
Problem Decomposition for Reuse

Daniel Jackson

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA

Michael Jackson

MAJ Consulting Ltd

101 Hamilton Terrace

London NW8 9QX

September 18, 1995

Abstract

An approach to software development problems is presented, and illustrated
by an example. The approach is based on the ideas of problem frames and
structuring speci�cations by views. It is claimed that decompositions ob-
tained by this approach result in a more e�ective separation of concerns,
and that the resulting components are more likely to be reusable than those
obtained by more conventional approaches. The characteristics of desirable
integration mechanisms are discussed, together with some other considera-
tions arising out of the approach presented.

1 Introduction

Problem decomposition serves two purposes. By decomposing a large prob-
lem into smaller subproblems we hope to master its complexity: the smaller
subproblems should be simpler than the large problem. By the same decom-
position we hope to factor out subproblems that are already solved, and to
re-use their existing solutions.

Hierarchical decomposition can rarely achieve these goals. It is not di�-
cult to sketch a plausible hierarchy of procedures, but very di�cult indeed
to be sure that each successive level of decomposition is making the task eas-
ier and not harder: a smaller problem is not necessarily a simpler problem.

1

The constraints imposed by the di�culty of �nding a workable hierarchical
decomposition leave too little freedom for recognising and exploiting oppor-
tunities for re-use.

This is not surprising. Hierarchical structure is extremely specialised.
Few problem domains, and even fewer problems, exhibit hierarchical struc-
ture. Instead, both problems and problem domains usually exhibit parallel
structure. When a problem with an essentially parallel structure is forced
into a hierarchical decomposition, the resulting components are likely to be
unsatisfactory in both the problem and the solution domain.

The problem domain, for example, may be decomposed into domain en-
tities, viewed as agents [12, 4]. The component for each agent will then
inevitably entangle di�erent aspects of its behaviour that are unlikely to
reappear in exactly that combination in any other problem. In the solution
domain the same di�culty is found in a di�erent context. Each hierarchically
derived module must serve several computational purposes simultaneously:
the particular combination of purposes is unlikely to be useful elsewhere.
Essentially, this is why libraries of reusable modules have proved so disap-
pointing, except in applications such as numerical computation and window
interface implementation, where the problem domains and problems are al-
ready highly standardised.

It is parallel structure, and the bene�ts of a decomposition that respects
its nature, that characterises the present approach. Two ingredients are
combined, both of which aim to exploit parallel structuring of problems and
of problem domains. They are: the idea of problem frames [9, 10]; and the
idea of structuring Z speci�cations as views [7].

A problem frame has something in common with a clich�e in the Re-
quirements Apprentice [15]. It is a template characterising a class of simple
problems|that is, problems for which a reliable solution method is known.
Like a clich�e, it characterises a class of problem whose solutions are likely to
be reusable.

The problem abstractions of the NATURE project [11] are also related to
problem frames. Both clich�es and problem abstractions, however, focus on
the structure of the system's speci�cation. Problem frames, in contrast, char-
acterize the development problem itself, by emphasizing the structure of the
problem in its context: a strong distinction is made between the application
domain, in which the problem is located, and the machine, whose construc-
tion and installation in the application domain will solve the problem.

2

In general, di�erent problem frames invite the use of di�erent speci�cation
languages|sometimes more than one for a frame. However, it is not our
purpose here to discuss multiparadigm speci�cation [17], which is largely
orthogonal to the immediate concerns of this paper (although not orthogonal
to problem decomposition generally). We have therefore chosen to use Z
for all the problem frames: partly because this avoids some still unsolved
di�culties of integrating speci�cations written in di�erent languages, and
partly because the syntactic mechanisms of Z o�er a number of features that
are convenient for conjoining parallel speci�cations.

The Z speci�cation is view-structured [7]. A view is just a partial speci-
�cation; the full speci�cation is obtained by composing several views. Other
researchers who have investigated this notion [1, 3, 13] have focused on the
checking of consistency between views and the amalgamation of views into
a single speci�cation. Our interest is primarily in the structuring of the
speci�cation, and, not being bound by the demands of syntactic consistency
checking or amalgamation, we allow more radical decompositions. In par-
ticular, we usually �nd that di�erent views require di�erent representations
of the state, so that two views rarely share even the same variable names.
Instead, views are linked by explicit invariants.

The approach is illustrated by an example problem: the control of a pack-
age routing machine [16, 2]. We show the decomposition of the problem into
three subproblems, or views, that �t into three problem frames; the speci�-
cation of each view; and the connection of the subproblem views into a single
speci�cation. In a section at the end of the paper we discuss some general
aspects of our approach. We also discuss some di�culties of view integra-
tion as they appear in Z and other languages, and outline some desirable
properties of an integration mechanism.

For convenience, the complete speci�cation is gathered together at the
end of the paper, in an Appendix.

2 Problem Frames

A problem frame [9, 10] is a structure of principal parts and a solution task.
Each principal part is one of the following:

� The machine to be constructed|that is, to be described by the software
being developed.

3

� A part of the environment or domain of the problem.

� A required relationship among parts of the environment or domain.

The solution task is always to construct the machine so that it brings about
or maintains the required relationships.

Particular problem frames are specialised to particular problem classes.
A particular problem frame can be thought of as a template to be �tted
over a problem: the principal parts of the frame are identi�ed with parts
and aspects of the problem's system, environment, and requirements. When
a frame is �tted to a problem in this way, it is said to be applied to the
problem. It then guides the choice and use of an appropriate method for
solving the problem. The purpose of identifying and studying particular
problem frames is to build up a repertoire of problem classes, each having at
least one well-understood and reliable solution method.

Problem frames must be simple if they are to be useful. But realistic
problems are rarely simple. The complexity of a realistic problem can be
regarded as a parallel composition of two or more problem frames. Problem
decomposition is then the recognition of the appropriate problem frames and
the identi�cation of their principal parts. A problem frame applied in this
way has something in common with an instantiated Viewpoint [13], which
incorporates a representation scheme, a development process, and an area of
concern in the problem domain.

