
The Real World

Michael Jackson

1 Introduction

It is a privilege and a great pleasure to join so many distinguished computer
scientists in celebrating the work of Tony Hoare. Tony and I first met when
we were both Oxford undergraduates studying the languages of the ancient
Greeks and Romans, and their literature, history and philosophy. Tony was
two years ahead of me, and even then showed his deep interest in mathemati-
cal thought by his approach to the subject known as ‘logic’. This subject was
an intellectual playground, in which undergraduates were invited to consider
such questions as “Does God exist?", and “Question 7: Is question 7 unfair?".
Tony’s was a more purposeful approach. He went a long way outside the usual
undergraduate reading to study propositional and predicate logic, and gener-
ously shared his blossoming interest in them with me in sotto voce discussions
in the Merton College library.

Even then his extraordinary qualities were evident. He later gave further
evidence of extraordinary quality in another dimension in his work at Elliott
Brothers. There he came face to face with the real world of software develop-
ment. As he recounted in his Turing Award Lecture [4]:

“ I ... almost failed to notice when the schedule for [the Elliott 503
Mark II Software System] passed without event. The programmers
revised their implementation schedules and a new delivery date was
set some three months ahead in June 1965. Needless to say, that date
also passed without event. By this time, our customers were getting
angry and my managers instructed me to take personal charge of the
project. I asked the senior programmers once again to draw up revised
schedules, which again showed that the software could be delivered
in another three months. I desperately wanted to believe it but I just
could not.”

The evidence of his quality, of course, is in the last four words: “I just could
not”. And in the determined and clear-sighted way in which he brought the
project under control in the months that followed.

Millennial Perspectives in Computer Science, pages 157-173; Jim Davies, Bill Roscoe, Jim Woodcock eds;Palgrave, 2000



158 The Real World

When he moved into the academic world, he took with him an experience
and understanding of that real world of software development—the world of
angry customers, unstable requirements, impossible schedules, and develop-
ers whose mental energies are entirely consumed by their struggle with the
computing environment in which they must work. Any computer scientist
who means to produce results that can be used in that real world must have
some solid understanding of it; and Tony Hoare is preeminent among those
who do.

2 The Real World

But that is not the real world that I want to bring to your attention. I want
to direct your attention to the real world in which most computing problems
are located—the physical world of employees, customers, lifts with doors and
buttons, web sites, telephone switches, warehouses, aeroplanes, motor cars,
railway trains, bank accounts and nuclear power plants.

Some computing problems, it is true, are not located in this real physical
world, but exist in a Platonic world of ideal abstractions. These are problems of
factorising large integers, of finding cut sets of graphs, of playing chess, prob-
lems of specifying mannerly behaviour for philosophers at the dining table,
and many others. Solutions to these problems are often vital prerequisites for
developing real world systems; but the problems themelves are pure abstrac-
tions, and do not partake of the essential nature of the natural world—that is,
of its informality.

The relationship between the abstract problems of pure computing science
and the problems that I claim are located in the real world are at the heart of
my theme. Brian Cantwell Smith, many years ago, discussed the relationship
between the abstract mathematical descriptions of computer science and the
real world [10]. He explained his view in a picture like this:

0

2

'

(

/

&20387(5

5($/ :25/'

&RPSXWHUV� 0RGHOV DQG WKH (PEHGGLQJ :RUOG �IURP &DQWZHOO 6PLWK�

The Computer on the left represents the kind of formal description we make
in developing a program or its specification; the Model in the centre is a formal
semantic model; the Real World on the right is the world where the problem is
located. For example, it might be that the description on the left is expressed
in CSP; the Model is a set of traces; and the Real World is some collection of



Michael Jackson 159

event phenomena that are—at least in principle—physically observable in the
world. Cantwell Smith says:

“The technical subject of model theory…is a study of the relationship
on the left. …at this point in intellectual history, we have no theory
of this right-hand side relationship.”

2.1 The Basis of Abstraction

In any practical development we are concerned to go from right to left in
Cantwell Smith’s diagram. We are interested in some parts of the world in
which our problem is located, and we need to describe them sufficiently accu-
rately for the purposes of the system we are building. We are going to make an
abstraction, and we must begin with the reality from which we will abstract.

