
Some Structural Relationships among Models
in the Development of Software-Intensive Systems

Michael Jackson, The Open University

jacksonma@acm.org

Introduction

This paper discusses relationships among certain models in the development of software-
intensive systems. By ‘model’ we mean a formal description of some clearly identified
subject matter, intended to support reasoning within and between descriptions. By ‘software-
intensive systems’ we mean systems that interact with the human and physical world. These
include systems for administrative, embedded, telecommunication and control applications,
but not purely computational applications such as factorisation of large integers or finding
cutsets in a graph.

We adopt the problem-oriented view of system development, in which the goal is to
develop a machine—a computer executing the software—that will achieve some desired
effect—the requirement—in the problem world. For example, in a lift control system the
machine is the control computer, the requirement is safe and efficient lift service, and the
problem world is the lift equipment, the request buttons, the sensors, the doors, the floors, the
users, and so on.

In a software-intensive system the requirement is located in the problem world, at some
distance from its interface with the machine. The lift-control machine can monitor the request
buttons and sensors, and it can switch the motor current for the doors and for the hoisting
mechanism; but the requirement is about the arrival of the lift car at a floor, the entry and exit
of passengers, and the travel of the car to a floor that has been requested. To take another
example, consider the control of a complex traffic intersection with lights, controlled
pedestrian crossings, and vehicle sensors built into the road surface. The control computer can
monitor the vehicle sensors and pedestrian request buttons, and it can switch lights on and off;
but the requirement is about orderly, safe and efficient traffic flow—that is, about the relative
movements and positions of vehicles and pedestrians.

Three Elemental Model Roles

Three distinct models, playing three elemental roles, can be clearly distinguished in the
development of a software-intensive system.
• First, the requirement itself demands description. In the traffic intersection problem:

pedestrians must be given enough time to cross the road and early enough warning when
vehicle flow will be restarted; simultaneous vehicle flows must not cross each other; the
lights must be timed so that all vehicles in a crossing can leave the crossing area before
transverse vehicle flow is permitted; and so on.

• Second, the given problem world properties must be carefully analysed and described.
These will include: the road layout, with the positions of the lights, pedestrian request
buttons, and sensors; the properties of the sensors in relation to nearby vehicle presence
and movement; expected volumes of traffic on the various routes through the crossing;
minimum and maximum vehicle speeds; driver reaction times; pedestrian walking speeds;
and so on.

• Third, the machine specification, specifying the behaviour of the machine at its interface
with the problem world. This is the specification to be directly satisfied by the software
that will be written, expressed in terms of phenomena directly monitored and controlled
by the machine.

MMOSS Seminar: Methods for Modeling Software Systems Dagstuhl August 2006

http://drops.dagstuhl.de/opus/volltexte/2007/863

The relationship among these three models is clear. To ensure that the developed system
fulfils its purpose the entailment

specification, world properties requirement

must hold. That is: if a machine satisfying the specification is installed and operated in a
problem world satisfying the stated properties, then the requirement will be satisfied.

Problem Decomposition

As always, complexity demands some form of decomposition. Adopting the problem-oriented
view of development, we decompose the problem into subproblems, each with its machine,
problem world and requirement. This decomposition is not a process of refinement. In spite of
the identification in the preceding section of the overall requirement as a subject for a model,
we do not begin with a single exact but abstract requirement statement and proceed to refine it
into a modular, equally exact, but more concrete statement, preserving the abstract properties
of the single statement. Instead, we begin with an inevitably loose statement of the overall
requirement, and proceed, often in a highly iterative fashion, to identify parts of the overall
requirement that can be first treated as distinct subproblems and subsequently composed into
a whole.

Ideally, we hope that the identified subproblems will fall into problem classes for which
we have well-understood solution methods and even standard solution designs. This kind of
development is similar to the practice of normal design in established branches of
engineering, in which a product is developed as an assemblage of components of familiar
types.

Fundamental to the problem-oriented approach is the recognition that we are decomposing
the problem rather than the software. This means that each subproblem is thought of as
having its own machine, problem world and requirement. The subproblem machines will,
eventually, be composed—perhaps after substantial modification and transformation—into
the final software product. The subproblem worlds are drawn from the problem world of the
original whole problem by selecting just those parts that are relevant to each subproblem and
identifying their relevant properties. The subproblem requirements are identified as parts of
the original loosely stated overall requirement.

In a highly simplified illustration of such a decomposition for the lift-control problem, we
may recognise these subproblems:
• 1: Lift Service. The subproblem requirement is to provide lift service for users in

accordance with priority rules set from time to time by the building manager. The
subproblem world includes the users, the lift equipment, the request buttons, and the
building manager.

• 2: Lift Safety. The subproblem requirement is to ensure safety by monitoring the
equipment for faults and, if a fault is detected, applying the emergency brake which locks
the lift car in the shaft and prevents it from falling freely. The subproblem world includes
the lift equipment and the emergency brake, but not the users or the request buttons or the
building manager.

