
Formalism and Intuition
in Software Engineering

Michael Jackson

Department of Computing
The Open University

Milton Keynes MK7 6AA
United Kingdom

Abstract. A major and so far unmet challenge in software engineering is to
achieve and act upon a clear and sound understanding of the relationship between
formalism and intuition in the development process. The challenge is salient in the
development of cyber-physical systems, in which the computer interacts with the
human and physical world to ensure a behaviour there that satisfies the require-
ments of the system’s stakeholders. The nature of the computer as a formally de-
fined symbol-processing engine invites a formal mathematical approach to soft-
ware development. Contrary considerations militate against excessive reliance on
formalism. The non-formal nature of the human and physical world, the complex-
ity of system function, and the need for human comprehension at every level de-
mand application of non-formal and intuitional knowledge, of insight and tech-
nique rather than calculation. The challenge, then, is to determine how these two
facets of the development process—formalism and intuition—can work together
most productively. This short essay describes some origins and aspects of the
challenge and offers a perspective for addressing it.

Keywords: approximation, behaviour, correctness, description, formalism, inter-
pretation, intuition, problem world, requirement, structure.

Introduction

Dieter Rombach’s work has been admirably characterised by a resolve to pay at-
tention to the reality of software engineering practice and to the multitude of intui-
tive and informal insights that have been offered [Endres+03] to clarify its chal-
lenges and support its improvement. This short paper follows his excellent

2

example, addressing a specific challenge in software development practice: the
proper relationship between formalism and intuition.

Intuition is the faculty of recognition, understanding and action in the world on
the basis of experience, insight and knowledge, with little or no appeal to con-
scious reasoning. The strength of intuition is that it is unbounded: in exercising
our intuition we are not restricted to a limited set of observations and considera-
tions decided a priori, but we draw whatever presents itself to us from the situa-
tion in hand. When we read an intuitive description the words are not opaque: we
are looking at the subject matter through the medium of the description. This is
how human oral and written communication works: as I hear or read your words I
experience or enact through them, in my imagination, what you are saying about
the world.

Some extreme examples of human intuition dispense with conscious use of lan-
guage altogether. Studying how firefighters decide how to tackle a fire leads one
researcher [Klein03] to define intuition as “the way we translate our experiences
into judgments and decisions ... by using patterns to recognize what’s going on in
a situation.” Another researcher [Rochlin97] describes how operators in military,
air traffic control, and other critical environments rely on maintaining an inte-
grated cognitive map drawn from diverse inputs: they call it ‘having the bubble’.
The map allows them to maintain and act on a single picture of the overall situa-
tion and operational status without conscious description, analysis or reasoning.

Formalism, by contrast, relies entirely on conscious description, analysis and
reasoning. Its use is not an innate human faculty, but a skill that must be learned.
Formalism is an intellectual artifact that evolved from the development of mathe-
matics in ancient civilisations. Its essence is abstraction. Arithmetic and geometry
emerged from practical needs: counting shepherds’ flocks, measuring farmers’
land, paying taxes, and laying out the structures of large buildings. The Greeks
saw that mathematics had an intrinsic intellectual interest. Numbers, planes, points
and lines could be completely separated from their practical utility. Plato’s rule
that no-one ignorant of geometry should enter his Academy in Athens was not an
expression of welcome to land surveyors or estate agents: it expressed the convic-
tion that knowledge of the material world was inferior to knowledge of mathemat-
ics. Only in the abstract world of mathematics could the conclusions of reasoning
be proved correct beyond all doubt.

In modern times some mathematicians have expressed the essentially abstract
nature of formalism uncompromisingly. In an address [Weyl40] at the University
of Pennsylvania, the German mathematician Hermann Weyl said:

“We now come to the decisive step of mathematical abstraction: we forget
about what the symbols stand for. [The mathematician] need not be idle;
there are many operations he may carry out with these symbols, without
ever having to look at the things they stand for.”

Weyl’s doctoral advisor was David Hilbert, whom he reported [Weyl44] as say-
ing:

3

“It must be possible to replace in all geometric statements the words point,
line, plane, by table, chair, mug.”

For Weyl and Hilbert, the symbols used in a formal description are arbitrarily cho-
sen: any reference to the material world is a mischievous and misleading irrele-
vance.

