Proceedings of the ICALP2002 satellite workshop "Formal Methods and Component Interaction”, Malaga, July 2002.

A Call Abstraction for Component Coordination

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA

pamela@research.att.com

Michael Jackson
AT&T Laboratories—Research
London, UK
jacksonma@acm.org

24 June 2002

Abstract

DFC is a component architecture for telecommuni-
cation services. Although the call protocol through
which DFC components interact is intrinsically sim-
ple, using it to program useful components is quite
complex. We diagnose the problems and propose a
solution, which takes the form of a call abstraction
embodied in a high-level, domain-specific program-
ming language. The abstraction not only encour-
ages correct programming, but also makes it possible
to prove that components have important behavioral
properties.

1 The DFC architecture

Telecommunication services are network services
whose primary purpose is real-time communication
among people. Although telecommunication services
have a 125-year history, only since the 1960s have
they been under software control. Software control
engendered an explosion of features, which led to
the explosion of complexity known as the feature-
interaction problem [4, 7, 8, 9, 14].

The Distributed Feature Composition (DFC) ar-
chitecture [12, 13, 19] was developed to address the
feature-interaction problem. It is a component-based
software architecture, intended for the description
and development of telecommunication services. It
was designed to offer generality, feature modularity,
structured feature composition, and independence
from network resources.

DFC is a domain-specific adaptation of the pipes-
and-filters architectural style [15]. In this style, there
is a fixed graph of pipes (edges) and filters (nodes).
Each pipe is a unidirectional stream of data in a com-
mon format. Each filter component is a concurrent
process with a completely private state, that con-
sumes input streams and produces output streams.
Because each filter is a context-independent module,

filters can easily be added, deleted, or changed.

DFC has filters called feature boxes. In place of
pipes it has internal calls. Internal calls are point-
to-point connections obeying a fixed protocol and al-
lowing transmission of both signals and media in both
directions. The destination of each connection is de-
termined when the connection is set up, so the graph
of feature boxes and internal calls is dynamic and
self-configuring rather than fixed.

Despite these differences, DFC offers the same style
of modularity as pipes and filters. Feature boxes
exhibit transparency, which means that their pres-
ence is unobservable when they have nothing to do.
They also have autonomy, which means that they
have enough power to carry out their functions with-
out external help. Feature boxes can place, receive,
or tear down internal calls. They can generate, ab-
sorb, or propagate signals traveling on the signaling
channels of internal calls. They can also process or
transmit media such as voice or video.

Although much work remains to be done on DFC,
the results so far are promising:

e There is no known telecommunication feature, in-
cluding mobile and multimedia features, that can-
not be described in DFC. This is strong evidence
that DFC meets the generality goal.

e Many features have been designed (and some im-
plemented) taking advantage of DFC’s feature
modularity, for example [17, 20].

e DFC’s structured feature composition is beginning
to lead to theorems and analysis algorithms con-
cerning important feature interactions [16, 18].

e There is an IP implementation of DFC with many
advantageous properties based on DFC’s resource
independence [1, 2].

2 The DFC protocol and its
challenges

This paper concerns the call-level signaling performed
by DFC feature boxes: placing calls, receiving calls,
tearing down calls, and exchanging status informa-
tion on the signaling channels of calls. Although
feature boxes have other behaviors—they manipulate
both data and media as well—call-level signaling is
the first and foremost behavior of a box program. It
is the framework in which data and media operations
are placed.

The protocol for DFC internal calls is relatively
simple. An internal call is placed by a feature box or
an interface box, which is a persistent module repre-
senting a telecommunication device. To place a call,
a box sends a setup signal from a port. The setup
signal goes to a DFC router which decides which fea-
ture or interface box should receive the call, based
on various fields of the signal. The router sends the
signal to a distinguished boz port of the receiving box.

When the receiving box accepts the call, it chooses
a regular port for it, and sends an upack signal from
that receiving port back to the sending port. This
creates a port-to-port signaling channel.

After sending or receiving the upack, a box can
use the signaling channel of the call to send any sta-
tus signals that it likes. This signaling channel is
two-way. In either direction it is FIFO and has un-
bounded capacity.

Either port can send a teardown signal to end the
call; it is acknowledged by a downack signal from
the port that receives it. (If teardown signals from
both ports cross in transit, then both ports gener-
ate downack signals.) After sending or receiving a
teardown signal at a port, a box is not allowed to
send any subsequent status signals from that port.

Despite this relative simplicity, we have found that,
in practice, call-level signaling is difficult to program
and difficult to reason about. In the context of
distributed components that interact asynchronously
with other components and are intended to coordi-
nate with them to produce meaningful global behav-
ior, even a simple protocol becomes very complex.

We have diagnosed the programming challenges
and developed an abstraction of DFC internal calls
intended to make box programming easier. The ab-
straction is embodied in a high-level, domain-specific
programming language (named “Boxtalk”) for pro-
gramming DFC feature boxes. The semantics of the
call abstraction is written in terms of plain finite-state
machines, to which the control skeleton of programs
in Boxtalk can be compiled.