The key step is to identify the classes of phenomena that will supply the
ground terms for our descriptions. This is not a trivial preliminary step to
be hurried through in our impatience to start the real work of development.
It is itself the real work of development. It can not be done by a perfunctory
identification of nouns and verbs and adjectives in some natural language text,
or by seeking phenomena to play pre-assigned roles in a favourite formalism.
It must be done by a careful examination of the world where the problem is
located, and a careful selection of classes of phenomena in that world. Our
selection must satisfy some stringent conditions:

• The classes must be sufficient to capture the properties of interest in our
domain.

• For each class we must be able to write a reliable recognition rule by which
an observer can determine whether an instance of the class has or has not
been observed. The recognition rule is, inevitably, informally expressed in
natural language.

• Each class must be susceptible of our intended abstraction without undue
distortion. For example, the members of a putative class of events must
be reasonably regarded as atomic and instantaneous if we hope to denote
the class by a letter in a CSP alphabet.

The reliability of the recognition rule is paramount. If we are interested in
genealogy we might identify the relationship of motherhood as relevant. We
write the recognition rule in a designation:

mother(x,y) ≈ x is the mother of y

Of course, this is a very poor recognition rule, because it leaves us in consid-
erable doubt about what is included. Does it encompass adoptive mothers,
surrogate mothers, stepmothers, foster mothers? Egg donors? Or, as Jayadev
Misra suggested to me on a previous occasion,

mother(GulfWar ,AllBattles) ?



160 The Real World

What about

mother(England,Parliaments) ?

We need to be more exact. Perhaps what we need is:

mother(x,y) ≈ x is the human genetic mother of y

If writing a satisfactory recognition rule proves too hard, we must conclude
that our chosen class should be rejected, and seek firmer ground elsewhere.

This selectivity is familiar to anyone who has tried conscientiously to give
directions to a passing motorist. We don’t say: “continue until you reach a
slight bend, then turn into the next road that has a rather poor surface and go
on to just before an attractive house”. How will the unfortunate traveller know
what is a “slight bend”, or a “rather poor surface”, or an “attractive house”?

If we mean to be helpful we give our directions in terms of features that
we believe will be unambiguously recognised: “turn left at the second traffic
lights, then right at the BP Service Station”. Even then, the world has unlimited
resources for defeating our efforts. Is a protected pedestrian crossing a “traffic
lights”?

2.2 Definition

Many terms that at first seem to invite designation should instead be defined
on the basis of designated and previously defined terms. For example:

Sibling(i, j) def= i ≠ j ∧ ∃m, f • Mother(m, i) ∧ Mother(m, j) ∧
Father(f , j) ∧ Father(f , j)

The difference between definition and assertion is crucial. In an inventory
problem, the definition:

ExpectedQuantity(qty , tt) def=
(Σe,q, t | (Receive(e,q, t) ∨ Issue(e,q, t)) ∧ t < tt) : q) = qty

defines the predicate ExpectedQuantity(qty , tt) to mean that the cumulative
total of quantities issued and received before tt is qty . It says nothing at all
about the world. By contrast, the designation

InStock(qty , tt) ≈ At time tt , qty items are in the stock bin

and assertion

∀qty , tt • InStock(qty , tt)�
(Σe,q, t | (Receive(e,q, t) ∨ Issue(e,q, t)) ∧ t < tt) : q) = qty

say that initially InStock(0, t0) and that subsequently stock changes only by
the quantities issued and received. There is no theft, no evaporation and no



Michael Jackson 161

spontaneous creation of stock. The definition of ExpectedQuantity expressed
only a choice of terminology; the designation of InStock and the accompanying
assertion express a falsifiable claim about the physical world.

2.3 The Machine and the World

In an elegant paper on program design [6], Hoare uses the versatile GCD exam-
ple to illustrate the need for several different notations in the different stages
of program development. He shows a progression from original capture of
requirements to the final development of efficient procedural code. Each suc-
cessive stage of the progression accepts further restrictions on expressiveness
in exchange for improved efficiency.

A different relationship among diverse descriptions is found in problems
located in the physical world. Here, one of the most important distinctions
of all is the distinction between the machine—which is the solution to the
problem—and the problem domain, where the problem is located and where
our customer will evaluate the result of our efforts.