Extreme forms of pure intuition or pure formalism are unlikely to appear in any
practical enterprise, and certainly not in software development. In practice, for-
malism is more like applied than like pure mathematics: application to the material
world is never very far away, and intuition plays a significant part. In practice, in-
tuition finds expression in semi-formal documents and discourse: some light-
weight formal notions may be introduced to avoid obvious potential confusions,
and sound reasoning is recognised—though not always achieved—as a desirable
goal. How the two should be balanced and combined, both in the large and in the
small, is still an open question.

Some Software History

Two streams may be distinguished in the evolving modern practice of software
development since it began in the 1940s. One may be called the formal stream.
Programs are regarded as mathematical objects: their properties and behaviour can
be analysed formally and predictions of the results of execution can be formally
proved or disproved. The other stream may be called the intuitive stream. Pro-
grams are regarded as structures inviting human comprehension: the results of
their execution can be predicted—not always reliably—by an intuitive process of
mental enactment combined with some informal reasoning.

Both streams have a long history. A talk by Alan Turing in 1949 [Turing49]
used assertions over program variables to construct a formal proof of correctness
of a small program to compute the factorial function. Techniques of program
structuring, devised and justified by intuition, came to prominence in the 1960s
with the control structures of Algol 60 [Naur60], Conway’s invention of corouti-
nes [Conway63], and the class concept of Simula67 [Dahl72]. Dijkstra’s advocacy
of restricted control flow patterns in the famous GO TO letter [Dijkstra68] rested on
their virtue of minimising the conceptual gap between the static program text and
its dynamic execution: the program would be more comprehensible. In further de-
velopments in structured programming the two streams came together. A struc-
tured program text was not only easier to understand: the nested structure of local-
ised contexts allowed a structured proof of correctness based on formal reasoning.

At this stage the academic and research communities made an implicit choice
with far-reaching consequences. Some of the intellectual leaders of those commu-
nities were encouraged by the success and promise of formal mathematical tech-
niques to focus their attention and efforts on that stream. They relaxed, and even-
tually forsook, their interest in the intuitive aspects of program design and

4

structure. For those researchers themselves the choice was fruitful: study of the
more formal aspects of computing stimulated a rich flow of results in that particu-
lar branch of logic and mathematics.

For the field of software development as a whole this effective separation of the
formal and intuitive streams was a major loss. The formal stream flowed on, di-
verging further and further from the concerns and practices of realistic software
development projects. The intuitive stream, too, flowed on, but in increasing isola-
tion. Systems became richer and more complex, and the computer’s role in them
became increasingly one of intimate interaction with the human and physical
world. Software engineering came to be less concerned with purely symbolic
computation and more concerned with the material world and with the economic
and operational purposes of the system of which software was now only a part.
Development projects responded increasingly to economic and managerial im-
peratives and trends rather than to intellectual or scientific disciplines.

In recent decades advocates of formal methods have made admirable efforts to
reconnect the two streams to their mutual advantage; but the very necessity of
these efforts is an indictment of the present state of software development practice
and theory as a whole. Formalism and intuition are still too often seen as compet-
ing adversaries. Some formalists believe that their work offers powerful solutions
that practitioners have wilfully ignored. Some practitioners believe that formalists
have simply ignored the real problems and difficulties of software engineering.
The purpose of this essay is to offer a little relationship counselling to the parties,
and to address the implicit challenge: How can we combine the undoubted bene-
fits of formal techniques with the more intuitive and informal aspects that have
always been an integral part of the practice of traditional branches of engineering?

Software Engineering

Structured programming was ideally suited to what we may call pure program-
ming. The archetypical expository examples of pure programming are calculating
the greatest common divisor of two integers, sorting an array of integers, solving
the travelling salesman problem, or computing the convex hull of a set of points in
3-space. These problems proved surprisingly fertile in stimulating insights into
program design technique, but they were all limited in a crucial way: they required
only computation of symbolic output results from symbolic input data. The devel-
oper investigates the problem world, identifies a symbolic computational problem
that can usefully be solved by computer, and constructs a program to solve it. The
user captures the input data for each desired program execution and presents it as
input to the machine. The resulting output is then taken by the same or another
user and applied in some way to guide action in the problem world. The process is
shown in the upper part of Figure 1.