The challenges of DFC box programming fall into

two groups. The first group, discussed in Section 3,
contains complexities that emerge when trying to
make boxes perform useful functions in the compo-
nent context. The second group, discussed in Sec-
tion 5, consists of properties that every box should
be guaranteed to have. Box programs must be or-
ganized so that each property is either guaranteed
automatically, or can be checked efficiently.

Each subsection of Sections 3 and 5 first presents
the topic issues, then explains aspects of the call ab-
straction motivated by those issues. Between those
two sections is a more formal interlude. For program-
ming examples, we use two familiar features from the
Public Switched Telephone Network: Call Waiting
and Sequenced Credit-Card Calling.

3 Programming difficulties

3.1 Ports are too low-level

In programming a feature box, it is inconvenient to
refer to a call in which the box participates by means
of a port name. This makes it impossible to refer to
a call that has been torn down, because the port may
already be allocated to a different call. More impor-
tantly, the role of a call in a program can change,
while its port cannot change.

The most familiar example is the Call Waiting
(CW) feature. A CW feature box can be engaged in a
maximum of three calls, one leading to its subscriber,
and two leading to far parties. For the programmer,
the most important fact about the two far-party calls
is that one of them is connected to the subscriber call,
while the other one is waiting (“on hold”). It is awk-
ward to refer to the two calls by their port names,
as these have nothing to do with which call is active
and which is waiting.

To make it possible to refer to calls in a more ab-
stract way, each call is given an internal identifier
at the time it is placed or received by the box. This
identifier is unique within the lifetime of the box, and
is permanently associated with the call. A box pro-
gram can declare any number of call variables. The
value of each call variable is either a call identifier
or a distinguished value noCall (all call variables are
initialized to noCall). Box programs refer to calls by
means of call variables.

To separate programming from port allocation
completely, it is necessary to assume that a box can
have an unlimited number of ports. This means that
the implementation can never fail to find an available
port when one is needed for a call. This assumption
is easy to satisfy in a software implementation of fea-
ture boxes.

Four Boxtalk statements change the values of call
variables:

e rcv(c) receives a new call if a setup signal arrives
for it. The identifier of the new call is assigned to
call variable c.

e new(c) and ctu(c0,c) place new calls. The iden-
tifier of the new call is assigned to call variable c.!

e An assignment statement such as cl,c2 = c2,-
moves call identifiers from one variable to another.
In this assignment, c2 gets the value noCall. The
variables on the right-hand side must be a subset of
the variables on the left-hand side, and no variable
can appear on the right-hand side more than once.

These statements preserve the important invariant

that no two call variables ever point to the same call.

If two call variables have the same value, their value

must be noCall.

Two sets of call identifiers figure prominently in the
semantics of the language. The set portAllocated
contains the identifiers of all calls currently allocated
to ports; these are the calls that currently exist ac-
cording to the DFC protocol. The set known is
the union of the values of the call variables, minus
noCall. A call in known is accessible to the program,
because the program has a call variable with which
to refer to it.

These sets often overlap, but they are, in fact,
independent. A call can be in known and not in
portAllocated, if it has been torn down but its call
variable has not yet been re-assigned to another call.
A call can be in portAllocated and not in known, if
its call variable has been re-assigned before the call
is torn down (see Section 3.2).

The fields of a setup signal contain important in-
formation about the call initiated by it. Each setup
signal received or sent by a box is automatically saved
so that the program can refer to it at any time. For
example, the value of the src field of the setup signal
that initiated the call in call variable c is c.stp.src.
If a call remains in known after it has been torn down,
its setup signal remains accessible.

Figure 1 is a Boxtalk program for a Call Waiting
feature box. It omits media processing, which is not
considered in this paper. Otherwise it is complete ex-
cept for some declarations and definitions which are
given in an accompanying textual part. This separa-
tion allows the graphical part of Boxtalk to empha-
size the all-important call-level signaling, without too
much clutter from data manipulation.

1Roughly speaking, the difference between new(c) and
ctu(c0,c) is that ctu continues a pipeline extended to this
box by call c0, while new begins a new pipeline. The details
concern the DFC routing algorithm, and are outside the scope
of this paper.

Graphically, a program is a finite-state machine

with four types of state:

o The initial state is a small black circle.

o A transient state is a larger clear circle.

o A stable state is a rectangle.

o A termination state is a heavy bar.?

The semantic differences between these types of state
will be explained in Section 4.

The program has three call variables. s refers to
a call connecting the box to its subscriber. The sub-
scriber controls the function of the box. a and w both
refer to calls connecting the box to far parties; at any
time, a is the active call, which is connected to the
subscriber, and w is the waiting call.

The user interface of this feature consists of two
status signals cw_indicator and switch. When the
box is in the transparent state, which means that
the subscriber is connected to a far party in the nor-
mal way, it can receive a third call in the call variable
w. The box sends cw_indicator to its subscriber to
indicate that a call is now waiting. Note that this
signal carries as a field the source field in the setup
signal of the waiting call; this identifies the new caller
to the subscriber. Whenever the subscriber wishes to
switch his attention from the currently active call to
the waiting call, he sends the switch signal.