It can be illustrated, at least in an initial form, by a problem of surpassing
triviality: the One-Way Traffic Lights problem. The problem is to control a pair
of traffic light units in order to achieve one-way working over a short stretch
of road that is under repair. Each light unit has a Stop light and a Go light. The
units are electrically connected to a small computer that can emit RPulses and
GPulses to each unit. To achieve one-way working the customer requires the
pattern of lights to be an endless repetition of the sequence

((Stop1,Stop2) for 50 seconds;
(Stop1,Go2) for 100 seconds;
(Stop1,Stop2) for 50 seconds;
(Go1,Stop2) for 100 seconds)

Our problem is to build the computer software. We may picture the prob-
lem like this:

2QH�:D\ 7UDIILF /LJKWV 3UREOHP 'LDJUDP

/LJKWV
6HTXHQFH

/LJKW
8QLWV

/LJKWV
&RQWUROOHU

_D_ _E_

_D_�� ^53XOVH>L@�*3XOVH>L@`
_E_�� ^6WRS>L@�*R>L@`

Our task, as always, is to construct the machine, represented by the striped
rectangle.



162 The Real World

We perform that task by programming a general-purpose computer to be-
come the Lights Controller. The real world of the problem domain, represented
by the plain rectangle, is the Light Units. The Light Units domain has two inter-
faces. One is an interface of shared phenomena with the machine: the RPulses
and GPulses of each unit are shared events controlled by the machine, in which
both the machine and the problem domain participate. The other is a notional
interface of observable phenomena, at which we suppose the customer to be
observing the behaviour of the units.

The customer is interested only in the Stop and Go states of the light units.
The requirement, represented by the dotted ellipse, is the condition that the
customer stipulates must hold in the world. Here, this is the Lights Sequence.

The problem, in the sense I am using the word, is to ensure that the require-
ment is satisfied. Since the requirement is a condition over phenomena—the
Stop and Go states of the light units—that are not shared with the machine, it
is evident that the requirement is in the real world and not in the machine.

2.4 Descriptions and Argument

When, eventually, we claim to have solved the problem, we must be able to
justify our claim. The justification must rest on an argument about these three
descriptions:

• The requirement R The requirement is a description of the condition
stipulated by our customer. It is a condition over any phenomena of the
problem domain in which the customer may be interested—in this case,
the Stop and Go states.

• The machine specification S The specification is a description of how
the machine will behave at its interface with the problem domain. It is a
condition over the shared phenomena at that interface—in this case, the
RPulse and GPulse events.

• The domain properties description D This is a description of the prob-
lem domain properties on which we rely. It must relate the phenomena
mentioned in the requirement to those mentioned in the specification, and
may also involve other problem domain phenomena.

Our argument will then be:

S, D � R

That is: if the machine behaviour satisfies the specification and the domain
properties are as described, then the customer’s requirement will certainly be
satisfied.

On investigation, the domain properties appear simple. Each light in each
unit is a toggle, the Stop lights being toggled by RPulses and the Go lights by
GPulses. Initially, each light is off.



Michael Jackson 163

Here is the behaviour of one Stop light:

%HKDYLRXU RI WKH 6WRS /LJKW LQ 2QH /LJKW 8QLW

�� ¬6WRS �� 6WRS

53XOVH

53XOVH

The notation is essentially that of statecharts [3]. The starting state is indicated
by the blob-tailed arrow. Each Stop light behaves according to this description;
and the Go lights behave analogously in response to RPulses.

We have already seen the requirement. The Stop and Go lights must con-
form to the pattern:

((Stop1,Stop2) for 50 seconds;
(Stop1,Go2) for 100 seconds;
(Stop1,Stop2) for 50 seconds;
(Go1,Stop2) for 100 seconds)*

The specification is easily obtained:

{RPulse(1); RPulse(2);
forever {wait 50 seconds; GPulse(2); RPulse(2);

wait 100 seconds; RPulse(2); GPulse(2);
wait 50 seconds; GPulse(1); RPulse(1);
wait 100 seconds; RPulse(1); GPulse(1);

} }

It is trivial to convince ourselves that our argument S, D � R holds.