In di�erent problem frames the principal parts have di�erent character-
istics and are di�erently connected. Many problem frames are needed, to
accommodate the many parts and aspects of realistic problems. In Section 8
we discuss the questions: How many problem frames are there? How many
are needed to solve the full repertoire of development problems? Here we
outline only three particular problem frames, chosen simply because they
are the frames we will use in our example problem.

2.1 Control Frame

The Control problem frame might be used for a problem such as the control
of a simple level crossing in a railway. The frame has three principal parts:

� The Controller, which is the machine to be built.

4

� The Controlled Domain, which is a dynamic part of the problem en-
vironment. The Controlled Domain is connected directly to the Con-
troller: for example, sensing the arrival of a train, and switching on the
motor that raises and lowers the barrier are events both in the machine
and in the domain. The Controlled Domain is partly autonomous|
the arrival of the train requires no external stimulus. It is also partly
reactive|when the motor is switched on the barrier will rise or fall. It is
the reactive property of the Controlled Domain that makes it amenable
to control by the Controller.

� The Required Behaviour is a constraint on the events and states of the
Controlled Domain, which the Controller is required to maintain: for
example, that the barrier should be down whenever a train is in the
vicinity of the crossing.

To solve a problem �tting the Control frame it is necessary to consider the
autonomous events of the Controlled Domain and determine the appropriate
response of the Controller to bring about or maintain the Required Behaviour.
It may be necessary to implement a model of the Controlled Domain inside
the System, to allow appropriate responses to be determined at execution
time.

2.2 Static Information Frame

The Static Information problem frame might be used for a simple Bible
concordance system. It has �ve parts:

� The System, which is the machine to be built.

� The Subject Domain, which is a static part of the world, not connected
to the System. Because it is static, it has a �xed state and no events:
the text of the Bible is not subject to change.

� The Association Events, which form an unstructured stream of events
in which associations are de�ned between the phenomena of the Subject
Domain and the phenomena of the System. These events are not events
in the Subject Domain of the Bible text. They are events in a set-up
procedure by which the System acquires an internal model of the Bible
text.

5

� The Information Requests, which are an unstructured set of questions
and associated responses about the Subject Domain. For example, a
question might be \Where do the names Cain and Abel occur in the
same verse?". In the implementation of the System a question and its
response might be a function invocation and result; or the reading of
an input message and writing of an output reply; or simply the access-
ing of an internal data structure of the System by another application
program.

� The Information Rules, which are required relationships between the
Subject Domain and the Information Requests. For example, the mean-
ing of `in the same verse' is to be interpreted in a certain way in terms
of the text of the Bible.

Solving a Static Information problem typically requires that the System
should have an internal model of the Subject Domain. The model may be
implemented by an internal data structure, by a database, and in many other
ways. The Association Events initialise this model; subsequently the System
uses the model but does not update it.

2.3 Dynamic Information Frame

The Dynamic Information problem frame might be used for monitoring the
tra�c using a segment of road. The frame has four principal parts:

� The System, which is the machine to be built.

� The Subject Domain, which is a dynamic part of the world, directly
connected to the System: sensors laid in the roadway ensure that the
passage of a wheel over a certain line across the road is an event both
in the System and in the Subject Domain. The Subject Domain is
entirely autonomous, its dynamic behaviour being una�ected by the
System. The behaviour of interest in the Subject Domain would be
the passage of time, and the passage of vehicles over the road segment
being monitored.

� The Information Requests, which are again an unstructured set of ques-
tions and associated responses about the Subject Domain, and have a

6

similarly wide range of possible implementations. A request might con-
cern the rate of increase of tra�c in the road segment in a particular
time period.

� The Information Rules, which are required relationships between the
behaviour of the Subject Domain and the Information Requests. For
example, certain patterns of wheel pulses are to be interpreted as the
passage of a three-axle vehicle.

A problem �tting the Dynamic Information frame requires the System to
collect and maintain information from the autonomous events in the Subject
Domain. This information is needed for responding to the Information Re-

quests. It may take the form of an elaborate model of the changing state
of the Subject Domain, or may be little more than a record of selected past
events.

In the following section we describe our example problem and decompose
it into three subproblems that �t the frames given above.

3 An Example Problem

Our example is adapted from a well-known problem discussed by Swartout
and Balzer [16, 2]. It concerns the control of a package router.

3.1 Problem Statement

A package router consists of a binary tree of pipes through which packages
slide by gravity to destination bins, passing through two-position switches
that can be set to direct them to the right bins. A reading station detects the
bar-coded destination of each package on entry to the machine. The system
must control the router by setting the switch positions appropriately.

Each pipe has sensors at its top and bottom, which close when the leading
edge of a package arrives and open when its trailing edge leaves. The pipes
are bent in the vicinity of the sensors, so that the sensors are guaranteed to
detect each passing package, no matter how closely the packages follow one
another. Package size is restricted so that no overtaking is possible, either in
the pipes or in the switches.

7

A switch may be reset only when no package is present between its in-
coming and outgoing pipes. Because packages slide at unpredictable rates,
a package may follow another too closely for correct setting of a switch. A
wrongly routed package may be routed to any bin: a message is displayed
showing the intended and actual destinations.

3.2 Problem Frames for the Package Router

At �rst sight the whole problem appears to �t into the Control problem frame.
The router equipment, with the packages, forms the Controlled Domain; the
machine we are to build is the Controller. As required by the problem frame,
the machine is directly connected to the router: it can detect the current
settings of the switches and any change of state in a sensor; it can detect
the reading of a bar-coded destination and the value read; and it can
ip
a switch or display a message by executing appropriate procedures. The
Required Behaviour is that each package should either �nd its way to its
proper destination or have its misrouting appropriately noti�ed by a message.

