Balzer 82]  Robert M Balzer, Neil M Goldman and
David S Wile; Operational Specification as the
Basis for Rapid Prototyping; ACM Sigsoft SE
Notes 7, 5, December 1982, pages 3-16; reprinted
in New Paradigms for Software Development; W W
Agresti; IEEE Tutorial Text, IEEE Computer
Society Press, 1986.

[Dijkstra 89]  Edsger W Dijkstra; On the Cruelty of
Really Teaching Computer Science;
Communications of the ACM, December 1989.

[Ferguson 92]  Eugene S Ferguson; Engineering and the
Mind’s Eye; MIT Press, 1992.

[Jackson 95]  Michael Jackson; Software Requirements
& Specifications: a lexicon of practice, principles
and prejudices; Addison-Wesley and ACM Press
1995.

[Jackson 96] Daniel Jackson and Michael Jackson;
Problem Decomposition for Reuse; Software
Engineering Journal 11,1 pages 19-30, January
1996.