2.5 Whose Job Is It?

The whole exercise seems quite straightforward, and not too remote from the
concerns of computer science. It is even possible to see the development of
a specification from a requirement as an exercise in a kind of refinement. By
capturing and exploiting relevant properties of the problem domain, the de-
veloper refines the customer’s requirement into a programmable specification.
The process seems at least analogous to the process in which a programmer
exploits relevant properties of the specification and programming language
semantics to refine a specification into an executable program.

By treating the problem domain as a formal domain not dissimilar to the
computer itself, we bring the solution of problems in the world within the



164 The Real World

scope of the established disciplines of computer science. The computer sci-
entist need not be confined to mathematical abstractions, but can push out
confidently into the natural world where most real problems are located.

3 The Formal and the Informal

But the real world outside the computer is not a formal domain. Nor is it
even, like the computer, an informal domain carefully engineered so that pro-
grammers can reasonably regard it as formal for all practical purposes. It is
irreducibly informal. This distinction is important. Tony Hoare said in his
inaugural lecture [5]:

“Computers aremathematicalmachines. Every aspect of their behaviour
can be defined with mathematical precision, and every detail can be
deduced from this definition with mathematical certainty by the laws
of pure logic.”

He adds:

“Nothing is really as I have described it, neither computers nor pro-
grams nor programming languages nor even programmers.”

But the addendum is playful. It’s true that the computer hardware may be
unreliable, especially in extreme environments. There may even be errors in
the arithmetic unit. But for virtually all programming purposes it is both nec-
essary and entirely reasonable to regard the computer as a discrete formal
system. It is reasonable because the electronic parts of the hardware are, in
fact, extremely reliable. And it is necessary because it is hard to see how else
the programmer’s task could be tackled at all.

But outside the computer, where the problem is located, the world is, by
and large, informal. By this I mean three things.

• First, that any formalisation of the phenomena of the world and of their
relationships is necessarily only an approximation. Almost all interest-
ing sets are fuzzy: it’s almost always possible to find a hard case whose
membership is in doubt.

• Second, that no a priori bound can be placed on the phenomena and con-
siderations that may prove relevant to the properties and behaviour of the
problem domain. There is always much that has not been considered, and
some of it may prove catastrophically decisive.

• Third, that any formal term used must be supported by an explicit inter-
pretation in the phenomena of the physical world. Designations are abso-
lutely essential; formal manipulation and reasoning without designations
has no practical value.

Even in the compass of the trivial One-Way Traffic Lights problem it is possible
to see some of the effects of this informality.



Michael Jackson 165

3.1 The Breakage Concern

A physical domain that can be affected by externally controlled phenomena
may be subject to breakage if misused. A motor car may be broken if the
starter motor is engaged while the engine is already turning over, or if reverse
gear is engaged while the car is travelling forward at high speed. A toaster may
burn out if the lever is held down for too long. A VCR may break if the Fast
Rewind and Play buttons are pressed simultaneously. The operator’s manual
may give only a rough indication of these possibilities, or may even omit to
mention them because they are thought to be obvious.

In the same way, the Traffic Light units may be vulnerable to misuse. We
omitted to consider the joint behaviour of the two lights in each unit. It proves
to be like this:

%HKDYLRXU RI 2QH 7UDIILF /LJKW 8QLW

�� ¬6WRS∧¬*R

�� ¬6WRS∧*R

�� 6WRS∧¬ *R

��

"

53XOVH

53XOVH

53XOVH

*3XOVH*3XOVH *3XOVH

If the Stop and Go lights are simultaneously lit, the effect will be unpre-
dictable. Any attempt to turn both of them on results in state 4, in which
the unit is in an unknown state: conservatively, we should then regard it
as broken. Unfortunately, our specification ignored this restriction. Fortu-
nately, it is easily repaired by systematically replacing GPulse(2);RPulse(2)
by ‘RPulse(2);GPulse(2) and so on.

Now that our attention has been drawn to the vulnerability of the light
units, we are prompted to investigate whether they will perhaps be damaged
by insufficient delay between successive pulses, and are glad to find that they
will not.

3.2 The Initialisation Concern

In sequential programming we are well accustomed to the idea of an initial
state. The program is executed at the direct or indirect command of an oper-
ator or user of the system. Program execution begins at the beginning of the
text, and that is where initialisation of any global variables is performed.