5

Figure 1: A Pure Program and a Software Engineered Cyber-Physical System

A realistic program of this kind may be designed to solve a general mathematical
problem—for example, to solve a set of partial differential equations. It may or
may not embody some more specialised theory of the problem world. For exam-
ple, an early use of electronic computing was to print tables of calculated trajecto-
ries for artillery under test at the Aberdeen Proving grounds in Maryland USA
[Dickinson67]. The programs may have explicitly embodied a substantial ballistic
theory, or they may have been programmed only to solve general systems of par-
tial differential equations. In either case, the machine executing a pure program is
isolated from the problem world by the operators who prepare and present the ma-
chine’s inputs and collect and use its outputs.

By contrast, the lower part of Figure 1 shows a cyber-physical system, whose
development is a task, not of pure programming but of software engineering. In
such a system the machine—the computing part—is introduced into a material
problem world to serve specific purposes. The problem world consists of inter-
connected problem domains. some of these domains are physical parts of the
world such as mechatronic devices, other computer systems, parts of the built en-
vironment, parts of the natural world, and objects such as credit cards that encode
lexical information in physical form. Additionally, some other problem domains
are human beings participating in the system behaviour, interacting with each
other and with the other domains, in both active and passive roles as users, opera-
tors, patients, subjects, passengers, drivers, and so on. All of these problem do-
mains have their own given properties and behaviours.

The function of the machine is to ensure a certain desired behaviour in this
world, by monitoring and controlling the parts of the world to which it is directly

Machine

Output

Input
Problem
World

Machine
?

?
?system

behaviour

Problem
Domain

Problem
Domain

Problem
Domain

Problem
Domain

Problem
Domain Problem

Domain

6

interfaced. The desired behaviour in the world is not limited to these directly inter-
faced parts, but also embraces other more remote parts which are monitored and
controlled through their interactions with other, neighbouring, parts and thus, indi-
rectly, with the machine. The purpose of this desired behaviour is to satisfy the
needs of the system’s stakeholders. Some stakeholders, such as operators, patients
and users, are not mere observers but also participate as problem domains in the
system behaviour. Others, such as safety regulators and business managers, ob-
serve the system behaviour only from a distance. All stakeholders legitimately ex-
pect the system behaviour, seen in particular projections from their individual per-
spectives, to satisfy their needs and purposes.

The Development Task

The behaviour of a cyber-physical system is governed by the interacting behav-
iours of the machine and the problem domains. Within the limits of the hardware
and operating system, the machine’s behaviour can be freely defined by the soft-
ware developed for the system. The behaviour of each problem domain is con-
strained by its given properties; superimposed on these is the effect of its interac-
tions with other parts of the system. To achieve the desired overall system
behaviour the machine must both respect and exploit the given properties and be-
haviours of all the problem domains.

The overall system behaviour must satisfy the needs of the stakeholders. It is a
mistake to suppose that this behaviour is understood in advance by the stake-
holders, either individually or collectively, and is waiting only to be discovered
and documented. The stakeholders do have various needs and desires, but they
may be only dimly perceived. A major part of the development task—explicitly
recognised in the past twenty years as requirements engineering—is designing be-
haviour projections that will satisfy the needs of each stakeholder, and combining
these projected behaviours into a design for the overall system behaviour. Each
desired projected behaviour, and the complete system behaviour that somehow
combines them all, must be feasible: that is, it must be achievable by the machine,
suitably programmed and interacting with the problem domains.

The development task, then, has many facets and parts. The properties of each
problem domain must be studied, described and analysed; the many projections of
the desired system behaviour must be designed, described and presented to the
stakeholders for their critical approval; the combination of these projections must
itself be designed; and the behaviour of the machine must be designed and speci-
fied at its interface to the problem world. The resulting system is a complex arti-
fact. Before examining the sources and nature of its complexity we will first look
briefly at the ubiquitous intellectual activity of software engineering: describing a
material reality and reasoning about its properties and behaviour.

7

Describing and Reasoning

Figure 2 outlines the general process of forming a description and reasoning about
it to draw useful conclusions about the machine or the problem world, expressed
in a modified or new description.

Figure 2: Describing a Material Reality and Reasoning about it

Description A is constructed first. Phenomena of the reality, relevant to the con-
cern in hand, are selected and named, the mapping between names and phenomena
being given by the interpretation. The meaning of the description—what it says
about the world—depends on the interpretation and on the language in which the
description is expressed. Given description A, it is then possible to reason about
the world on the basis of that description, deducing a conclusion in the form of de-
scription B. This conclusion has a meaning in the reality, which can be understood
by reading the derived description in the light of the interpretation.