This program relies heavily on assignments to call
variables. First, in the initial state, the box receives
a call in s. Because of how a Call Waiting box is cho-
sen by DFC routers, this call may be either from or
to the subscriber. The predicate s_from_subscriber
(defined textually) is true if the call is actually from
the subscriber. If so, it is in the right variable. The
statement ctu(s,a) continues the pipeline extended
to this box by the incoming call, by placing an out-
going call.

If s from afar, on the other hand, this call does
not belong in s. It is re-assigned to a, and the pipeline
is continued from a to s.

The most important assignment comes in the
call waiting state, when the subscriber signals a
switch. The values of a and w are swapped, so that
the call formerly waiting is now connected to the sub-
scriber, and the call formerly active is on hold.

If a is torn down in the call waiting state, the
box enters a state in which there are two remaining
calls, not connected to each other. A switch signal
from the subscriber will cause these calls to be con-
nected; it forces another re-assignment to keep the
active far-party call in a.

The fourth assignment implements a little-known
behavior of Call Waiting. Suppose the box is in

2CW does not have an explicit termination state.

s_from subscriber / ctu(s, a)

s?switch

. rcv(s) (>

transparent:
(s,a)

s_from afar /
s,a = —-,s; ctu(a,s)

s?switch /
a,w=w,-

all held:
s, W

rev(w) /
s!cw_indicator

{src = w.stp.src}

w?tdn

call waiting: s?switeh /

(s,a), w

end(a); a,w = w,—

a_ from _afar /
ctu(a, s)

a_from_ subscriber /

ctu(a, s) {reverse}

Figure 1: A Call Waiting feature box.

the call_waiting state, and the subscriber hangs up
(s?tdn, short for teardown). Naturally this causes
the box to tear down a.

The call in w is still waiting. Rather than tear it
down also, the box calls the subscriber back! Before
doing so, it does another re-assignment. There is
a conditional branch after the assignment statement
because formation of the setup signal used to place
the call depends on whether the call now in a was
originally an incoming or outgoing call of this box.

3.2 Protocol programming is difficult

A distributed protocol must be asynchronous. But
the resultant nondeterministic delays, handshakes,
and race conditions add considerable complexity to
programs. In Boxtalk we address this problem by
making call setup and teardown appear to be atomic,
although they are not.

It is relatively easy to make execution of rcv(c)
an atomic operation. If a setup signal arrives at
the box in a state in which rcv(c) is enabled, the

implementation updates internal data structures and
sends upack as part of the execution of the statement.
Note that if a setup signal arrives at a box when no
rcv statement is enabled, then the signal is dismissed
automatically and implicitly (see Section 3.3).

Execution of the statement c?tdn means that the
call in ¢ has been torn down from its other end.
It is also easy to make execution of this statement
an atomic operation, as the implementation simply
sends the downack signal as part of it.

The statement end (c) is used to initiate teardown
of the call in c. Execution of this statement usu-
ally begins with sending a teardown signal. The
teardown phase in the ending box is not complete,
however, until the box has first received every status
signal sent from the far port before the far port re-
ceived the teardown signal and stopped sending, and
second has received the final downack signal. The
late-arriving status signals are thrown away.

This “cleanup” of a port’s input queue can take an
unbounded amount of time, which means it cannot be
part of the atomic execution of an end(c) statement.

Rather, it takes place implicitly and in the back-
ground, after execution of the end(c) statement has
completed; the post-processing of an end(c) state-
ment is asynchronous with respect to the control flow
of the program.

If the programmer re-uses call variable ¢ before the
cleanup has finished, then the call being cleaned up
will be in portAllocated and not in known.

A termination state (as seen in Figure 3) is the end
of program execution, but it is not a final state of the
underlying finite-state machine representing the se-
mantics of the program. In a termination state, there
may still be calls in portAllocated whose cleanup
is not yet complete. When portAllocated becomes
empty, there is an implicit transition from a termina-
tion state to a true final state.

The statements new(c) and ctu(c0,c) that place
calls are the hardest to make atomic. Not only is
there an unbounded wait for an acknowledgment, but
also the box program may have an immediate need
to send signals through the call.

Execution of the atomic language statement
new(c) or ctu(c0,c) ends as soon as the setup sig-
nal is sent. It does not include the wait for the upack,
even though the DFC protocol makes it impossible
for a placing port to send signals on a call until it
has received this acknowledgment. If a subsequent
program statement sends a signal on this call, then
the outgoing signal is queued internally, and sent as
soon as the upack signal is received.

For example, the program may execute the
statement sequence ctu(c0,c); c!sl; c!s2; other,
where other does not affect call c. Although this is
invisible to the programmer, other may actually be
executed before c!s1; c!s2,if c?upack does not oc-
cur until after other is complete. The apparent and
actual sequences are equivalent, because signals s1
and s2 can take arbitrarily long to reach the other
end of call c.

Thus the semantics of end(c), new(c), and
ctu(cO0,c) statements all require implicit post-
processing that is asynchronous with respect to the
control flow of the program. It is mildly com-
plex, which we consider to be a major advantage of
Boxtalk; if this complexity were not built into the se-
mantics of the language, then each box programmer
would have to program it for himself. The semantics
of Boxtalk need only be verified and implemented
once.