However, the problem is a little more complex than this. The connections
provide no information about the con�guration of the pipes, sensors, switches
and bins. The machine can detect a change in a sensor state, but it has no
way of knowing where that sensor is in the tree of router pipes. It can
ip a
switch, but it has no way of knowing where that switch is in relation to the
sensors and bins. This information is essential for controlling the router, and
must come from some kind of set-up procedure, which creates an internal
model of the topology of the router. In addition to the Control frame we
therefore need a Static Information frame.

There is a further complexity. The destination of each package is read
just once, from its bar-coded label, by the reading station. When the package
is detected by each sensor in its subsequent journey through the router, there
is nothing to associate the package directly with its destination: the label is
not read again at each sensor. It is therefore necessary to deduce the package
destination from what is known about the topology of the router and the way
the packages
ow through it. This problem �ts into theDynamic Information
problem frame.

The problem of controlling the router may therefore be decomposed into
three subproblem views. One subproblem view �ts the Control frame: we
will call this the Switch Control view. One �ts the Dynamic Information

8

frame: we will call this the Package Tracking view. The third �ts the Static
Information frame: we will call this the Router Topology view. The three
views are discussed and developed in detail in Sections 4 to 6.

3.3 Adequacy of a Problem Frame

None of the three problem frames we have described is alone enough to solve
the whole problem. The Static Information frame can not possibly deal
with the dynamic aspects of the problem. The Dynamic Information frame
lacks an e�ective set-up procedure. It also assumes that its Subject Domain
is entirely autonomous and una�ected by the System, and therefore lacks
provision for describing a Required Behaviour of the Subject Domain and any
actions by which the System might bring it about.

Of course, the limitations of a problem frame can be ignored, and the
problem forced, in the fashion of Procrustes, into an unsuitable mould. This
is often done. For example, JSD, which is essentially a method for Dynamic
Information problems, has been pressed into service to solve problems that
would �t far better into the Control frame [8]. We are accustomed to this
kind of fudging, and expect to devote some e�ort to �nding work-arounds.
But this cavalier unconcern for the nature and structure of a problem is not
a recipe for successful development.

4 Router Topology View

The Router Topology view �ts the Static Information problem frame. The
principal parts are these:

� The System is, of course, the machine we are developing.

� The Subject Domain is the static con�guration of the router equipment.
The current settings of the switches and the current locations of the
packages are not a part of the Subject Domain in this view.

� The Association Events are the events of a set-up procedure in which
the System receives the information it needs about the router: which
sensors are attached to which pipes; which pipes enter and leave each
switch; and so on. This set-up procedure would be performed when the

9

physical components of the router are initially con�gured, and when-
ever the con�guration is changed.

� The Information Requests are the interactions between this subproblem
view and the other subproblem views, in which it provides information
about the router's static con�guration: for example, the position of a
particular sensor in relation to its pipe, and whether a particular bin
can be reached from a particular switch.

� The Information Rules are the relationships between the Subject Do-
main and the Information Requests that assure correctness of the an-
swers. For example, the router is a directed tree in which the leaves are
reachable from the root but the root is not reachable from the leaves.

For reasons of brevity, we will omit any account of the Association Events

and the set-up procedure. The set-up procedure produces a model of the
Subject Domain inside the System. That is, it produces an arrangement
of machine phenomena|data structures and values of variables| that is
isomorphic to the Subject Domain. The System then uses this model to
answer the questions posed in the Information Requests.

We will assume that the router equipment has been assembled; that the
set-up procedure has been performed; and that the model has been con-
structed. We restrict ourselves to describing the Subject Domain and the
Information Requests and Information Rules.

The RouterDomain schema below is a description both of the model inside
the System and of the Subject Domain|the router|itself. The individual
parts of the router are its pipes, switches, bins, and sensors. These parts
are related in certain ways. Each sensor is located on one pipe, at either its
upwards or its downwards end. Each switch has a pipe entering it, and a
left and a right pipe leaving it. There is a top pipe, into which packages
ow
on leaving the reader. It enters a switch. Each pipe either enters a switch
or �lls (terminates at) a bin. The whole con�guration of pipes forms a tree
whose root is the top pipe and whose leaves are pipes terminating at bins.

(Notice that we have chosen to treat the reader as if it were a sensor,
although it is not attached to any pipe; this distortion of reality is discussed
later in the paper.)

[SWITCH ;PIPE ;BIN ;SENSOR]

10

RouterDomain

top : PIPE
reader : SENSOR
sensUp; sensDn : PIPE� SENSOR

enters : PIPE� SWITCH

pipeL; pipeR : SWITCH � PIPE

�lls : PIPE� BIN

reader 62 ran(sensUp [sensDn)
top 2 dom enters

dom enters \ dom�lls = �
ran sensUp \ ran sensDn = �
ran pipeL \ ran pipeR = �
ran pipeL [ran pipeR = (dom entersnftopg) [dom�lls

dom pipeL [dom pipeR = ran enters
(enters � (pipeL [pipeR))+ \ Id = fg

The Information Requests will come from two sources:

1. The Switch Control view must control the
ow of packages by setting
the switches. It therefore needs to determine:

� for each sensor, whether the sensor guards the entrance to a switch
(so that a package that has just passed that sensor is entering the
switch) and, if so, which one; and

� for each switch and each destination bin, whether the way to the
bin lies through the left or right pipe of the switch.

2. The Package Tracking view needs enough information to keep track
of each package in its journey through the router. Since the Router
Topology view is concerned only with the static con�guration of the
router, it can provide no information about current switch settings.
The information it provides is the form of a precedes relation: given a
sensor S (other than the reader), it identi�es the sensor (possibly the
reader) that precedes S in the tree.

We specify the Information Requests and the Information Rules together
in two schemas. The �rst establishes some useful de�nitions; the second
speci�es the guards, way and precedes relations.