This simplified account allows us to recognise the difference between formal
and non-formal description and reasoning. In a formal setting the chosen language
of description is a formal language, rigorously specified. The selected phenomena
must then be regarded as elements of types supported by the language. For exam-
ple: in the language of propositional calculus each relevant phenomenon must be
an atomic uninterpreted truth-functional proposition; in the language of predicate
calculus it must be a predicate, a function, or an individual. The grammar of the
language also includes a small set of connectives, such as logical operators, allow-
ing meaningful statements to be made in the language and combined in various
ways. Descriptions are assembled from these elements according to rigid syntactic
rules. The advantage purchased by this linguistic rigidity is a formal calculus of
reliable reasoning. All or part of the initial description can be treated as a premiss
from which conclusions can be derived and proved with mathematical certainty.

The diagram applies equally well to the structure of intuitive or informal de-
scription and reasoning. An informal description must be expressed in some lan-
guage. The language has symbols, and the symbols have some interpretation—that
is, they denote some phenomena of the described reality. Yet the content, charac-
ter and virtues of the intuitive process are quite different from the formal. Symbol
choices are very significant in informal description, especially if the descriptions

reasoning

description A reality
interpretation

description B reality
interpretation

phenomena names

phenomena names

8

are expressed in natural language: they remind us to look across from the descrip-
tion to the reality it describes and to check continually whether the description re-
mains valid. The logic of informal description is unconstrained: it is nearly true to
say that in a rich natural language like English we can say anything whatsoever.
We can even define and use new linguistic features within one description. The
price for this linguistic freedom is some imprecision in description, and unreliabil-
ity in both the process and the results of reasoning. Nonetheless, intuition and in-
formality are not merely degraded and incompetent cousins of formalism. Impre-
cision and unreliability bring major compensating benefits.

In practice the activity of describing and reasoning is rarely perfectly formal or
perfectly informal. Rejecting Hilbert’s maxim, most formalists usually choose
symbols intended to remind the reader of the phenomena they denote in the real-
ity; and many intuitive practitioners use natural language description with careful
definitions of the meanings of names, or include embedded formal notations such
as finite state machines where greater precision seems necessary.

Formalism and System Complexities

Cyber-physical systems exhibit complexity in more than one dimension. The func-
tional complexity of a realistic system is immediately obvious. Typically a system
has many functional features whose purposes are not harmonious or even consis-
tent. The individual features may be intrinsically complex, and the complexity of
the whole system is greatly increased by their interactions. Some features may be
mutually exclusive in time, but during system operation multiple features may be
simultaneously active. Further, many systems are required to operate essentially
continuously, scarcely ever reaching a quiescent state in which the system can be
removed from service, isolated from the rest of the world, and returned to a well-
understood initial state before resuming operation. So the system may be required
to achieve smooth transitions between different functional behaviours adjacent in
time. For an avionics system, for example, there are transitions from taking-off to
climbing, from landing to taxiing, and so on; and a lift control system must main-
tain user safety and reasonable convenience in the transition from normal lift ser-
vice to firefighter operation.

One effect of this functional complexity is that there are few or no invariant
properties of the required system behaviour. For example, it might be thought that
in a system to control the movement of railway trains over a region of track a
safety invariant must hold: no two trains must ever be present in the same track
segment. But in reality this cannot be a required invariant: it would make it impos-
sible to assemble a train from two trains, or for a breakdown train to deal with the
aftermath of a collision or to rescue a locomotive that has lost tractive power. An
access control system might seem to demand that no person is ever present in a
room for which they have no access authorisation. But this property would restrict

9

escape routes from the building in case of fire, and in that context would be for-
bidden by fire regulations. In a lift control system an apparent safety invariant
stipulates that the lift car doors are never open unless the lift is in home position at
a floor. But a firefighter who is in the lift at a high floor must not be prevented
from descending even if the doors refuse to close.

The given properties and behaviours of a problem domain—those that it pos-
sesses independently of the behaviour of the machine—exhibit a similar dynamic
complexity. The given properties and behaviours are determined by four factors,
at least two of which are dynamic. A fifth factor determines which properties are
of interest at any time.

The first determining factor is scientific law—for example, the laws of physics.
At the granularity relevant to most software engineering these laws are constant
and well understood.