The idea carries over easily into a specification language such as Z, where
the initial state of a schema S may be described in a schema initS, and it may



166 The Real World

then be shown that such an initial state does indeed exist. By convention, the
predicate of initS is established at the start of system execution.

But initialisation in the world outside the computer is often the subject of
some confusion. The blob-tailed arrow marking the starting state in a state-
chart can be thought of as a transition from a proto-state denoted by the blob.
But to what does this proto-state correspond? In what circumstances can it re-
cur? Putting the question in a different way: How much of the lifetime history
of each light unit is expressed in our description?

Amore careful investigation of themanufacturer’smanual eventually shows
us that the proto-state for the light units is the absence of electrical power. So
each unit enters its state 1 when power is applied. Our description of the be-
haviour of each light unit turns out to describe each episode in the life of a
light unit that begins when power is applied and continues so long as power is
connected.

Now we must consider the real practical possibility that power is discon-
nected from a light unit during operation of the system—perhaps because the
power cord is mistakenly cut by a machine used in the road repairing. To re-
store correct behaviour of the system it will be necessary to disconnect power
from the other unit also, stop the computer, reconnect power to both units,
and restart the program from the beginning. The operator’s manual must not
omit to mention this simple but crucial procedure.

It is worth remarking that all this is something of a relief. If the inter-
nal state of the light unit persisted across power outages—for example, if it
were implemented by an inaccessiblemechanical rotary switch—wewould have
needed a muchmore elaborate intialisation procedure. It would have been nec-
essary to run the computer briefly to reset each unit separately to its appropri-
ate initial state before restarting the program with both units connected and
powered up. Our original description of the behaviour of each light unit would
then turn out to have described its whole life, from original manufacture to
final scrapping.

3.3 The Identities Concern

A slightly more ambitious version of the system caters for road repairs on a
hill by providing different periods for the two units. The uphill traffic takes
longer to traverse the controlled stretch, so the following (Stop,Stop) phase
is longer to give time for the controlled stretch to clear. The required pattern
is now an endless repetition of the sequence

((Stop1,Stop2) for 50 seconds;
(Stop1,Go2) for 100 seconds;
(Stop1,Stop2) for 75 seconds;
(Go1,Stop2) for 150 seconds)

Now it is important, as it was not before, to distinguish accurately between the
two units. Certainly it is not enough to denote the units by the index values



Michael Jackson 167

1 . . 2 as we have been doing. This merely distinguishes the two identities in
the formal description, but does nothing to distinguish them in the physical
world. The practical question, then, is: How can the system be reliably and
conveniently set up so that the differing uphill and downhill phases will be
applied to the units in the uphill and downhill positions respectively?

A practical answer may reasonably depend on written labels to identify
each of the two ports at which a unit is plugged into the computer. But it
will also be necessary to ensure that this labelling corresponds correctly to the
program behaviour. As an alternative, or perhaps additional, measure, it may
be wise to provide a more direct indication for the system users: for example,
at the beginning of the regime, for a short period, the required cycle may be
executed a few times with shortened phases and an exaggerated difference
between the two units.

We may call this the identities concern. It arises in any system in which
there is interaction, direct or indirect, with a domain containing two or more
entities of the same type, and the entities are not self-identifying. Inadequate
treatment of this concern has caused (or, at least, threatened) serious failures
in aircraft systems. For example, [9] reports:

“A British Midland Boeing 737-400 crashed at Kegworth in the United
Kingdom, killing 47 and injuring 74 seriously. The right engine had
been erroneously shut off in response to smoke and excessive vibra-
tion that was in reality due to a fan-blade failure in the left engine.
The screen-based ‘glass cockpit’ and the procedures for crew training
were questioned. Cross-wiring, which was suspected—but not defini-
tively confirmed—was subsequently detected in the warning systems
of 30 similar aircraft.”

‘Cross-wiring’ is the archetypal failure in treating an identities concern.
The identities concern arises in many software development problems,

but is not always recognised and explicitly treated. For example, in a cen-
tralised medical monitoring system a doctor specifies that Mr Smith’s temper-
ature must not be allowed to exceed 101deg. But to which computer port is
the sensor for Mr Smith attached? The machine specification must include the
necessary data structures andmapping code to bind the port reliably to the pa-
tient name string. When the mapping is dynamic, as it is in a medical system
where the patient population of an intensive-care ward changes continually,
the identities concern generates a significant subproblem in its own right.

