
Refinement, Problems and Structures

Michael Jackson

The Open University
jacksonma@acm.org

Introduction

Refinement is a powerful reasoning tool in software development. success in its use
for program construction encourages the hope of equal success in the construction of
dependable computer-based systems, especially in safety-critical applications. These
are systems in which the computer, with the software it executes, forms only one
component of the whole system. The other components are other engineered artifacts
and systems of many kinds, parts of the natural world, and human beings who are
users or operators of the system or in any other way participate in its behaviour.

The criterion of dependability of such a system is not to be judged in the software
alone, but rather in the behaviour of the whole system. This behaviour is constrained
in two ways. First, it is constrained by the given properties, characteristics and
behaviours of the relevant parts of the world. For example: in a lift control system the
physical arrangement of the shaft prevents the lift car from travelling from the second
floor to the fourth without passing the third; in the same system the electrical and
mechanical equipment ensures that if the hoist motor is switched on, with upwards
polarity, the lift car will rise in the shaft. Second, system behaviour is constrained by
execution of the software, monitoring and controlling the relevant parts of world both
through interfaces to parts directly connected to the computer, and through the
interactions of those parts with remoter parts. The lift system is dependable if the
whole system dependably satisfies its requirements: in response to users’ requests it
carries them safely and efficiently from floor to floor.

Developing systems of this kind is different from developing programs. In program
development the goal is to achieve a certain input-output behaviour of the computer
by constructing a text in a programming language. Effectively, the programming
language and the semantics of its execution are formally defined. The input-output
behaviour to be achieved—the program specification—is also formal. In refinement-
based development the program text is developed from the formal specification, each
step justified by the known formal properties of the programming language.

In system development, by contrast, the requirement to be satisfied is a certain
behaviour of the whole system: the computer’s input-output behaviour is merely an
instrumental means to this end. Usually the requirement itself is not formally
specified, so the root of the refinement tree is not well-defined. Further, the relevant
parts of the system outside the computer—the problem world domains—are not
themselves formal. Their given behaviours and properties can be formally described,
but a formal description can never be more than an approximation: appeal to the
formal description is therefore never fully reliable. Further yet, systems are

Extended abstract: Dagstuhl Seminar 09381, 13-18 September 2009

2 Michael Jackson

increasingly expected to embody a proliferation of functional features whose mutual
interactions add another order of complexity.

Contrivances and Operational Principles

We shall regard systems of the kind we are concerned with as contrivances, in the
sense explained by the physical chemist and philosopher Michael Polanyi. One broad
class of contrivances comprises physical inventions such as clocks, telephones,
locomotives and cameras. A contrivance is characterised by its parts, interacting
according to the operational principle of the contrivance to achieve its purpose.

Figure 1 depicts the parts and purpose of the pendulum clock invented by

Christiaan Huygens in 1656 and constructed by Salomon Coster in 1657. The
rectangles represent the physical parts of the clock and the progression of time, the
solid lines connecting them representing interactions among the parts. The dashed
oval represents the purpose of the clock, which is to ensure that the positions of the
hands on the clock face correspond to the passage of time (the arrowhead indicating
that the purpose is to constrain the hands to match the time, not vice versa).

Time

Hands
Hands

 Time
Pendulum

Gear
 Train

Escape-
 ment

Weight

Fig. 1. A pendulum clock

The operational principle of the clock is readily explained. The falling weight
drives the gear train, which drives the hands and the escapement. Rotation of the
escapement shaft is constrained by the pendulum, each swing releasing one tooth of
the escapement and receiving an impulse to maintain the pendulum’s momentum.
Gear train rotation is therefore proportional to the number of swings. The swing
period is roughly constant, so the hand positions correspond to elapsed time.