The second factor is what we may call the constitution of the domain. This is
its shape and material, and the designed, evolved or otherwise determined con-
figuration of its constituent parts. For example, within the bounds set by physics, a
person’s body weight, physical strength and reaction speed are determined by hu-
man physiology in general and the individual’s physiology in particular. The
maximum acceleration of a lift car rising in its shaft is determined not only by the
laws of physics but also by the design of the motor, the power supply and the lift
car and counterweight. This second factor, constitution, is more or less constant
for each particular problem domain, and is open to study and analysis.

A third, time-varying, factor is the condition of the domain. Engineered devices
degrade over time, especially if they are not properly maintained or subjected to
misuse or to excessive loads. A human operator becomes tired in an extended ses-
sion of participation in the system; and, in the contrary direction, an operator’s
speed and skill may increase with practice over a number of similar sessions.

A fourth factor is variation of the environment over time. Carefully engineered
devices assume an acceptable operating environment, specifying such conditions
as wind speed, ambient temperature, air purity and atmospheric pressure. Human
behaviour, too, depends on such environmental conditions. If the environment
changes the domain may exhibit changed properties.

Broadly, we may say that the first two of these four factors—scientific law and
domain constitution—can be investigated and analysed at system design time. The
third and fourth—condition and environment—vary during system operation.

The fifth factor, domain role, is of a different kind. At any particular time, a
problem domain has a large set of potentially observable properties subject to the
first four factors, but only a small subset are significant for the system behaviour.
The domain itself participates only in some of the system’s functions, and in those
it plays only a limited role exhibiting only a subset of its given properties. For ex-
ample, the aerodynamic properties of a car body are highly significant while it is
being driven at high speed on a motorway, but irrelevant to its desired behaviour
in automatically assisted parking, in the aftermath of a collision, or while undergo-
ing maintenance in the workshop.

10

These considerations may be summarised by saying that the rarity of required
invariants of system behaviour is parallelled by the rarity of invariants of problem
domain properties.

Contexts of Domains and Behaviours

There is an important interplay between the variation of domain properties and the
variation of the active set of system functional behaviours. For each domain the
properties of current significance varies according to its role in each system be-
haviour of the currently active set. They vary also with changes in the environ-
ment, and some of those changes will naturally demand different system behav-
iours. For example, a power failure in the lift control system seriously affects the
properties of the mechatronic equipment, which is now running on emergency
power supplies of limited capacity; at the same time it also requires transition to a
special parking behaviour in which passengers are brought safely to the nearest
available floor.

The most obvious examples of this interplay of domain properties and system
behaviour are found in fault-tolerance. In the lift control system, to provide normal
lift service the machine must directly control the motor power and direction, and
monitor the floor sensors to detect the arrival and departure of the lift car at each
floor. This behaviour is possible only if the relevant problem domains of the lift
equipment are in healthy condition: this is therefore a local assumption, on which
the behaviour will rely [Hayes+03]. It then becomes necessary to develop another
system behaviour whose specific purpose is to monitor the health of the lift
equipment by observing its run-time behaviour. These are therefore at least three
distinct system functional behaviours: one to provide normal lift service; a second
to detect and perhaps diagnose equipment faults; and at least one other to provide
the appropriate behaviour in the presence of a fault. The domain properties of the
equipment on which they rely are quite different: one relies on fault-free behav-
iour; the second relies on the estimated probabilities of different equipment faults
and on their consequences in observable phenomena; the third relies on the resid-
ual functionality of the faulty equipment.

This restriction of each projection of system behaviour to a particular context in
which particular assumptions hold is only a finer-grain version of the inevitable
restriction on the whole system’s operating conditions. No system, however criti-
cal, can aspire to operate dependably in every circumstance that is logically or
physically possible. Tall buildings are designed to withstand high wind speeds, but
only up to a limit of what is reasonably plausible in each building’s particular lo-
cation. Passenger aircraft are designed to fly in the earth’s atmosphere, but not in
air of unlimited turbulence or in a high density of volcanic ash. Even when we
choose to extend the proposed operational conditions to allow graceful degrada-
tion of system function we must still accept some limitations. We can aim only to

11

choose reasonable limits on the circumstances our system will be designed to han-
dle, and to design with adequate reliability within those limits.

The resolutions of functional and domain complexity come together in the as-
sumed context of each projected functional behaviour. Each projected functional
behaviour can then be represented as shown in the lower part of Figure 1. In each
projection the impediments to successful application of appropriate formalism
have been greatly diminished. How and why this is so is discussed in the follow-
ing section.