In the semantics of a Boxtalk program, the call
with the identifier in c is considered active after ex-
ecution of a rcv(c), new(c), or ctu(cO,c) state-
ment, and before execution of an end(c) or c?tdn
statement.

Active calls are the important ones, because they
are the only ones that a box programmer can ma-
nipulate. They are so important that a programmer
must label every stable state with the call variables
pointing to all the active calls. (This information is
redundant, as explained in Section 5.2.)

All Boxtalk statements that operate on calls have
preconditions based on whether the relevant calls are
active:

e The precondition of c!status, c?status,
end(c), and c?tdn is that c points to an ac-
tive call. Otherwise the statement is undefined,
violates the DFC protocol, or both.

e The precondition of rcv(c), new(c), and
ctu(c0,c) is that ¢ does not point to an active
call. Otherwise the invariant that every active call
must be the value of some call variable is violated.

e Because of the same invariant, in an assignment
such ascl,c2 = c2,-, any variable such as c1 that
does not appear on the right-hand side must not
point to an active call.

The set active containing the identifiers of all ac-
tive calls is a subset of both portAllocated and
known. It is not, however, the intersection of these
two sets. A call in its cleanup phase, whose call vari-
able has not yet been re-assigned a different value,
is in both portAllocated and known, and is not in
active.

3.3 There is a need for end-to-end rea-
soning

Imagine that there were no feature boxes, so that
each DFC internal call is placed by an interface box
and received by an interface box. If the target address
were invalid or if the target interface box were busy,
the router could report the problem directly to the
placing box. If the placing box received an upack
signal, it would know that the call had successfully
reached another interface box.

In a component architecture, on the other hand,
the situation is very different, as illustrated by Fig-
ure 2. This figure is a message-sequence chart show-
ing the detailed signaling among two interface boxes
and two feature boxes.

Figure 2 shows that each internal call is completed
before the pipeline is continued. It is necessary to
organize signaling this way in a component archi-
tecture. If each feature box did not acknowledge
an incoming setup signal immediately, but rather
waited to receive an outcome from the target inter-
face box, then all feature boxes would be frozen until
the pipeline reached an endpoint. None of their calls
would be set up, and none of the boxes could send

1B FB

setup

_upack ——

setup

opack

unavail
. teardown
teardown
downack
downack

FB IB

setup

spack

Figure 2: The piecewise nature of signaling in a component architecture.

or receive any signals. They would have very limited
autonomy and usefulness as components.

Precisely because call setup is piecewise, however,
it does not provide any end-to-end information. The
DFC protocol has three built-in status signals in-
tended to provide end-to-end information about the
outcome of a communication attempt. The three sig-
nals are unknown, unavail, and avail. Together
they cover the three outcomes mentioned in the first
paragraph of this section.

In Figure 2, the target device is unavailable. The
first feature box is triggered by the unavail signal;
it will offer some “busy treatment” to the caller such
as forwarding, voice mail, or automated retry. It
absorbs both the unavail signal and the teardown
from downstream, because if it propagated them up-
stream, the caller would probably hang up.

Clearly a successful box programmer must think
about both the end-to-end and piecewise conse-
quences of his program. Put another way, the pro-
grammer must think both about implementing the
desired function of the box, and about making the
box transparent when it is not performing a specific
function. Piecewise and functional thinking tends to
come more naturally, so Boxtalk helps with end-to-
end and transparent programming as much as possi-
ble.

The first and most important language feature of
this kind is signal linkage. In a stable state, two active
calls are signal-linked if their call variables are com-
bined in a parenthesized pair. If two active calls are
signal-linked, then the default handling of any status

signal that arrives from either call is to forward it to
the other call.

For example, in the transparent state of CW, the
two active calls are signal-linked. If a box forwards
all status signals between two signal-linked calls, the
box is unobservable.

The default handling of signals established by sig-
nal linkage can be over-ridden by explicit transitions.
The CW box, for example, never forwards a switch
signal from the subscriber, because the signal is only
meaningful as a subscriber command to this box.
Each of the three stable states has a transition trig-
gered by a switch signal from the subscriber. In
the transparent state it is ignored because there is
nothing to switch; in the other two states it has an
important effect.

In a stable state with active call ¢ and no explicit
transition on c?tdn, receipt of a teardown signal
from call ¢ automatically and implicitly terminates
the entire box program, which includes ending all
other active calls. In the CW program, for instance,
there are no explicit teardown transitions from the
transparent state—if either party hangs up, its in-
terface box begins a chain reaction of teardowns that
should soon remove the entire graph of boxes and in-
ternal calls. In the call waiting state, on the other
hand, there is an explicit transition on teardown of
each active call. Since there are three active calls,
any single one of them is dispensable.

To help illustrate the remaining aspects of the call
abstraction, we introduce a program for a Sequenced
Credit-Card Calling (SCCC) feature box (Figure 3).