3.4 Sensitive One-Way Traffic Lights

As a further illustration of the informality of the real world we consider a new
version of the One-Way Traffic Lights problem. The manufacturer of the light
units has decided on a new product that will be both safer and more efficient.
The idea is to detect the passage of vehicles at the ends of the controlled stretch
of road, where the light units are placed. It will then be possible to curtail the



168 The Real World

(Stop1,Stop2) phase when the controlled stretch is clear of traffic, and to
prolong it when a particularly slow vehicle has not yet finished its traversal.

The new problem diagram looks like this:

6HQVLWLYH 2QH�:D\ 7UDIILF /LJKWV 3UREOHP 'LDJUDP

/LJKWV
6HTXHQFH

/LJKW
8QLWV

/LJKWV
&RQWUROOHU

_D_

_H_

9HKLFOH
7UDIILF

5RDG
6HQVRUV

_G_

_F_

_D_�� ^53XOVH>L@�*3XOVH>L@`
_E_�� ^6WRS>L@�*R>L@`
_F_�� ^6HQVRU2Q>L@`

_G_�� ^9HKLFOH3DVV6HQVRU>L@`
_H_�� ^9HKLFOH7UDYHUVLQJ>Y@`

_E_

The requirement is elaborated by the stipulation that the (Stop1,Stop2)
phases are to be modified according to whether a vehicle is traversing the con-
trolled stretch. The phenomena newly mentioned in the requirement appear at
interface e. The Lights Controller shares the SensorOn states with the sensors
at interface c ; the sensors react to the passage of vehicles at interface d.

The important new element in this version is the set of relationships among
the phenomena at the interfaces c, d, and e. We will need to extend our do-
main descriptions to capture the behaviour of the Vehicle Traffic domain well
enough to understand how e and d are related; and to capture the behaviour of
the Road Sensors domain well enough to understand how d and c are related.

There are some obvious points here. It seems natural to assert that if a
vehicle has passed sensor[1] but not sensor[2] it is still traversing the controlled
stretch. But although the requirement may talk of ‘a vehicle’ traversing the
controlled stretch, the sensors can not detect at interface d which particular
vehicle is passing; a fortiori, the machine can not detect it at interface c. So the
Lights Controller can not detect directly whether each vehicle that has entered
the controlled stretch has now left it.

To overcome this deficit in shared phenomena we resort to counting the
sensor state changes and the vehicle passings that they imply. It seems at first
that we can assert that any vehicle that traverses the controlled stretch will
cause the same number of sensor state transition sequences—((SensorOff;
SensorOn; SensorOff)—on exit as on entry. There will be one of these tran-
sition pairs per axle. But we must at least consider possibilities like these:

• Some vehicle may be only just heavy enough to be detected at one sensor



Michael Jackson 169

but not heavy enough to be detected at the other.

• Mischievous boys may jump up and down on the sensors.

• A vehicle may cross one sensor, but not the other, at such an angle that
the two wheels of one axle cause two state transition sequences instead of
one.

We must also at least consider further possibilities like these:

• There may be a road leading off the controlled stretch by which a vehicle
that has entered the controlled stretch can leave it without ever passing
the second sensor, and a vehicle may enter without passing any sensor.

• A vehicle that breaks down in the controlled stretch may be hoisted on
to a breakdown lorry and carried away; the second sensor will detect the
lorry but not the vehicle it is carrying.

The problem is not at all simple: the informality of the real world makes con-
siderations of this kind important even here. In a safety-critical system their
importance is overwhelming.

3.5 Purposeful Description

One last point is worth noting about the domain properties descriptions. Like
all descriptions, they are made for a purpose, to support an argument—if you
prefer, to play a role in the discharge of a proof obligation. Their content
depends on that role, and on the class of problem [8] in which the role arises.

In the original problem, the description of the light units domain left un-
specified the behaviour of a unit in response to certain sequences of pulses.
The sequence that we might have expected to turn on both lights was instead
described as causing a transition to an unknown state. It was to that extent an
incomplete description.

