
A Contribution to the
Viewpoints ’96 Workshop at FSE-4

October 14th & 15th 1996

1 Connecting Viewpoints

The term viewpoint is interpreted in many different
ways [Kot96]. A viewpoint may be identified with a
stakeholder — a person or group having a legitimate
interest in the system to be built; with any knowledge
source about the application domain; with a participant in
the development process; with a domain (by which we
mean the machine, or a human or other part of the
environment that interacts with the machine); with a
projection of the properties of any part of the system and
the associated descriptions, notations and methods; or with
almost any combination of these. Whichever intepretation
is adopted, software developers who use more than one
viewpoint must certainly consider how different viewpoints
are related, and whether they are consistent [Eas96].

The central theme of this paper is that relationships
among different viewpoints can be understood in terms of
shared phenomena. This applies in particular to viewpoints
regarded as:

separate descriptions of distinct domains;
separate descriptions of distinct properties of one domain;
or
separate descriptions of distinct system requirements.

In the body of the paper these relationships are briefly
discussed in terms of shared phenomena, and some general
considerations relevant to shared phenomena are explored.

2 Shared Phenomena
The fundamental idea of shared phenomena is clearly

seen in CSP [Hoa85]. Each CSP process has an alphabet of
classes of event in which it engages: for example, the
alphabets of processes P and Q may be {a,b,c} and {c,d}
respectively. Whenever an event of class c occurs both P
and Q participate: they are participating in the same event.
A shared event is not mediated in any way — for example,
by a transmission channel. There is no notion that a c in P
and the corresponding c in Q are distinct but simultaneous
events. There is only one event.

States, of course, can be shared in the same way as
events, although this is not done in CSP.

Shared phenomena form the connections among
distinct domains in a very obvious way. The distinct
connected domains may be the machine and its
environment [Jac95a], or agents or domains recognised
within the environment [Joh88, Jac95b]. For example, a
passenger in a lift presses a button, and in the same event
the controlling computer receives an input signal; or the
controlling computer in a railway signalling system sets an
output line to high, and in the same event a red signal light
is illuminated.

Shared phenomena also form the relationships among
descriptions of distinct properties. For example, a text
worked on in a simple editor [Jac95c] may be described as
a text string (for purposes of inserting, spell-checking and
finding words) and also as a sequence of lines (for purposes
of cursor movement and pagination). These descriptions
are related by shared phenomena. The characters in the
words in the text string description are the same characters,
in the same order, as those in the line sequence description
(excluding hyphens and newline characters); and upwards
movement of the cursor by one line is the same event as
some backwards movement of the cursor within the string.

Similarly, shared phenomena tie together distinct
subproblems —that is, distinct projections of system
requirements [Zav93, Eas96, Jac96]. In the requirements
for appropriate caller features and appropriate callee
features in a simple telephone system, a particular event
caller-hangs-up in the callee requirement is the same event
as a particular hang-up event in the caller requirement; and
callee-is-idle in the caller requirement is the same state as

 1

fsevpts3a.wsd

Michael Jackson
AT&T Research
Murray Hill NJ

and MAJ Consulting Ltd
101 Hamilton Terrace London NW8 9QY England

jacksonma@attmail.att.com
mj@doc.ic.ac.uk

Connecting Viewpoints by Shared Phenomena

idle in the callee requirement.

3 A Sound Basis for Shared Phenomena

Because shared phenomena are the foundation of these
important relationships in a development, it is essential to
place them on a sound basis. This means choosing, and
explicitly recording, sound answers to these questions:

What are the phenomena of interest for the purpose in
hand? and
Which phenomena should be regarded as shared?
How should phenomena of interest, and their sharing, be
declared and described?

These questions are more difficult and subtle than may
appear at first sight. The central difficulty arises from the
fact that the world in which requirements are located is
informal. For almost any proposed characteristic predicate
we can easily find hard cases, of which we can scarcely say
whether or not the predicate is true. To almost any
proposed rule we can easily find an apparent exception, in
which the given formulation of the rule breaks down. We
can dispute endlessly about the meaning of almost any
word in natural language.

This informality must not be carried over into the
system. In human affairs it is often right to leave an area of
uncertainty. Parliamentary drafting often leaves detailed
discriminations to the courts: the judges will decide what is
meant by “fair and reasonable”, or by “due care and
attention”. But the computer is not human. It is a machine
carefully constructed to be equivalent to a formal system.
At its interface, of phenomena shared with the
environment, the machine will exhibit a formally
describable behaviour. We must be as confident as we can
that this behaviour will produce the effects we want in the
informal environment. An acceptable level of confidence
demands that we must aim to reason as reliably about the
environment as we can about the machine.