11

RouterStaticInformation

RouterDomain

ow : PIPE# PIPE

reachL; reachR : SWITCH # BIN

ow = enters � (pipeL [pipeR)
reachL = pipeL �
ow� � �lls
reachR = pipeR �
ow� � �lls

DEST == BIN

DIR ::= L j R

RouterRequestsAndRules

RouterStaticInformation

guards : SENSOR� SWITCH

way : (SWITCH �DEST)# DIR

precedes : SENSOR� SENSOR

guards = sensDn� � enters
way = (reachL� fLg) [(reachR� fRg)
precedes = fsensUp(top) 7! readerg [
fp : PIPE � sensDn(p) 7! sensUp(p)g [
f(p; p0) 2
ow � sensUp(p0) 7! sensDn(p)g

5 Package Tracking View

The Package Tracking view �ts the Dynamic Information problem frame.
The principal parts are these:

� The System is, of course, the machine we are developing.

� The Subject Domain is a dynamic view of the router and the packages

owing through it. The relevant events in the router|essentially, the
reading of a package destination or the detection of a package by a
sensor|are directly connected to the System: that is, each event is both

12

an event in the router and an event in the machine that is tracking the
packages. The e�ect of each relevant event in the machine is to update
an internal model of the package locations; this model is used to satisfy
the Information Requests.

� The Information Requests provide information about the dynamic be-
haviour of the router and packages.

� The Information Rules are the relationships between the Subject Do-
main and the Information Requests that assure correctness of the in-
formation given. For example, because packages do not overtake one
another in pipes or switches, the packages in one pipe or one switch
form a FIFO queue.

The information to be provided is essentially an interpretation of each
event in the journey of each package. When a package passes a sensor, the
Switch Control view may need to determine:

1. What is the destination of the package? and

2. If the package has reached a switch, is the switch empty?

The internal model maintained by the Package Tracking view consists
of queues of packages (represented only by their destinations). One queue is
associated with each sensor (including the reader) that does not lead directly
into a bin: once a package has passed into a bin it will be of no further interest.

This model is su�cient to answer the questions above. It does not require
information about the settings of switches in the router, since it relies only
on determining which queue a package is leaving when it arrives at the next
sensor. It does, of course, depend on information about the router con�gu-
ration, obtained from the Router Topology view. In the Package Tracking
view, this information appears in the schema below as declarations of the
variables precedes, bin and reader . The values of these variables are uncon-
strained in this view, and will be determined when the view is connected to
the Router Topology view.

13

PackageTrackingDomain

queue : SENSOR� seqDEST
precedes : SENSOR� SENSOR

bin : SENSOR� BIN

reader : SENSOR

The queue model must be initialised. A Static Information model is
initialised by the Association Events in its set-up procedure. For a Dynamic
Information model there may in some cases be an appropriate initial event in
the Subject Domain, but this is unusual. More often, as here, it is necessary
to de�ne, and have the System execute, a special initialisation event. The
model is initialised by setting all its queues to the empty sequence:

Init PackageTrackingDomain

PackageTrackingDomain 0

queue 0 = (dom bin) � (SENSOR � hi)

The queue model is maintained by updating on each of the following
events:

� Transfer, in which a package passes from the upper to the lower sensor
of the same pipe, or from the entry pipe of a switch to one of its exit
pipes;

� ReadDest, in which the package passes the reader and its destination is
read; and

� Deposit, in which a package arrives at a bin.

In the schemas describing these events we need not constrain the relations
precedes, bin and reader to remain unchanged by the events. They will be
constrained appropriately when the views are connected together.

A Transfer event is one in which a package passes a sensor that is not
the reader and does not lead to a bin. A Transfer event causes the model to
be updated by moving the transferred package from the head of the queue it
is leaving to the end of the queue it is joining. The value of the destination
d in a Transfer event is determined from the queue model: the destination

14

is always that of the package at the head of the queue associated with the
preceding sensor, because that is the package being transferred.

Transfer

�PackageTrackingDomain
se : SENSOR
d : DEST

se 6= reader ^ se 62 dom bin

d = head queue(precedes(se))
queue 0 = queue�
fprecedes(se) 7! tail queue(precedes(se));
se 7! queue(se) � hdig

A ReadDest event is one in which a package passes the sensor that is the
reader. A ReadDest event causes the model to be updated by adding the
package just read (represented by its destination) to the end of the queue
associated with the reader. The value of the destination d in a ReadDest event
is determined from the state shared between the router and the Controller.

ReadDest

�PackageTrackingDomain
se : SENSOR
d : DEST

se = reader

queue 0 = queue � freader 7! queue(reader) � hdig

A Deposit event is one in which a package passes a sensor that leads to
a bin, into which the package is then deposited. A Deposit event causes the
model to be updated by removing the deposited package from the queue it
has just left. The value of the destination d in a Deposit event is determined
from the queue model. The value of the bin b reached is calculated from the
bin relation.

15

Deposit

�PackageTrackingDomain
se : SENSOR
d : DEST
b : BIN

se 2 dom bin ^ b = bin(se)
d = head(queue(precedes(se))
queue 0 = queue � fprecedes(se) 7! tail queue(precedes(se))g

A package is deposited in the right bin if the sensor it has just passed is
at the entry to its destination bin. Otherwise it is deposited in a wrong bin,
and a message must be displayed.

RightBin

Deposit

b = d

WrongBinMessage

Deposit

actual !; desired ! : BIN

b 6= d

desired ! = d

actual ! = b

6 Switch Control View

The Switch Control view �ts the Control frame. The principal parts are
these:

� The Controller is, of course, the machine we are developing.

� The Controlled Domain is the router switches and the packages
owing
through them. The autonomous aspect of the Controlled Domain is the
package
ow: packages pass sensors under the force of gravity, and the

16

Controller can neither stimulate nor inhibit these events. The reactive
aspect of the Controlled Domain is that the Controller can set the
router switches, and so determine the path taken by each package.