This feature enables a caller to make a sequence of
credit-card calls after a single entry of account infor-
mation.

On receiving a call in r, the program begins by
placing a call to a resource capable of implementing
an interactive voice-response dialogue with the caller.
The {credit_query} suffix on the new statement in-
dicates that various argument fields are provided in
the textual part of the program; these fields specify
that the target of the call is a server with a “credit
query” program.

In the credit_query state the resource reached
through the call in v is prompting the caller for an
account number and collecting the digits of that num-
ber. When it has collected a complete number and
checked a database for its status, the resource first
announces the result of the credit check to the caller,
and second sends a signal result with the result.
The feature box does a conditional branch on the
content of this signal. If the account is a bad one,
the box program terminates now. If the account is
a good one, the feature box places an outgoing call,
continuing the pipeline of the call in r.

At this point the box becomes transparent. How-
ever, if the caller chooses to disconnect from the callee
by sending a special disconnect signal rather than
by hanging up the telephone, the feature box will
connect the caller to a resource that prompts for and
collects a new telephone number. If this dialogue is
successful, the box will place a new outgoing call on
the same account.

Once this program is past the credit check, the only
event that causes termination is receipt of a teardown
signal from the call in r.

We now return to the topic of outcome status sig-
nals. Typically the interface box of a caller translates
an outcome signal that it receives into some status
indicator observable by the caller. In the PSTN, for
instance, unavail stimulates a busy tone, unknown
stimulates an error tone, and avail establishes the
voice channel all the way from the network to the
device.

If there were no features, an outgoing call placed
by an interface box would have exactly one outcome.
In the presence of features the situation quickly be-
comes more complicated. Imagine, for example, a
Call Forwarding on No Answer (CFNA) feature that
is triggered and forwards to a telephone that is busy.
First, the caller’s interface box receives avail and
hears ringback.? Then the CFNA feature is trig-
gered by a timeout, ends its current outgoing call,

3Ringback and alerting tones are phenomena of media-level
signaling rather than call-level signaling, so they are not dis-
cussed in this paper.

and places another outgoing call to the forwarding
number. The outcome of this call is unavail, which
stimulates a busy tone when it reaches the interface
box of the caller.

Examination of many features is absolutely conclu-
sive: a calling interface box can receive any sequence
whatsoever of outcome signals. Its behavior toward
the caller is determined simply by the most recent
one.

This means that outcome signals are idempotent.
It also means that we need a fourth outcome signal
none, signifying “no outcome yet.” The need for this
will become clear from the SCCC example below.

If a feature manipulates calls in any nontrivial way,
it is difficult for the feature programmer to handle
outcome signals correctly and consistently. For this
reason, we have built correct outcome processing into
Boxtalk.

Consider a box with an incoming call and an outgo-
ing call. The basic rule of outcome processing is that
whenever the two calls are signal-linked, the outcome
most recently sent to the incoming call should be the
most recent outcome of the outgoing call.

If the two calls become signal-linked as soon as the
outgoing call is placed, and stay signal-linked until
they are torn down, then signal linkage alone is suf-
ficient to enforce the rule. Whenever an outcome
arrives from the outgoing call, it will automatically
be forwarded to the incoming call.

To handle more complex cases, the implementa-
tion must store the most recent outcome of each ac-
tive outgoing call (the outcome is initialized to none).
Whenever an incoming call becomes newly signal-
linked to an outgoing call, the implementation au-
tomatically sends the most recent outcome to the in-
coming call.

For example, suppose that the SCCC program is in
the transparent state, and that the outcome of e is
unavail. The caller connected to this box through r
is hearing busy tone, and sends a disconnect signal
so that he can try another number. He expects the
busy tone to cease immediately, even though there
may be a delay in connecting to the resource. This
favorable behavior will be achieved, because as soon
as r becomes signal-linked to v, the box will send r
the current outcome of v, which is none. The none
signal will silence the busy tone, and will later be
followed by avail from the resource.

If the target of e is unavailable, it is very likely that
downstream calls will be torn down, and this box will
make a transition to the abandoned state. Note that
this transition will not cause any outcome signal to be
sent automatically—they are sent on the acquisition
of a signal linkage, not on the remowval of one. This

rev(r) /

. new (v) {credit_query} credit_query:

(r,v)

invalid_account /
virestart

v?result

good_credit /

bad_credit end(v); ctu(r,e)
transparent: e?tdn abandoned:
(r,e) r
r?dies:lzg?:)ef:t / r?disconnect /
new (v) ! new (v)
{address_query} {address_query}
addr_query:
(r,v)

invalid_address /
v!restart v?result

valid_address / end(v);

ctu(r, e) {new_address}

Figure 3: A Sequenced Credit-Card Calling feature box.

is appropriate because the caller should continue to
hear the busy tone until he sends a disconnect signal
or hangs up.

Outcome handling is actually somewhat more com-
plex than this, simply because many graphs have a
more complex shape and history than a monodirec-
tional pipeline. The principle in all cases is the same,
however, so the simplest case should be sufficient to
convey the basic idea.