• 3: Lobby Display. The subproblem requirement is to maintain a visual display in the
ground floor lobby showing the current position of each lift and the outstanding requests
for each floor, allowing impatient users waiting at the ground floor to predict when a lift
will become available to service their request. The subproblem world includes the display
itself, the lift car, the floor sensors, the impatient users, and the request buttons, but not
the emergency brake, the lift doors, of the building manager.

Further decomposition of these subproblems gives:

• 1a: Edit Priority Rules. The subproblem requirement is to support editing of the priority
rules by the building manager. The priority rules are reified in a machine-readable data
structure, perhaps held in disk storage. The reified rules and the building manager form
the whole subproblem world.

• 1b: Priority Lift Service. This is the original Lift Service subproblem with the building
manager replaced by the reified priority rules.

• 2a: Maintain Lift Safety Model. The subproblem requirement is to maintain a reified
machine-readable model of the lift equipment behaviour sufficiently faithful to allow
faults to be reliably detected in good time. For example, the model might include a
representation of all floor sensor states, from which it would be possible to detect that a
sensor is stuck on or off; and it might include timing records of lift travel from which it
would be possible to detect that upwards travel is gradually becoming slower, indicating a
possible impending motor failure. The subproblem world contains only the reified model
and the lift equipment that is its subject matter.

• 2b: Lift Safety Using Model. The subproblem requirement is to monitor the safety model
continually and to apply the emergency brake as soon as a significant fault is detected.
The subproblem world includes the reified model and the emergency brake.

• 3a: Maintain Lobby Display Model. The subproblem requirement is to maintain a
sufficiently accurate reified model of the changing position of the lift car and the
changing set of outstanding service requests. The subproblem world includes only the
reified model and the lift car, floor sensors and request buttons, but not the visual display
itself.

• 3b: Lobby Display from Model. The subproblem requirement is to maintain the visual
display, obtaining the relevant information from the reified model of the lift car position
and outstanding requests. The subproblem world includes only the visual display and the
reified model.

Reified Models

The reified models introduced into subproblems 2 and 3 are models in a special sense. They
can be thought of as local variables of their respective undecomposed subproblems,
maintained by the undecomposed machines so that information about the problem world can
be accumulated, processed, and made available when necessary. They are analogic models,
so called because their purpose is to support an analogy between their values and the present
and past states and behaviours of the problem world parts that they model. It is this analogy—
for example, between the current position of the lift car and the value of a variable lift_pos—
that makes the model useful. By contrast, the models we considered earlier are analytic
models, which are formal descriptions intended to be used in the development process.

Reified models appear everywhere in software systems. A database in a library
administration system is a reified model of the library’s books and members; objects in an
object-oriented program are often—but not always—models of entities in the problem world.

It is helpful to decompose a problem that uses a model into two subproblems: one to build
and maintain the reified model, and one to use the model. By doing so we obtain the usual
advantages of separating the writers and readers of shared state. A more important advantage
is that we expose the fundamental concern in such a problem: the need for the model to
provide a sufficiently accurate analogy to the parts of the problem world that are its subject
matter. An analogic model of a part of the physical world is necessarily imperfect. The
machine which builds and maintains the model introduces unavoidable time lags in setting its
values, and the values themselves are often highly imperfect approximations to continuous
physical quantities; further, in solving the subproblem that builds and maintains the model we
must use analytical models that are themselves imperfect formalisations of their subject
matter.

To deal adequately with a reified model in a critical system it may be necessary to
consider several analytical models. Consider, for example, the lobby display problem,
decomposed into its two subproblems. We must consider: an analytic model of the lift car and
outstanding requests; an analytic model of the reified analogic model from the point of view
of the subproblem in which it is maintained; an analytic model of the reified analogic model
from the point of view of the subproblem in which it is used; and an analytic model of the
visual display. If this subproblem were an important part of a critical system—which, of
course, it is not—we would be obliged to reason carefully about all of these models and their
relationships. For example, to show that the state of the visual display corresponds to the
states of the lift car and requests, we must rely on something like the implication:

(Model corresponds to Lift&Requests ∧ Display corresponds to Model)
⇒ Display corresponds to Lift&Requests

It is not clear that sufficient precision can be achieved here for the implication to hold
formally. Nor is it clear that the development can proceed by refinement: we may be unable to
state the condition “Display corresponds to Lift&Requests” clearly enough until the conjuncts
“Model corresponds to Lift&Requests” and “Display corresponds to Model” have been
elaborated and analysed in their respective subproblems.

Non-deterministic Models for Approximation

In subproblem 2a an analogic model is maintained of the behaviour of the lift equipment, to
enable detection and diagnosis of faults that may justify application of the emergency brake.
The analytic model of the lift equipment in the problem world properties must therefore
describe how faulty equipment conditions are related to the equipment behaviour observed by
the subproblem machine.