This incompleteness was perfectly acceptable in the context. The problem
is a behaviour problem, in which the light units domain plays the part of the
controlled domain. In this context it is acceptable to describe the domain
behaviour in response only to a subset of phenomenon traces at its controlled
interface, because we, as developers, can ensure that the controlling machine
guarantees to cause only that subset. Our machine specification, in our revised
version, guaranteed never to cause the light units to enter the unknown state.

By contrast, the road sensors and the vehicle traffic domains in the final
version of the problem constitute—considered together—the real world do-
main in an information problem. This information problem is a subproblem
of the Sensitive Traffic Lights problem, in which the requirement is to answer
the question: “Is there any vehicle currently traversing the controlled stretch
of road?”

Incomplete description is not acceptable in this context. It is necessary
to arrive at a domain description that is complete in both directions. That is,



170 The Real World

we must—in principle, at least—describe the sensor state behaviour caused by
all possible vehicle behaviours, and we must also describe all possible sensor
state behaviours that the machine may detect and must therefore react to in
some way.

4 Again: Whose Job Is It?

The One-Way Traffic Lights problem gives only a small taste of the concerns
that arise in developing realistic software that deals with a physical reality.
These concerns centre on the relationship between a formalisation of reality
and the reality itself, and on the techniques necessary to build a successful
system in which the formal computer is yoked to an informal real world.

Having recognised the informality of the world, we might ask again: Is
it really the job of computer scientists to study this relationship? Or is it
someone else’s job?

4.1 Computer Science Stops at the Interface

One potentially attractive view is that the concerns of computer science are
bounded by the interface between the computer and the world outside it. Since
the shared phenomena of the interface are necessarily phenomena of the com-
puter, they partake of its formal character.

Just as each bit of the computer store is carefully constructed so that its
value when inspected is always either 1 or 0, and never an indeterminate third
value, so the computer interface is constructed so that each pixel on the screen
has a well-defined value, each keystroke is a well-defined event, and eachRPulse
and GPulse is a similarly well-defined event. However much you fumble and
hesitate at the keyboard, either you did strike the key or you didn’t; either a
pulse occurred or it didn’t: there is no third possibility.

So if we restrict our concerns to the behaviour of the computer itself we can
set aside the disagreeably complex and informal nature of the problem world.
It is somebody else’s task to grapple with that. Our interest is awakened only
when the development caravan reaches the gates of the computer.

Unfortunately, this potentially attractive and reassuring view is very hard
to sustain. In a problem located in the real world, the specification of com-
puter behaviour at the interface, taken in isolation, is likely to be a description
of arbitrary and therefore unintelligible behaviour. Like program texts result-
ing from many steps of refinement, most specifications are extremely obscure
unless accompanied by the refinement history and a tatement of the original
problem.

But for a real-world problem the situation is even worse: the refinement
history is itself unintelligible without the description of the problem domain
properties by which each step must be justified. Practising programmers who
try to adhere to this doctrine will find themselves devoting their skills to tasks
that seem at best arbitrary and at worst senseless.



Michael Jackson 171

4.2 The Need for Formalisation

There is another reason why computer science must not disdain the real world.
Systems with computers at their heart are capable of very complex behaviours.
Earlier systems, based on manual or only partly mechanised procedures, could
also be very complex, but this complexity was mitigated by the possibility of
applying human common sense to each individual instance of the system’s
operation.

Full mastery of the complexity of the system behaviour was not neces-
sary: a rough approximation was sufficient, when accompanied by a rich set
of manual overrides to handle anomalies. But with fuller automation, over-
rides become impractical, and we need a fuller mastery of the complexity in
the problem domain. Much of this complexity is discrete, of the kind that
computer science alone has tools to tackle.

4.3 The Value of Formalisation

There is, perhaps, a paradox in combining a claim that the problem domain
is essentially informal with the demand that it be treated formally by tools
including those of the kinds that computer science has developed. But the
paradox can be resolved.

First, we must recognise that any formalisation of an informal reality is an
approximation. It is an approximation in the same way that representing reals
by floating-point numbers is an approximation. In the same way, it demands
the application of error analysis techniques if the approximation errors are not
to make nonsense of the results.

These techniques, in the field of formalisation, are concernedwith Cantwell
Smith’s right-hand side relationship—with the relationship between the formal
terms and the phenomena they are intended to denote, and between assertions
over the formal terms and assertions over the phenomena.