Structure, Invention and Proof

The great French physicist and mathematician Henri Poincaré wrote [Poincaré08]:
“For the pure geometer himself, this faculty [intuition] is necessary; it is by
logic one demonstrates, by intuition one invents. To know how to criticize
is good, to know how to create is better. You know how to recognize if a
combination is correct; what a predicament if you have not the art of
choosing among all the possible combinations. Logic tells us that on such
and such a way we are sure not to meet any obstacle; it does not say which
way leads to the end. For that it is necessary to see the end from afar, and
the faculty which teaches us to see is intuition. Without it the geometer
would be like a writer who should be versed in grammar but had no ideas.”

Poincaré is speaking of mathematics, but what he says applies no less to software
engineering. It is worth understanding what he says.

The key point is the distinction between demonstration or proof on one side,
and invention or discovery on the other side. The primary role of formalism is
proof. Before engaging in proof we must know what we wish to prove and the ex-
act context and subject matter for which we wish to prove it. Then we are able to
choose an appropriate formal language for our description, knowing that its sup-
ported types can represent the relevant phenomena of the reality, and that its logic
allows the kind of reasoning on which we are embarking.

In inventing and discovering, on the other hand, we do not know exactly what
we wish to invent or discover: if we did we would already have it in our hand. In
Poincaré’s words, it is necessary to see the end from afar, and the faculty that
teaches us to see is intuition. By this we do not mean that we should leap foolishly
to a wild guess, impatient of careful thought and reasoning. Rather, invention and
discovery are learning processes of a particular kind, in which we need to explore
a space of possibilities, sketching our thoughts and perceptions at each resting
place that seems promising. For this kind of intellectual activity we need freedom
to record our perceptions while they are inchoate, imprecise and even inconsistent.
We need a loose structuring of our descriptions and reasoning in which we can re-
consider any step without invalidating every other part of what we have done so
far. We need to be able to add modal statements about time or obligation to a de-

12

scription that so far contains nothing alien to classical logic. We need to be able to
offer temporary accommodation to counterexamples to ensure that they will not be
forgotten, without undermining or erasing the imperfectly general but still valu-
able observation or conclusion that they disprove.

Formalism militates strongly against these purposes. Even if we eschew Hil-
bert’s insistence on extreme mathematical abstraction, the very formality of the
chosen language focuses our attention on its abstract logical content and distracts
us from attending to the reality described. We are compelled to choose the de-
scriptive language at the outset, when we know least about the terrain to be ex-
plored and the flora and fauna we will find there. Worse, a formalism encourages
the construction of a single mathematical structure whose virtue is founded on its
internal consistency. A single counterexample or a discovered contradiction is a
complete disproof: from the contradiction every truth and every falsehood follows
without distinction, and the whole edifice becomes discredited.

By contrast, an informal process of discovering properties of the problem world
and of the stakeholders’ requirements allows the invention of instances of a con-
ceptual structure such as the assemblage of system behaviours sketched in the pre-
ceding section. Within such a structure it is possible to separate distinct projec-
tions of the system behaviour. Each such projection rests on explicit assumptions
of problem domain properties in the context for which the behaviour is designed,
and is accompanied by an informal design of the relevant projection of the ma-
chine behaviour relying on those assumptions.

Within each of these limited projections formalism can then play its most effec-
tive role. The operational context, the problem domain properties, and the desired
functionality are restricted: within those restrictions, uniform and relatively simple
assumptions can be captured in axioms and a well-chosen formalisation can
achieve a good approximation to the problem world reality. The informal design
explains how the projected system behaviour is to be achieved, and this explana-
tion can then be made precise and subjected to formal analysis to detect any logi-
cal errors. Formalism is deployed locally within each part of the structure. The
structure itself, and the substance of its parts, are the product of an intuitive and
informal approach.

Envoi

To a committed formalist, advocacy of intuition in software engineering may seem
a heretical denial of the value of formalism and rigour. Not so. The point is that
formalism has its proper place. Its place is not in the early stages of exploration
and learning, where it is premature and restrictive, but in the later stages, where
we need to validate our informal discoveries, designs and inferences by submitting
them to the rigour of formal proof. Its place is not in the processes of conceiving,
designing and forming large structures, but in the later stage of constructing and

13

checking the smaller parts for which those structures provide their carefully de-
fined and restricted contexts, and the relationships among those parts. The essen-
tial point is that at every level informal and intelligent use of intuition must pre-
cede application of formalism. It must shape the large structure of the whole set of
development artifacts; and within that structure it must guide the process of learn-
ing, understanding, inventing and documenting the given and desired properties
and behaviours of the problem domains. Only then can these descriptions be prof-
itably formalised and their formal consequences verified.