4 Formal semantics and verifi-
cation

4.1 Syntax

We begin with a very brief overview of the language
syntax. This overview omits many details and irrele-
vant aspects, including various shorthands definable
in terms of the structures presented here.

Syntactically, a program is a connected graph
whose nodes represent control states. They are parti-
tioned into four classes, and subject to the following
restrictions:

e There is exactly one initial state, having no in-
transitions.

e There is any number of transient states. A tran-
sient state has at least one in-transition and one
out-transition.

e There is any number of stable states. A stable state
has at least one in-transition.

e There is any number of termination states. A ter-
mination state has at least one in-transition and no
out-transitions.

The programs attached to this control structure
are made up of three kinds of program element:

e An unconditional statement is a statement that is
always enabled (provided that its precondition is
satisfied, which is the subject of Section 5.2), such
as new(c), ctu(cO0,c), end(c), c!status, and

assignments.

o A conditional statement is a statement that is only
enabled when a particular signal is present in an
input queue, such as rcv(c) and c?status.

o A condition is simply a predicate on the state of
the box.

A transient state may be labeled with an uncondi-
tional program, which is a sequence of unconditional
statements. An out-transition of a transient state is
labeled with a condition followed optionally by an
unconditional program. The transition is enabled if
the condition is true.

Each stable state must be labeled with the vari-
ables of all the calls active in that state. An out-
transition of an initial or stable state is labeled with
a conditional statement followed optionally by an un-
conditional program. The transition is enabled if the
conditional statement is enabled.

4.2 Semantics

We now present a very brief overview of the lan-
guage semantics. It is also described in terms of a
finite-state machine, with control states that are very
similar to the syntactic states. The only difference
concerns termination and final states. Regardless of
whether the syntax uses one, zero, or many termi-
nation states, the semantics has exactly one termi-
nation state. The semantics also has a final state,
reached from the termination state by an implicit
transition. Note that a stable state may lack ex-
plicit out-transitions because all of its out-transitions
are implicit, including transitions to the termination
state on teardown signals (Section 3.3).

The actions of the box can be partitioned in two
ways, resulting in four categories. An action might
be triggered by entrance to a state, or it might be
an out-transition of a state. An action might be ex-
plicit, based on something written in the program, or
it might be implicit, a consequence of the program
semantics.

If a transient state is labeled with an unconditional
program, there is an explicit action on entrance to
that state. The unconditional program is executed.

There may be an implicit action on entrance to a
stable state. If there are new signal linkages in the
state, outcome signals will be sent automatically.

There may be an implicit action on entrance to a
termination state. If there are active calls, they are
all ended.

Initial, stable, and termination states are respon-
sive states, meaning that the box is paying attention
to its input queues. Transient states are not respon-
sive, meaning that the box is not paying attention to

its input queues. The significance of responsiveness

is discussed further in Section 5.3.

All out-transitions of transient states are explicit.
In a transient state, if at least one out-transition is
enabled, an enabled out-transition is chosen nonde-
terministically and executed.

Responsive states have implicit transitions as well
as the explicit transitions given in the syntax of the
program. Like explicit transitions, all implicit tran-
sitions are triggered by the existence of a signal in
an input queue of the box. There are two reasons for
the existence of an implicit transition:

e The implicit transition exists simply so that the
programmer will not have to write it explicitly.
For example, every responsive state with no ex-
plicit transition triggered by a rcv statement has
an implicit out-transition that replies to a setup
as the target interface box in Figure 2 does, and
returns to the same state.

e The implicit transition is part of the asynchronous
post-processing of a new, ctu, or end statement.
For example, all transitions triggered by upack and
downack are implicit transitions.

In a responsive state, if at least one out-transition
is enabled, an enabled out-transition is chosen non-
deterministically and executed. If no out-transition
is enabled, execution halts until one is enabled by the
receipt of a new signal.

4.3 Verification

The DFC protocol has been specified in Promela and
checked using the Spin model checker [10]. Assum-
ing that all feature boxes are input-enabled (see Sec-
tion 5.3) and obey the protocol, there will be no dead-
lock, lost signals, or extraneous signals.

To show that the semantics of Boxtalk is sound,
we should verify that all programs satisfy the safety
properties of the DFC protocol, and that various in-
variants on the box state (some of which have been
mentioned in Section 3) are preserved. This section
describes a plan for performing that verification.

The first step is to deal with implicit actions. If we
introduce some pseudo-statements such as c?upack
and c?downack, which cannot actually be used in
a Boxtalk program, then all implicit actions can be
written explicitly. In other words, a Boxtalk pro-
gram could be preprocessed to produce an interme-
diate program with pseudo-statements and without
implicit actions of any kind. It is programs in this
intermediate form that we shall verify.

The state of a box obviously includes the val-
ues of its local variables, sets such as active and
portAllocated, functions such as the one that maps

calls in portAllocated to their ports, etc. We
have already partially specified the statements and
pseudo-statements as operations on this state. We
have also specified some of the correctness invariants
on this state, all in Alloy [11].