Polanyi points out that the operational principle is expressed in terms of what he
calls the logic of contrivance, and that this is distinct from scientific knowledge. It
explains “how its characteristic parts—its organs—fulfil their special function in
combining to an overall operation which achieves the purpose of the machine. It
describes how each organ acts on another organ within this context.” Scientific
knowledge comes into play only within the given structure of the design of the
contrivance and its known operational principle. Science can then explain the success
or failure of a particular clock or a particular design, and calculate physical values that
will allow the contrivance to fulfil its purpose. What is the swing period of the
pendulum? Why do we expect it to be nearly constant? Are the gear ratios between
the escapement and the hands correctly calculated? Does the escapement deliver an
impulse large enough to counteract the slowing of the pendulum by friction and air
resistance? Is the weight heavy enough to overcome the gear train friction? All these

Refinement, Problems and Structures 3

are questions of science, but they are posed only in reference to the contrivance and
its operational principle. The operational principle tells us how the system is intended
to work, and science tells us whether it will actually do so, and how well.

A contrivance is designed to achieve its purpose in a specific context, and is not
expected to operate successfully outside that context. The pendulum clock must be
stably positioned, in calm air and in a vertical orientation, on the earth’s surface; it
cannot operate successfully in a moving carriage, or in a ship at sea. The constancy of
the pendulum’s period depends also on a stable ambient temperature: in summer the
clock ran slower as the pendulum period increased as its length expanded in the heat.

Systems As Contrivances and Problems

Systems of the kind we are considering can be similarly regarded as contrivances.
Figure 2 shows the configuration of a system whose purpose is to ensure orderly and
safe traffic of vehicles and pedestrians at a very complex road crossing.

Fig. 2. A traffic control system

Vehicles
 & Drivers

Vehicle
ensor S s

Light
 Units

 Traffic
 Controller

Road
 Layout

Crossing
 Buttons

Pedest-
 rians

Orderly,
Safe Traffic

Again the rectangles represent parts of the system and the oval represents the system’s
purpose. The striped rectangle represents the computer and its software, directly
connected to the light units, the pedestrian crossing buttons and the vehicle sensors
embedded in the road.

Unlike the depiction of the pendulum clock in Figure 1, this representation depicts
not only the system and its parts and purpose, but also a development problem. The
problem is to discover, invent, or specify a Traffic Controller part whose external
behaviour—by its interactions with the light units, crossing buttons and sensors—will
ensure satisfaction of the system’s purpose. To solve this problem the developer must
investigate and understand—and then respect and exploit—the given properties of the
other parts of the system. How fast do the pedestrians make their way across the
various crossings? How fast do the cars go? How do the various streams of traffic
intersect? What is the protocol for operating the light units? How reliably do drivers
stop at red lights? These given properties, like the properties of the clock parts,
depend on the specific context assumed for the system. If the junction is near an old-
age home some pedestrians may walk very slowly; if one of the feeder roads is a
motorway many vehicles can be expected to be driving above the legal speed limit; if
an industrial plant is nearby there will be an unusually high number of very large
vehicles; and so on.

Simplistically, we can imagine that the Traffic Controller specification and code
can be developed by a refinement progression that moves across the diagram from

4 Michael Jackson

right to left, from the requirement to the external behaviour of the machine. First the
required (orderly and safe) behaviour of the pedestrians and the vehicles and drivers is
refined. Relying on the given properties of pedestrians and vehicles, this behaviour is
then refined into a required behaviour of the light units, crossing buttons and sensors.
Relying on the properties of these devices, a final refinement produces a required
external behaviour of the Traffic Controller machine. At each refinement step the
problem is progressed [2,3] towards a software specification.

Problem Characteristics for Simplicity

For any particular system, feasibility of the simplistic view of a refinement process
mentioned in the preceding section depends on several factors. The most important
factor is the simplicity of the system, evidenced in a simple operational principle: the
system must exhibit certain unities of purpose and structure. Some of these unities,
with illustrative counterexamples of complexity, are:
• Unity of purpose: fails for an air traffic control system in which a certain horizontal

and vertical separation is to be maintained, but if that proves impossible some other
rule is to be applied.