� The Required Behaviour is that each package should be directed along
a path to the destination given in its bar-coded label, subject to the
overriding rule that no switch may be reset while it contains any pack-
age.

The Controller is connected to the router by two classes of shared event
and by a shared state. The shared state is the current setting of each switch.
At any time, each switch is set either in the L or in the R direction, and
this state is shared with the Controller, perhaps by a DMA connection. The
shared state is simply:

SwitchSettings

setting : SWITCH " DIR

As in the two other views, the schema describing the model is a description
both of the state of the Controlled Domain and of a part of the internal
model to be maintained by the Controller.

The shared events are ArriveAtSwitch and FlipSwitch:

� ArriveAtSwitch events are autonomous events in the Controlled Do-

main, in which a package arrives at a switch.

� FlipSwitch events are initiated by the Controller. In a FlipSwitch event
the direction of a switch is reversed (from L to R or from R to L).

For each ArriveSwitch event that occurs, the Controller must determine
whether a FlipSwitch event should occur in response. To do so, it may need
to determine:

� the current setting of the switch;

� the destination of the arriving package;

� the appropriate switch setting for the destination; and

� whether the switch is currently empty.

17

The current setting of the switch is directly available from the shared
state SwitchSettings. In the schema below, the appropriate switch setting
for a destination is declared as an unconstrained variable choice. In this
frame we need not constrain choice in any way. We may leave open all the
possibilities, namely that it is:

� a total function: there is exactly one path to a given bin from a given
switch;

� a partial function: there is one path, or no path, to a given bin from a
given switch; or, most generally,

� a relation: there is one path, no path, or more than one path to a given
bin from a given switch.

By treating choice as a relation we leave all the possibilities open in this
view. (When we come to connect this view with the Router Topology view
we will see that choice is a partial function; but if paths through the router
could merge, then choice would have to be an unrestricted relation.)

Another unconstrained variable in the schema is empty: this is the set of
currently empty switches. The values of choice and empty will be determined
when the views are connected together. Together with SwitchSettings they
constitute the model of the Controlled Domain available to the Controller:

SwitchesModel

SwitchSettings

choice : (SWITCH �DEST)# DIR

empty : � SWITCH

An ArriveAtSwitch event involves the switch where the arrival has oc-
curred, and the destination of the arriving package. We distinguish two
kinds of ArriveAtSwitch event, according to whether the Controller responds
by
ipping the switch. (Although the arrival and the response are distinct
events in the real world, it is appropriate and convenient in Z to treat them
as a single event. This distortion of reality is discussed later in the paper.)

The Required Behaviour demands that the switch direction should be
changed only if the switch is empty, and only if the changed direction would
o�er a path where the current direction would not. There is no point in

18

changing the direction of the switch for a package for which choice speci�es
no appropriate direction: the package is already irretrievably misrouted.

ipped : DIR�DIR

ipped(R) = L

ipped(L) = R

ArriveAndFlip

�SwitchModel

sw : SWITCH

d : DEST

sw 2 empty

choice�fsw ; dg� = f
ipped(setting(sw))g
setting 0 = setting � fsw 7!
ipped(setting(sw))g

ArriveNoFlip

�SwitchModel

sw : SWITCH

d : DEST

: pre ArriveAndFlip
setting 0 = setting

7 Connections

The fundamental connection technique for the components of a parallel de-
composition is logical conjunction [17]. For a Z speci�cation this means
combining schemas by including one within another, or by the conjunction
operation of the Z schema calculus. It is then possible to impose additional
invariants to constrain the components of the combined schemas.

7.1 State Connections

The schema below, prefaced by the necessary declarations, includes the model
parts of the three views of the Package Router Control problem, and speci�es
the invariants that must hold among them. These are:

19

� precedes in the PackageTrackingDomain has the same value as precedes
in the RouterRequestsAndRules. This need not be speci�ed explicitly,
because the two relations have the same name. In Z schema inclusion
this implies that they denote the same thing.

� reader in the PackageTrackingDomain has the same value|that is, it is
the same SENSOR|as reader in the RouterRequestsAndRules. Again,
this need not be speci�ed explicitly, because the two variables have the
same name.

� bin in the PackageTrackingDomain has the value determined by sensDn
and �lls in the RouterRequestsAndRules: a sensor leads to a bin if it is
the lower sensor of the pipe that �lls the bin.

� choice in the SwitchesModel has the same value as way in the Router-
RequestsAndRules.

� empty in the SwitchesModel has the value determined by the queue

model in the PackageTrackingDomain. A switch is empty if the queue
associated with the sensor leading into it is empty. The association
between switches and sensors is determined by the relation guards in
the Router Topology view.

[SWITCH ;PIPE ;BIN ;SENSOR]
DEST == BIN

DIR ::= L j R

PackageRouterControl

RouterRequestsAndRules

PackageTrackingDomain

SwitchesModel

bin = sensDn� � �lls
choice = way

empty = guards � dom(queue � hi)�

20

7.2 Event Connections

The Init PackageTrackingDomain event is to be executed by the machine
before any other event occurs in the router operation. It is already fully
speci�ed in the Package Tracking view, and need only be promoted to an
operation on the PackageRouterControl state.

The events involving the
ow of packages through the router are all sub-
classes of a more general event class, in which a package passes a sensor. The
physical connection between the router and the machine indicates which sen-
sor has been passed, but other arguments of these events must be determined
from the relevant model states.

The whole set of events may be classi�ed like this:

� The Init PackageTrackingDomain event.

� PassSensor events, each of which is:

{ a ReadDest event; or

{ a Deposit event that is also a RightBin event; or

{ a Deposit event that is also a WrongBinMessage event; or

{ a Transfer that is also an ArriveAndFlip event; or

{ a Transfer that is also an ArriveNoFlip event.

ReadDest events are fully determined in the Package Tracking view. As
mentioned in Section 4 above, the value of the destination d in a ReadDest

event is determined by the state|perhaps a machine register|shared by the
reader and the machine.