The Three-Mile Island accident furnishes a simple example of failure to ap-
ply such techniques properly. Here is how it is described by Eugene S Ferguson
[2]:

“…the level of the coolant in the reactor vessel was low because an
automatic relief valve remained open, while for more than two hours
after the accident began an indicator on the control panel said it was
shut. The relief valve was opened by energizing a solenoid; it was
closed by a simple spring. The designer ... chose to show on the panel
not the valve position but merely whether the solenoid was ‘on’ or
‘off’.”

Ferguson calls the designer’s choice ‘not a failure of calculation but a fail-
ure of judgment’. But it should more properly be called a failure of formalisa-
tion. The failure lay in treating the relationship between the solenoid current
and the valve position as if it were a definition of what was meant by ‘the valve
is shut’ when in fact the relationship was based on the assertion of a domain



172 The Real World

property: if the solenoid is off the valve is shut. The assertion, unfortunately,
was false.

Second, when we make formal descriptions of the informal problem do-
main and reason about those descriptions, we must recognise the status of
our formalisation and our reasoning. To adapt a well-known phrase from an-
other context, formalisation and reasoning can be used to show the presence
of bugs, but not their absence.

A formal proof that the specified machine will ensure satisfaction of the
requirement in the problem domain can never be entirely reliable. But a proof
that the machine will not ensure satisfaction of the requirement can be relied
on as evidence that something is wrong somewhere.

5 Envoi

Mathematical methods, and the advances made in the formal treatment of
programming problems, have rightly been recognised as a bright jewel in the
crown of computer science. They have contributed, too, to inspiring the ever-
increasing ambition of new software systems that deal with the real world.

This paper is intended as a plea for a serious effort, among computer
scientists, to apply and extend the intellectual power and techniques that have
already been so successful in the formal sphere to the messier problems of the
real world. There is a great need here. Perhaps some, at least, of those who
have been so successful in devising andworking withmathematical formalisms
may see the value and attraction of extending their work in this way.

Isaiah Berlin, who later became the founding president of Wolfson College,
wanted to interest philosophers of the 1950s in political philosophy, which he
identified as a topic of the greatest practical importance. He feared [1] lest:

“intoxicated by theirmagnificent achievements inmore abstract realms,
the best among them look with disdain upon a field in which radical
discoveries are less likely to be made, and talent for minute analysis
is less likely to be rewarded.”

Let me end by repeating, as I did earlier, that Tony Hoare, whose achieve-
ments we are celebrating here today, is not one who could be accused of such
disdain.

Acknowledgement

Daniel Jackson kindly read an earlier draft of this paper and made several very
helpful comments and suggestions.



Michael Jackson 173

References

[1] Two Concepts of Liberty; Inaugural Lecture; Clarendon Press, 1958.
Reprinted in Four Essays on Liberty; Oxford University Press 1969.

[2] Eugene S Ferguson; Engineering and the Mind’s Eye; MIT Press 1992,
page 183 and note 25 on page 225.

[3] David Harel and Michael Politi. Modeling Reactive Systems with
Statecharts: the STATEMATE Approach; McGraw-Hill, 1998.

[4] C A R Hoare; The Emperor’s Old Clothes; Turing Award Lecture; Comm
ACM 24(2) (February 1981), pages 75-83.

[5] C A R Hoare; The Mathematics of Programming; Inaugural Lecture;
Oxford University Press, 1986. Reprinted in [7] pages 351-370.

[6] C A R Hoare; An overview of some formal methods for program design;
IEEE Computer 20(9) (September 1987), pages 85-91.

[7] C A R Hoare and C B Jones (editor); Essays in Computing Science;
Prentice-Hall, 1989.

[8] Michael Jackson; Problem Analysis Using Small Problem Frames;
Proceedings of WOFACS’98, South African Computer Journal 22 (March
1999), pages 47-60.

[9] Peter G Neumann; Computer-Related Risks; Addison-Wesley, 1995, pages
44-45.

[10] Brian Cantwell Smith; The Limits of Correctness; a paper prepared for
the Symposium on Unintentional Nuclear War, Fifth Congress of the
International Physicians for the Prevention of Nuclear War, Budapest,
Hungary, June 28–July 1 1985.