• Unity of problem domain role: fails for a customer support system in which staff
perform operational tasks and are also assigned as ‘personal assistants’ to changing
groups of customers.

• Unity of problem domain properties: fails for a lift-control system in which the lift
service function depends on faultless equipment behaviour and the safety function
depends on diagnosis of equipment faults.

• Unity of system context: fails for a railway operations system in which train
scheduling must assume fixed track configuration and availability and the track
maintenance function must manage changes to track configuration.

A system exhibiting these and other unities has a simple operational principle. The
intended working of the system can be explained in a simple traversal of the system
configuration, saying at each step of the traversal how one part behaves and how it
interacts with its neighbours. Scientific—or mathematical—knowledge and reasoning
are invoked within this structure to validate the explanation in detail, both locally and
end-to-end, and to calculate the behaviour that the machine part of the system must
have if it is to ensure satisfaction of the requirement.

Decomposition and Recombination

We address complexity by decomposing a complex development problem into
subproblems. A subproblem has the form of a problem, with its own machine,
problem world, purpose and operational principle; being a problem in this sense, it
can also be viewed as a system. A successful decomposition produces simple
subproblems exhibiting the unities of the kind mentioned in the preceding section.

Subproblem decomposition produces projections of the problem. Projections may
be chosen in many different dimensions. A projection in space may separate
consideration of distinct problem domains: in the traffic control system, determining

Refinement, Problems and Structures 5

the locations of vehicles from the sensors does not involve the pedestrian crossing
buttons. A projection in time may separate distinct phases and modes of system
operation: in an avionics system, control of an aircraft while it is taxiing is separated
from control of take-off. A projection in context may separate control of the lift
equipment into assumed-healthy and potentially-faulty.

In any decomposition the complexity of the resulting parts has two sources: the
inherent complexity of the part itself, taken in isolation; and the complexity due to its
interactions with other parts. Traditional approaches to decomposition conflate these
two sources, often frustrating the goal of simplicity. For example, program
decomposition into a procedure call hierarchy is embedded decomposition, in which
the parts are embedded in the whole by precisely matched call interfaces. The
structure of a relational database schema results from jigsaw decomposition, in which
the whole consists only of its parts, which must fit together by matching key values.

For systems of the kind we are considering, a loose decomposition is preferable, in
which the task of identifying the parts is clearly separated from the task of
recombining them into a whole. This separation permits a productive
oversimplification of subproblems, in which each can be analysed in a restricted
context in which the unities are preserved. Only in the later stage of recombination are
the subproblem interactions addressed, and solutions devised for any difficulties they
may pose. For example, in the railway operations system the train scheduling and
track maintenance subproblems are first considered separately, oversimplified by their
respective contexts of constant track configuration and complete absence of trains.
Only when these subproblems are well understood is their recombination addressed.
In designing the recombination it may, of course, be necessary to modify either or
both of the oversimplified subproblems; but the need for this modification and its
design can be more reliably and confidently carried out at this later stage.

The development process can be seen to have a top-down decomposition facet, and
a bottom-up recombination facet. Locally, decomposition must logically precede
recombination, but globally the two facets may be interleaved. In this process,
structure, and human comprehension of operational principles, provides the essential
framework. Formal techniques can be effectively deployed within this framework, in
analysing and designing individual subproblem structures and their recombination.

References

[1] Michael Polanyi; Personal Knowledge: Towards a Post-Critical Philosophy; Routledge and
Kegan Paul, 1958 and U Chicago Press, 1974.

[2] Robert Seater, Daniel Jackson and Rohit Gheyi; Requirement Progression in Problem
Frames: deriving specifications from requirements; Requirements Engineering 12, 2 pages
77-102, April 2007.

[3] Zhi Li, Jon G Hall and Lucia Rapanotti; From requirements to specifications: a formal
approach; Proceedings of the 2006 International Workshop on Advances and Applications
of Problem Frames, pages 65-70, Shanghai 2006.