Similarly, WrongBinMessage and RightBin events are also fully deter-
mined in the Package Tracking view, where their speci�cations include the
speci�cation of the more general Deposit event class: eachWrongBinMessage

and each RightBin event is also a Deposit event. The values of actual! and
desired! in WrongBinMessage events are determined from the sensor se of
the Deposit event and the queue model of the PackageTrackingDomain.

However, ArriveAndFlip and ArriveNoFlip events are not fully deter-
mined by the Switch Control view in which they are speci�ed. Each of these
events is also a Transfer event, speci�ed in the Package Tracking view. The
values of their switch sw and destination d components must be determined

21

from the sensor se of the Transfer event, using information from the Router
Topology view. So we need schemas for the two combinations:

TransferAndFlip

�RouterRequestsAndRules
Transfer

ArriveAndFlip

(se 7! sw) 2 guards

d = head queue(precedes(se))

TransferNoFlip

�RouterRequestsAndRules
Transfer

ArriveNoFlip

(se 7! sw) 2 guards

d = head queue(precedes(se))

Now we can de�ne the events as operations on the PackageRouterControl
state, and write the necessary event classi�cation:

Init PackageRouterControl b=
�PackageRouterControl ^ �RouterRequestsAndRules ^
Init PackageTrackingDomain

PassSensor b=
�PackageRouterControl ^ �RouterRequestsAndRules ^
(ReadDest _WrongBinMessage _ RightBin _
TransferAndFlip _ TransferNoFlip)

8 Discussion

8.1 Problem Frames

The original motivation of the idea of problem frames was chie
y method-
ological [9]. A problem frame bounds a class of problem for which an e�ec-
tive and systematic method is known. The method can be readily applied

22

to a problem of the class because the method is expressed in terms of the
principal parts of the problem. The JSD method, for example [8], treats Dy-
namic Information problems. In JSD the �rst step is to describe the Subject
Domain|which in JSD is called the Real World| as a collection of concur-
rent sequential processes each with a regular structure. The same process
descriptions are then used to construct a model of the Subject Domain within
the System. In a later step, further processes are added for handling the In-
formation Requests in accordance with the Information Rules: in JSD these
parts are called the Function of the System.

This association of problem frames with methods goes some way to �lling
the gap between teaching problems and realistic problems. A teaching prob-
lem is an exercise in the application of a highly circumscribed method. For
example, students of abstract data type speci�cation may �rst discuss a spec-
i�cation of a stack; then they are asked to write their own speci�cations of a
queue, or of a bag, or of a double-ended queue. Similarly, students of �nite
automaton theory may solve problems in which deterministic machines are
derived from non-deterministic machines, or from regular grammars. These
problems are not trivial, but they fall clearly into the classes that can be
solved by the techniques being taught.

But such teaching problems, and the associated techniques, are not quite
large enough, and not quite rich enough, to suggest clearly identi�able sub-
problems in a realistically rich and complex problem. It is not easy to see
what abstract data types, and what �nite automata, are needed in an ac-
counting system or in a telephone switching system. Problem frames o�er
an approach to analysing more complex problems like these, because they
o�er larger structures|of principal parts|that can be matched against the
problem domain or environment, and used to identify aspects|rather than
parts|of the problem.

The repertoire of available problem frames depends on the repertoire of
available e�ective methods, for there is little value in a problem decompo-
sition if methods are not available for solving the identi�ed subproblems:
a smaller problem is not always an easier problem. And as our ability to
solve problems increases, a commonly occurring frame and its associated
method may become regarded as rudimentary, applied instinctively rather
than with conscious technique. So the repertoire of problem frames is not
�xed: it changes with our knowledge of solution methods. Given a prob-
lem and a repertoire of problem frames, the selection of appropriate frames

23

for the decomposition may bene�t from some mechanical help, but it is not
a mechanisable process. The chief reason is that matching a frame to a
problem requires an understanding of the phenomenological character of the
application domain: the subject matter of a software development problem
is the messy and informal physical world, not the mathematical abstractions
by which we might eventually describe it.

8.2 Reusability of Views

In applying a frame to a subproblem view it is helpful to imagine that the
other subproblems are already solved. Their solutions provide the context of
the subproblem in hand. For example, in applying the Dynamic Information
frame to the Package Tracking subproblem, we imagined that the System|
the machine we were building|had direct access to the precedes and bin

relations, and to the identity of the reader sensor. In applying the Control
frame to the Switch Control subproblem, we imagined that the choice and
empty relations provided the machine with directly accessible information
about the available routes and the tra�c in the switches; and also that each
ArriveAtSwitch event directly indicated the identity of the switch and the
destination of the arriving package.

The resulting decomposition produced subproblems with a signi�cant po-
tential for reuse. In each frame no more is assumed about the problem con-
text than is necessary to the solution task of the frame. Examples of this
indeterminacy have already been pointed out, but perhaps have been some-
what masked by the use of the same names in di�erent views. For example,
the Package Tracking view might have been expressed in terms of Travellers
passing Checkpoints. A Checkpoint may serve as a Startpoint or Finishpoint,
but not both at once. In the complete problem, the Checkpoints, of course,
are the sensors; a Startpoint is a reader; and a Finishpoint is a sensor lead-
ing to a bin. But the Package Tracking view assumes only that: when a
Traveller passes a Checkpoint it is known whether the Traveller is starting
or �nishing|that is, whether the Checkpoint is currently a Startpoint or a
Finishpoint; when it passes a Startpoint its desired Finishpoint is known and
�xed; when it passes any intermediate Checkpoint its previous Checkpoint is
known; and that there is no overtaking between Checkpoints.