Acknowledgments

This essay owes much to years of cooperation and stimulating discussion with
many people, especially Anthony Hall, Ian Hayes, Daniel Jackson, Cliff Jones,
Thein Than Tun and Yijun Yu. Since none of them has yet seen even a draft of the
essay, they cannot be held responsible for its deficiencies.

References

[Conway63] Melvin E. Conway; Design of a separable transition-diagram compiler;
Communications of the ACM Volume 6 Number 7, pages 396-408, July 1963.

[Dahl72] Ole-Johan Dahl and C A R Hoare; Hierarchical Program Structures; in O-J
Dahl, E W Dijkstra and C A R Hoare; Structured Programming; Academic Press, 1972

[Dickinson 67] Elizabeth R Dickinson; Production of Firing Tables for Cannon Artillery;
Report No 1371, US Army Materiel Command, Ballistic research Laboratories, Aber-
deen Proving ground, Maryland, USA, November 1967.

[Dijkstra68] E W Dijkstra; A Case Against the Go To Statement; EWD 215, published as a
letter to the Editor (Go To Statement Considered Harmful): Communications of the
ACM Volume 11 Number 3, pages 147-148, March 1968.

[Dijkstra89] E W Dijkstra; On the Cruelty of Really Teaching Computer Science; Commu-
nications of the ACM Volume 32 Number 12, pages 1398-1404, December 1989.

[Endres+03] Albert Endres and Dieter Rombach; A Handbook of Software and Systems
Engineering, Addison-Wesley, 2003.

[Hayes+03] Ian J. Hayes, Michael A. Jackson, and Cliff B. Jones; Determining the specifi-
cation of a control system from that of its environment; in Keijiro Araki, Stefani Gnesi
and Dino Mandrioli eds, Formal Methods: Proceedings of FME2003, pages 154-169,
Springer Verlag, Lecture Notes in Computer Science 2805, 2003.

[Jackson00] Michael Jackson; Problem Frames: Analysing and Structuring Software De-
velopment Problems; Addison-Wesley, 2000.

[Klein03] Gary Klein; Intuition at Work; Doubleday, 2003.
[Naur60] J W Backus, F L Bauer, J Green, C Katz, J McCarthy, A J Perlis, H Rutishauser,

K Samelson, B Vauquois, J H Wegstein, A van Wijngaarden, M Woodger, ed Peter
Naur; Report on the Algorithmic Language ALGOL 60; Communications of the ACM
Volume 3 Number 5, pages 299-314, May, 1960.

14

[Poincaré08] Henri Poincaré; Science et Méthode; Flammarion 1908; English translation
by Francis Maitland, Nelson, 1914 and Dover 1952, 2003.

[Polanyi58] Michael Polanyi; Personal Knowledge: Towards a Post-Critical Philosophy;
Routledge and Kegan Paul, London, 1958, and University of Chicago Press, 1974.

[Rochlin97] Gene I Rochlin; ; Trapped in the Net: The unanticipated consequences of
computerization; Princeton University Press, 1997.

[Turing49] A M Turing. Checking a large routine; In Report on a Conference on High
Speed Automatic Calculating Machines, pages 67-69, Cambridge University Mathe-
matical Laboratory, Cambridge, 1949. Discussed in: Cliff B. Jones; The Early Search
for Tractable Ways of Reasoning about Programs; IEEE Annals of the History of Com-
puting Volume 25 Number 2, pages 26-49, 2003.

[Weyl40] Hermann Weyl; The Mathematical Way of Thinking; address given at the Bicen-
tennial Conference at the University of Pennsylvania, 1940.

 [Weyl44] Hermann Weyl; David Hilbert and His Mathematical Work; Bulletin of the
American Mathematical Society Volume 50, pages 612-654, 1944.

Juergen Muench and Klaus Schmid eds, Perspectives on the Future of Software
 Engineering: a Festschrift in Honour of Dieter Rombach, Springer verlag 2013.