3.1 Designating Appropriate Phenomena

This reliability is achievable in many application areas,
by techniques not entirely unrelated to those used to
formalise the machine. Hardware engineers simulate
precise discrete phenomena by careful control of
continuous phenomena. If ON is 3v, and OFF is 0V, there
are inevitably zones of uncertainty in the continuous
transition over the full voltage range. But it can be
bypassed by careful design. A tolerance band is defined —
3v±0.2v is ON, and 0v±0.2v is OFF — and the potential is
simply not examined while it is rising or falling. So from
the point of view of a discriminating circuit the voltage is
always recognisable as definitely ON or definitely OFF.
From the informal phenomena of continuous potential
differences, a discrete formal ON/OFF phenomenon has
been engineered.

In describing the informal environment we are not free
to engineer it in quite this way. But we can be careful to
designate as phenomena of interest [Jac95b] only those that
can be recognised with enough reliability for the current
context and purpose. For a system controlling the lights in
a greenhouse, a light switch is either on or off; but for a
system managing an experiment concerned with the
degeneration of electrical contacts by arcing, this is not
nearly reliable enough. A lift control system recognises the
state doors-obstructed; a racetrack photo-finish system
must make far finer discriminations.

We have considerable freedom to choose the
phenomena of interest. Candidate terms for denoting
environment phenomena may be:

Designatable terms: terms denoting phenomena that are
reliably recognisable by informally described criteria.
Definable terms: terms that can be defined by formal
expressions over designatable terms.
Vague terms: terms that are neither designatable not
definable.

Vague terms must be rejected. Their use in early
discussion with stakeholders is unavoidable. But in written
requirements and specifications they perpetuate uncertainty
and confusion. This disadvantage is exacerbated, rather
than mitigated, by attempts to negotiate agreements on the
meanings of vague terms or to reconcile manifestly
conflicting interpretations.

3.2 Using Definition

Developers should aim to use as few designatable
terms as possible, building up most of the necessary
terminology by formal definition. In this way the
relationship between requirements descriptions and their
subject matter can be made as simple and perspicuous as
possible.

Consider, for example, the concept of a flight in a
system concerned with airline schedules. Notoriously, this
concept is hopelessly vague. But not many designatable
phenomena are needed to support the practical purposes for
which it is used. From these designatable phenomena —
for example, aeroplane, airport, person, take-off, land,
embark, disembark — enough terminology can be defined
— for example, trip, stage, round-trip — to allow the
concept of flight to be discarded and the system
requirements put on a firmer foundation.

3.3 When Are Phenomena Shared?

In some cases, the sharing of particular phenomena is
obvious and beyond dispute. The event in which car A
collides with car B is indisputably the same event as that in
which car B collides with car A.

But in most cases, deciding whether particular
phenomena are shared between two distinct domains

 2

fsevpts3a.wsd

demands the same kind of judgement as the original
designation of phenomena. For example, we may choose to
regard the pressing of a lift button and the receipt of the
corresponding signal by the lift control computer as the
same event. Of course there is some lapse of time while the
current flows in the circuit; and there is some possibility,
however small, that a broken wire will frustrate the receipt
of the signal although the button has been pressed. But for
purposes of controlling a lift the button press and the signal
receipt can properly be treated as one and the same event.

In a more interesting example, the posting and delivery
of a letter may in some circumstances be considered a
shared event in which sender and recipient participate.
Suppose we are concerned with a traditional game of postal
chess. Although the Royal Mail introduces inevitable delay
and uncertainty between posting and delivery, yet for the
purpose in hand these may be ignored. While the postcard
recording the progress of the game is in transit through the
mail, no move can occur: effectively the world stops, and
the transmission of the card may be regarded as an atomic
event.

4 Three Aspects of Shared Phenomena

The sharing of phenomena must be described
explicitly, for example by statements such as:

SHARED (writer.write, reader.read);
Each write event in the writer domain is also a read event
in the reader domain.

In addition to specifying explicitly which phenomena
are shared, we must specify what is shared in each
phenomenon, and what is the nature of the sharing
relationship. Three important considerations in describing
sharing are control, event projections, and event
classification.

4.1 Control

Control is important because in general the participants
in a shared phenomenon do not participate on an equal
footing. In CSP participation is symmetric: for an event to
occur, each participant must be ready to participate, but
none takes the initiative. The initiative comes from an
imaginary source that is constantly trying all classes of
event: among those whose participants are ready one is
selected at random. This is not intended as a realistic
account of event occurrence. More realistically, each event
is caused by one agent or domain, or by the machine. The
other participants are passive. In some cases they may
refuse or frustrate the event, but they never initiate it.