The state of a box could be extended to include the
input queue of each port, the protocol state of each
port, and the most-recently-sent signals in the output
queue of each port. This extension has two purposes:
(1) It enables us to specify the signaling behavior of
a statement in terms of queue modifications, so that
statements and pseudo-statements can be specified
completely in terms of operations on the state. (2) It
enables us to express protocol compliance in terms of
preconditions and postconditions on operations.

We hope that, having extended the box state and
completed the specification of operations in this way,
we will be able to verify invariant preservation and
protocol compliance. The assumed preconditions of
each operation will be derived from the context in
which it can occur, and from syntactic analysis (see
Section 5.2). We also hope to automate some of this
verification using the Alloy constraint analyzer.

5 Necessary properties

5.1 A graph constraint

Both the properties discussed in this section require
an additional syntactic restriction on Boxtalk pro-
grams. In the graph of a program, each path between
two responsive states must be cycle-free.

For example, the graph shown in Figure 4 would
not be legal as the basis of a Boxtalk program, be-
cause there is a path between the two stable states
with a cycle in it.

Note that this restriction does not prevent conver-
gence on transient states. For example, the graph
shown in Figure 5 is legal.

5.2 No runtime errors

It is especially important to prevent runtime errors
in component architectures. There are more inde-
pendent programs running cooperatively, and there is
less control over where they came from. In telecom-
munications, one of the major motivations for a com-
ponent architecture is to allow customer programma-
bility.

As described in Section 3.2, all the Boxtalk state-
ments that operate on calls have preconditions based
on whether relevant calls are active. As described in
Section 4.3, we intend to prove that if the precon-
dition of a statement is guaranteed at the time that

10

Figure 4: An illegal program graph.

o —

Figure 5: A legal program graph.

the statement is executed, then the statement will
execute successfully, without runtime errors.

Because of the constraint in Section 5.1, there
is a finite number of paths that join two respon-
sive states. Each path corresponds to a known se-
quence of explicit statements. For example, the
path from the credit_query state of SCCC to
the transparent state corresponds to the sequence
v?result; end(v); ctu(r,e).

Consequently, there is an analysis algorithm that
checks the preconditions of all call-related state-
ments. It simply traverses each path between respon-
sive states, keeping track of the set of active calls,
and checking preconditions as it goes. For each path
traversal, the active set is initialized to the set in the
state label at the beginning of the path (the initial

state is assumed to be labeled with the empty set).
Once path traversal is complete, the active set must
match the state label at the end of the path (unless
the path ends at the termination state).

For example, traversal of the path mentioned above
would compute active sets as follows:

credit_query STATE

{r, v}’
v?result

{r, v}’
end (v)

{r}
ctu(r,e)

{r, e}

transparent STATE

Clearly the preconditions of all the statements on
the path are satisfied, and the resulting active set
matches the label of the transparent state.

This analysis need not take implicit actions into
account. Each implicit action can be shown to be
valid in the state in which it occurs. The only im-
plicit action that changes the set of active calls is the
implicit action on entrance to the termination state.
By definition, it ends all active calls, and precedes
entrance to a state in which there are no active calls.

This algorithm shows that the labels of stable
states are redundant (only insofar as they show the
active call set—the signal linkages are not redun-
dant). Since every stable state is reachable from the
initial state, the algorithm can be used to compute
its label. The label is required in Boxtalk simply be-
cause it is a valuable form of redundancy.

5.3 Boxes are input-enabled

A box is input-enabled if it is guaranteed to read ev-
ery signal in every input queue in a timely fashion.
Input-enabling is extremely important in a compo-
nent architecture because it prevents deadlock and
makes components responsive to their inputs. For
example, even if a box’s true function is hopelessly
compromised by errors or resource failures, it should
respond to a teardown from its subscriber.

All Boxtalk programs are input-enabled, provided
that their implementation makes fair nondeterminis-
tic choices among enabled transitions, and provided
that they pass one additional check (see below).

The argument concerning input-enabling has two
parts: (1) A program is input-enabled in every re-
sponsive state. (2) On leaving a responsive state, a
program always returns to a responsive state within
a bounded interval of time.

11

The argument that a responsive state is input-
enabled is simple: because of all the implicit features
of Boxtalk, in every responsive state, there is an out-
transition triggered by every possible signal that can
be in every possible input queue. For example, al-
though it has not been mentioned previously, con-
sider a status signal s in the input queue of call c,
when the program is in a stable state. If ¢ is not cur-
rently signal-linked to any other call, and if there is
no explicit transition on c?s, then an implicit tran-
sition reads s and throws it away.

The argument that a box returns promptly to a
responsive state begins with the restriction that paths
between responsive states are acyclic and therefore
finite. The execution time of a path will be bounded
if the execution time of each statement is bounded,
and if there is no possibility of execution blockage
somewhere on the path.

Boxtalk statements are restricted to those with
bounded execution times. All call-manipulating
statements have been designed to have this property.
Data-manipulating statements are also bounded, be-
cause they do not include loops. (There are some
restricted features for set comprehension.)

Once an out-transition from a responsive state
has been triggered, the only execution scenario that
might halt path execution before it reaches another
responsive state is that execution has reached a tran-
sient state, and no out-transition from it has a true
condition. To prevent this possibility, it is necessary
to prove that, for each transient state in a Boxtalk
program, the disjunction of the conditions on the out-
transitions is true.