The views developed in our treatment of the problem were not devised
with reuse in mind. Rather, the approach merely avoided building into each

24

view assumptions and features that were irrelevant to the view|and there-
fore most likely to inhibit subsequent reuse. The Switch Control view, for
example, deals only with the events involving the switches. It assumes only
that: each package arriving at a switch has a destination that may or may
not be reachable from that switch; that there is a constraint empty that may
preclude
ipping a switch; and that if
ipping is desirable and not precluded
the machine can perform it. Such a subproblem seems likely to appear in
many switching problems, perhaps involving railway signalling, control of
motor tra�c, or even the transmission of message packets.

8.3 Z Speci�cations

Z seems especially well suited to speci�cations in this style. Some of the bene-
�ts accrue from features shared by many speci�cation languages. The ability
to write implicit invariants|shared with VDM and Larch, for instance|is
crucial to describing the relationships between the states of the various views
without indicating how, in the implementation, the relationships are to be
maintained.

Other bene�ts are unique to Z. The underlying treatment of all functions,
sequences, bags, mappings, and so on, as relations contributes greatly to the
terseness of the invariants connecting the views, since it obviates the need for
frequent type coercions. Schema structuring is a great help too. Since state
invariants and operations are just logical assertions, they may be conjoined

exibly and simply. Other speci�cation languages do not o�er such freedom
of structuring. Moreover, because the pre-conditions of two operations are
always composed (in the style advocated here) in the same way as the post-
conditions, by conjunction or disjunction, it is useful that Z combines the
pre- and post-condition of an operation into a single assertion.

View speci�cation does, however, expose some de�ciencies of Z. Most
signi�cantly, schema inclusion does not preserve the origin of the state com-
ponents. Having formed PackageRouterControl, for example, we cannot ask
whether choice belongs to RouterRequestsAndRules or to PackageTracking-

Domain. Schema inclusion is purely syntactic, and the components orig-
inating in di�erent schemas are thrown together in a single unstructured
namespace. Intuitively this seems wrong, since it leaves only synactic and
not semantic evidence of the view structuring in the �nal speci�cation. It also
has serious pragmatic implications. Names chosen for components belonging

25

to di�erent views may accidentally clash when the views are composed, and
the invariants relating components of di�erent views are hard to read. We
could of course adopt a convention, such as pre�xing every name by the name
of the view it belongs to. It would much better, however, for the language
itself to provide some structuring of the namespace, so that within a view
components may have short names, and in the composition they are labelled
with the names of their views. The library extension proposed by Hayes and
Wildman [6] solves exactly this problem (amongst others).

The type system of Z is not ideal for view speci�cation. Ideally we would
like to treat a name like SENSOR sometimes as a set of values|taken from
an underlying type INDIVIDUAL|and sometimes as a type. We treated
the reader awkwardly as a sensor in the Router Topology view, where it
would have been more natural to declare a fresh type READER, disjoint from
SENSOR. Strong typing of the Router Topology schemas would then have
ensured no confusion of the reader with the sensors. The Package Tracking
view, on the other hand, associates queues with checkpoints. In its schemas,
we therefore would like to use a type CHECKPOINT.

In the composition of the views, we would then assert that the checkpoints
correspond to exactly the sensors and the reader. But unfortunately the
assertion

CHECKPOINT = SENSOR [READER

is a type error. Strong typing, it seems, should be a local property of a view,
and should not extend beyond it. Z forces an early decision of whether a
set should be treated as a type, seriously compromising the independence
of views. There are almost no sets that can be con�dently declared to be
disjoint without knowing which views may be added subsequently. Even
SWITCH and PIPE and SENSOR, for example, might become subsets of
PART in a Maintenance view that keeps track of the condition of the router's
components.

Finally, there is the controversial question of the role of convention in Z.
A schema is just a logical assertion, and its standard interpretation as an
operation is not part of the language de�nition. Our speci�cation assumes
a number of further conventions that we have not articulated in detail. A
precondition is a guard and not a disclaimer; in bad states, it precludes
execution of the operation rather than allowing it while insisting that its e�ect

26

is unspeci�ed. We use conjunction and disjunction of operation schemas to
classify events. Each operation schema name in the de�nition of PassSensor
denotes a set of events; any particular event may belong to more than one
event class.

Many of these issues are discussed in more detail in [7].

8.4 Integration Mechanisms

In software development, which is concerned to create machines that will
interact with the world, the foundation of meaning must be observable phe-

nomena|states and events|in the machine and in the parts of the world
that constitute the application domain. The basis of integration|integration
of one view with another, and integration of the machine into the world|is
shared phenomena. A shared event or state occurs both in the machine and
in the application domain; or it is described both in one speci�cation view
and in another.

Integration by shared phenomena demands a sound treatment of two as-
pects of sharing. First, a shared phenomenon is viewed di�erently by di�erent
sharers. We have already mentioned the example of the reader, which should
properly be viewed as a unique individual of type READER in the Router
Topology view, and as one of many CHECKPOINT s in the Package Tracking
view. Di�erent views and classi�cations of shared phenomena are simply a
microcosm of the di�erent views we adopt of larger aspects of the problem.

Second, for both shared events and shared states it is important to specify
the locus of its control. The Init PackageTrackingDomain event is controlled
by the machine; but the ReadDest and Transfer events are controlled by the
application domain. The ArriveAndFlip events should really be treated as
event pairs: in the �rst event of each pair, controlled by the domain, a
package arrives at a switch; in the second event, controlled by the machine,
the machine
ips the position of the switch. The two events of the pair are
combined in our speci�cation, because Z lacks a convenient mechanism for
expressing their relationship. The schema expressions:

Arrive � Flip

and

Arrive >> Flip

27

do not describe pairs of operations. Rather, they describe single operations
by identifying the post-state of one schema with the pre-state of the other
and hiding the linking state. Any notion that there are two operations, one
following the other in time, would depend on interpretation by a special|and
heterodox|convention, supported by informal commentary.