It is therefore necessary to indicate, for each class of
phenomenon, where control resides. If events and states
are declared within domains, a suitable notation may be:

DOMAIN writer; EVENT ?write; ...
DOMAIN reader; EVENT !read; ...

SHARED (writer.write, reader.read);

The marking ? or ! indicates that the phenomenon — in
this case, an event — is respectively externally or internally
controlled. We take the position that control — that is, the
initiative in an event — must belong to one domain, never
to two or more.

The same control consideration applies to shared states.
For example, if that state of a sensor is shared between the
machine and the domain in which the sensor is set and
reset, we may declare:

DOMAIN floor; STATE !f_sensor; ...
DOMAIN machine; STATE ?m_sensor; ...
SHARED (floor.f_sensor, machine.m_sensor);

Naturally, the control declarations for a shared class of
phenomenon must be consistent. In the domain
declarations of each shared class, there must be one and
only one declaration specifying internal control.

4.2 Event Projections

The true control situation is still more complex than
this. The initiative in an event may be distributed, different
participating domains being responsible for different
aspects. For example, the computer and a disk drive both
participate in a read/write operation; the computer initiates
the occurrence of the event; but the drive determines the
data to be transferred.

Further, individuals may play a role in an event in one
domain but not in another. For example, in the computer
domain a role in the read/write event may be played by the
individual buffer into which the data will be read. The
computer domain determines the buffer, just as the disk
drive domain determines the data to be transferred. But the
buffer is not an individual in the disk drive domain, and can
not appear in the event declaration in that domain.

Essentially, then, we must decompose the declaration
of each event class by separating the declaration of the
event occurrence from the declaration of the roles played
by individuals in each participating domain, and the
specification of control over those roles. So we need a
notation such as:

DOMAIN writer; EVENT ?write(!data); ...
DOMAIN reader; EVENT !read(?value,!buffer); ...
SHARED (writer.write(data), reader.read(value));

4.3 Event Classification

Event classification is important [Zav96] because there
is no a priori reason to believe that the classification of
events appropriate to one domain, to one projection of a
domain’s properties, or to one subproblem or requirement
will be appropriate to another. Descriptive techniques are
therefore needed that allow arbitrary event classification
within and between domains.

 3

fsevpts3a.wsd

This kind of event classification must take account of
states. For example, taking a telephone receiver offhook
when the phone is ringing is classified as an answer event,
while taking it offhook while the phone is idle is classified
as an initiate-call event.

5 Summary

Different viewpoints are related and tied together by
shared designated phenomena. Choosing which
phenomena are to be designated and which are shared is a
fundamental decision about how we think the world fits
together, how our descriptions fit together, and how
requirements fit together. An effective viewpoints
approach requires a sound basis in phenomenology in
general, and shared phenomena in particular.

6 Acknowledgements

Much of the work on which this short paper is based
has been done in conjunction with Pamela Zave or Daniel
Jackson.

7 References

[Eas96] Easterbrook, Steve and Bashar Nuseibeh
(1996), “Using ViewPoints for inconsistency
management”, Software Engineering Journal 11,1.

[Hoa85] Hoare, C.A.R. (1985), Communicating
Sequential Processes, Prentice-Hall International.

[Jac95a] Jackson, Michael and Pamela Zave (1995),
“Deriving Specifications from Requirements: An
Example”, In Proceedings of the 17th International
Conference on Software Engineering, IEEE CS Press.

[Jac95b] Jackson, Michael (1995), Software
Requirements & Specifications, Addison-Wesley, Reading,
MA.

[Jac95c] Jackson, Daniel (1995), “Structuring Z
Specifications with Views”, ACM Transactions on Software
Engineering and Methodology, 4, 4.

[Jac96] Jackson, Daniel and Michael Jackson (1996),
“Problem Decomposition for Reuse”, Software Engineering
Journal 11,1.

[Joh88] Johnson, W.L. (1988), “Deriving
Specifications from Requirements”, In Proceedings of the
10th International Conference on Software Engineering,
IEEE CS Press.

[Kot96] Kotonya, G., and I. Sommerville (1996),
“Requirements Engineering with viewpoints”, Software
Engineering Journal 11,1.

[Zav93] Zave, Pamela, and Michael Jackson (1993),
“Conjunction as Composition”, ACM Transactions on
Software Methodology 2, 4.

[Zav96] Zave, Pamela, and Michael Jackson (1996),
“Where Do Operations Come From?”, ACM Transactions

on Software Methodology, to appear.

 4

fsevpts3a.wsd