Thus the only loops in a Boxtalk program are loops
that pass through responsive states. We have found
this to be an appropriate constraint on DFC feature
boxes, although it might not apply to other compo-
nent architectures or other application domains.

6 Conclusions

There are already some basic tools for facilitating the
programming of DFC feature boxes [3]. The forth-
coming implementation of Boxtalk will provide the
next generation of feature-creation tools.

We have shown that it is a significant challenge to
program coordinating components. The programmer
must manage asynchronous protocols. Proper coor-
dination requires both piecewise and end-to-end rea-
soning. Certain component properties must be guar-
anteed.

At the same time, a component architecture gives
us a foundation for deciding which component be-

haviors are equivalent. Behavioral equivalence is a
tool we can apply to choose program abstractions and
simplify programming.

It seems likely that at least some aspects of our call
abstraction are applicable outside DFC. Any compo-
nent architecture in which components interact asyn-
chronously, for example [5, 6], may have some of the
same problems, and be subject to some of the same
solutions. And any component architecture whatso-
ever has a critical need for a way to certify the good
behavior of components, regardless of their prove-
nance.

References

[1] Greg Bond, Eric Cheung, Andrew Forrest, Michael
Jackson, Hal Purdy, Chris Ramming, and Pamela
Zave. DFC as the basis for ECLIPSE, an IP commu-
nications software platform. In Proceedings of the IP
Telecom Services Workshop 2000, pages 19-26. At-
lanta, Georgia, September 2000.

[2] Gregory W. Bond, Eric Cheung, K. Hal Purdy, J.
Christopher Ramming, and Pamela Zave. An open
architecture for next-generation telecommunication
services. Submitted for publication.

[3] Gregory W. Bond, Franjo Ivancié, Nils Klarlund, and
Richard Trefler. ECLIPSE feature logic analysis. In
Proceedings of the Second IP Telephony Workshop,
pages 49-56. Columbia University, New York, New
York, April 2001.

[4] L. G. Bouma and H. Velthuijsen, editors. Feature
Interactions in Telecommunications Systems. 10S
Press, Amsterdam, 1994.

[6] Manfred Broy. Compositional refinement of interac-
tive systems. Journal of the ACM IVIV(6):850-891,
November 1987.

[6] Manfred Broy. Functional specification of time-
sensitive communicating systems. ACM Transac-
tions on Software Engineering and Methodology
II(1):1-46, January 1983.

[7] M. Calder and E. Magill, editors, Feature Interac-
tions in Telecommunications and Software Systems
VI, 10S Press, Amsterdam, 2000.

[8] K. E. Cheng and T. Ohta, editors, Feature Inter-
actions in Telecommunications Systems III., 10S
Press, Amsterdam, 1995.

[9] P. Dini, R. Boutaba, and L. Logrippo, editors.
Feature Interactions in Telecommunication Networks
IV. 10S Press, Amsterdam, 1997.

[10] Gerard J. Holzmann. Design and validation of pro-
tocols: A tutorial. Computer Networks and ISDN
Systems XXV:981-1017, 1993.

[11] Daniel Jackson, Ian Schechter and Ilya Shlyakhter.
Alcoa: the Alloy Constraint Analyzer. In Proceedings

12

[18]

[19]

[20]

of the International Conference on Software Engi-
neering, Limerick, Ireland, June 2000.

Michael Jackson and Pamela Zave. Distributed fea-
ture composition: A virtual architecture for telecom-
munications services. IEEE Transactions on Soft-
ware Engineering XXIV(10):831-847, October 1998.

Michael Jackson and Pamela Zave. The
DFC Manual. AT&T Research Techni-
cal Report, August 2001. Available at

http://www.research.att.com/info/pamela.

K. Kimbler and L. G. Bouma, editors. Feature In-
teractions in Telecommunications and Software Sys-
tems V. I0S Press, Amsterdam, 1998.

Mary Shaw and David Garlan. Software Architec-
ture. Prentice-Hall, Inc., 1996.

Pamela Zave. Address translation in telecommunica-
tion features. Submitted for publication.

Pamela Zave. An architecture for three challenging
features. In Proceedings of the Second IP Telephony
Workshop, pages 176-187. Columbia University, New
York, New York, April 2001.

Pamela Zave. An experiment in feature engineer-
ing. In Essays by the Members of the IFIP Work-
ing Group on Programming Methodology, Springer-
Verlag, to appear.

Pamela Zave. Formal description of telecommunica-
tion services in Promela and Z. In Manfred Broy
and Ralf Steinbriiggen, editors, Calculational System
Design (Proceedings of the Nineteenth International
NATO Summer School), pages 395-420. IOS Press,
1999.

Pamela Zave and Michael Jackson. New feature in-
teractions in mobile and multimedia telecommuni-
cation services. In M. Calder and E. Magill, ed-
itors, Feature Interactions in Telecommunications
and Software Systems VI, pages 51-66. IOS Press,
2000.