For example, the time for the lift car to rise from one floor to the next is observable in
terms of the time between the lower floor sensor opening and the upper floor sensor closing.
If this time should be approximately four seconds for healthy equipment it may be supposed
that an actual time of five seconds or more indicates an existing or incipient fault. The
analytic model of the lift equipment may therefore contain, in effect, the statement

rise_time > 5s ⇒ rise_time_fault

However, straightforward use of the property thus stated inevitably leads to a specification
that cannot be implemented precisely: it is impossible for any machine to distinguish perfectly
between a time > 5s and a time ≤ 5s. The difficulty can be overcome by stating the non-
deterministic property

(rise_time > 5.2s ⇒ rise_time_fault) ∧ (¬rise_time_fault ⇒ rise_time < 4.8s)

and using it in the derivation of the machine specification. The interval [4.8, 5.2] in which the
value of rise_time_fault is not determined provides the tolerance necessary for a formally
satisfiable specification.

 Different Analytic Models of a Problem World Part

A problem world part common to two or more subproblems will typically need a different
analytic model in each subproblem. This difference is inevitable, because the role of the
problem world model is to capture those properties that relate the requirement to the machine
specification. In effect, the problem world properties expressed in the model are those on
which the machine relies to achieve satisfaction of the requirement.

So, for example, the analytic model of the lift equipment in subproblem 1b, which
provides Priority Lift Service, are just those necessary for the machine to monitor and control

movement of the lift car and doors. This is possible only if the equipment is in a healthy state:
if the motor has burned out, or floor sensors are stuck, or the hoist cable has broken, it is
impossible to provide the required lift service. In this subproblem, therefore, the machine
relies on the causal chains by which switching on the motor results in movement of the lift
car, arrival of the car at a floor results in a change in sensor state, and so on. These are the
properties described in the analytic model.

By contrast, the analytic model of the same lift equipment in subproblem 2a is concerned
with potential faults and their manifestations at the machine interface. This is a different
model from the model used in subproblem 1b. It does not rely on healthy behaviour of the lift
equipment, but it does rely on the relation between the patterns of changes in floor sensor
states and the healthiness or faultiness of the equipment.

By separating the two models we ensure the clearest possible description both of those lift
equipment properties that are considered necessary to the provision of lift service, and of
those that are necessary to diagnose equipment faults. It is worth noting the relationship
between the two models. If we say that lift service relies on healthy equipment, and that fault
detection distinguishes some_fault from no_fault, then we must have:

no_fault ⇒ healthy

but we do not need:

healthy ⇒ no_fault

There may be faults, such as excessive rise_time, that do not in themselves falsify the
conditions on which lift service relies, but are nonetheless evidence of incipient failure that
justifies application of the emergency brake.

Modelling by Successive Approximation

A fundamental difficulty in software-intensive system development is a dissonance between
the non-formal problem world and the effectively formal nature of the machine and its
specification. Any formal problem-world model is inevitably imperfect: the non-formal world
itself can always produce a counterexample.

One way to understand the use of different models of the same problem world part is to
think of it as an approximation technique. The first, crude, approximation is the model used in
the lift service subproblem: here the equipment is always healthy. The second approximation
is the combination of this first model with the model used in fault detection: if the equipment
is not healthy then some fault can be detected.

Of course, a more elaborate approximation structure might have been chosen, in which
there are more than two models. For example, if the failure of one particular sensor can be
detected, then in the absence of any other fault it would be possible to provide a reduced lift
service in which the lift car never stops at the affected floor. It might be appropriate to
combine this model with the healthy model, or to keep it as a separate model.

Conclusion

The focus in this paper has been on relationships among models arising from problem
decomposition. For brevity, we have ignored the large topic of composition, in which the
decomposed subproblem solutions are reassembled into a solution of the whole original
problem.

In the limited context of problem decomposition it is apparent that there can be no single
model of the problem world. Different subproblems are concerned with different parts of the

problem world, and where they are concerned with common parts they need different models
of those parts. Each model plays a particular role in a reasoning structure within its
subproblem, where it captures those problem world properties on which the subproblem
machine relies to guarantee satisfaction of the subproblem requirement. The relationships
among the subproblems are reflected by relationships among their models, especially in the
matter of approximating the unbounded potential behaviours of the non-formal problem
world.

Acknowledgements

The ideas of the problem-oriented approach underlying the discussion in this paper have been
developed over several years in cooperation and joint work with a number of colleagues,
including Jon Hall, Ian Hayes, Daniel Jackson, Cliff Jones, Robin Laney, Lucia Rapanotti,
and others. The ideas have also been further developed by work carried out by some of these
colleagues independently. None of them, of course, is responsible for any defects in this brief
paper.