We believe that the interpretation of the speci�cation in terms of ob-
servable phenomena should not be relegated to informal, unstructured com-
mentary, but should be governed, for a given style of speci�cation, by well-
understood and precisely articulated rules. This remains to be done. As a
�rst step, a translation into a simpler formal model closer to the observed
phenomena|such as a labelled transition system|might help. Such a fea-
ture, combined with good support for multiple views of shared phenomena,
would go far to encourage speci�cation in the style we advocate.

Acknowledgments

Our thanks to Ian Hayes for his insights into our speci�cation; and to him
and Stewart Green for pointing out errors in the speci�cation.

References

[1] M. Ainsworth, A.H. Cruickshank, L.J. Groves and P.J.L. Wallis; View-
point speci�cation and Z; Information and Software Technology, 1994,
36(1), pp. 43{51.

[2] Robert M Balzer, Neil M Goldman and David S Wile; Operational Spec-
i�cation as the Basis for Prototyping; ACM Sigsoft SE Notes Volume
7 Number 5 pages 3-16, December 1982; reprinted in New Paradigms
for Software Development; ed W W Agresti; IEEE Tutorial Text, IEEE
Computer Society Press, 1986.

[3] J. Derrick, H. Bowman and M. Steen; Maintaining cross-viewpoint con-
sistency using Z; IFIP International Conference on Open Distributed
Processing, Chapman and Hall, 1995, pp. 395{406.

[4] Martin S Feather, Stephen Fickas, and B Robert Helm; Composite Sys-
temDesign: the Good News and the Bad News; in Proceedings of the 6th

28

RADC Conference on Knowledge-Based Software Engineering; IEEE
Computer Society Press, 1992.

[5] David Garlan and Mary Shaw; An Introduction to Software Architec-
ture; in Advances in Software Engineering and Knowledge Engineering
Volume 1, V Ambriola and G Tortora eds; World Scienti�c Publishing
Co, New Jersey, 1993.

[6] I. Hayes and L. Wildman; Towards Libraries for Z; Proceedings of Z
User Workshop; London, 1992.

[7] Daniel Jackson; Structuring Z Speci�cations with Views; Technical Re-
port CMU-CS-94-126R, School of Computer Science, Carnegie Mellon
University, March 1994.

[8] Michael Jackson; System Development; Prentice-Hall International,
1983.

[9] Michael Jackson; Software Development Method; in A Classical Mind:
Essays in Honour of C A R Hoare; A W Roscoe ed; pages 211-230;
Prentice-Hall International, 1994.

[10] Michael Jackson; Problems, Methods and Specialisation; SE Journal
Volume 9 Number 6 pages 249-255, November 1994; edited and abridged
in IEEE Software Volume 11 Number 6 pages 57-62, November 1994.

[11] M. Jarke, Y. Bubenko, C. Rolland, A.G. Sutcli�e and Y. Vassilou; The-
ories underlying requirements engineering: an overview of NATURE at
genesis; Proceedings of IEEE Symposium on Requirements Engineering,
IEEE Computer Society Press, 1993, pp. 19{31.

[12] W Lewis Johnson; Deriving Speci�cations from Requirements; in Pro-
ceedings of the 10th International Conference on Software Engineering;
IEEE Computer Society Press, 1988.

[13] Bashar Nuseibeh, Je� Kramer and Anthony Finkelstein; Expressing the
Relationships Between Multiple Views in Requirements Speci�cation;
Proceedings of 15th International Conference on Software Engineering,
pages 187-196; IEEE Computer Society Press, 1993.

29

[14] Gerald Kotonya and Ian Sommerville; Viewpoints for Requirements Def-
inition; Software Engineering Journal Volume 7 Number 6, pages 375-
387, November 1992.

[15] Howard B Reubenstein and Richard C Waters; The Requirements Ap-
prentice for Requirements Acquisition; IEEE Transactions on Software
Engineering Volume 17 Number 3, pages 226-240, March 1991.

[16] William Swartout and Robert Balzer; On the Inevitable Intertwining of
Speci�cation and Implementation; Comm ACM Volume 25 Number 7
pages 438-440, July 1982.

[17] Pamela Zave and Michael Jackson; Conjunction as Composition; ACM
Transactions on Software Engineering Methodology, Volume 2 Number
4 pages 379-411; October 1993.

Appendix

The formal parts of the speci�cation are brought together here. They are
given in the order of their original presentation, except that the following
declarations are given �rst, here:

[SWITCH ;PIPE ;BIN ;SENSOR]

DEST == BIN

DIR ::= L j R

ipped : DIR�DIR

ipped(R) = L

ipped(L) = R

Router Topology View

30

RouterDomain

top : PIPE
reader : SENSOR
sensUp; sensDn : PIPE� SENSOR

enters : PIPE� SWITCH

pipeL; pipeR : SWITCH � PIPE

�lls : PIPE� BIN

reader 62 ran(sensUp [sensDn)
top 2 dom enters

dom enters \ dom�lls = �
ran sensUp \ ran sensDn = �
ran pipeL \ ran pipeR = �
ran pipeL [ran pipeR = (dom entersnftopg) [dom�lls

dom pipeL [dom pipeR = ran enters
(enters � (pipeL [pipeR))+ \ Id = fg

RouterStaticInformation

RouterDomain

ow : PIPE# PIPE

reachL; reachR : SWITCH # BIN

ow = enters � (pipeL [pipeR)
reachL = pipeL �
ow� � �lls
reachR = pipeR �
ow� � �lls

RouterRequestsAndRules

RouterStaticInformation

guards : SENSOR� SWITCH

way : (SWITCH �DEST)# DIR

precedes : SENSOR� SENSOR

guards = sensDn� � enters
way = (reachL� fLg) [(reachR� fRg)
precedes = fsensUp(top) 7! readerg [
fp : PIPE � sensDn(p) 7! sensUp(p)g [
f(p; p0) 2
ow � sensUp(p0) 7! sensDn(p)g

31

Package Tracking View

PackageTrackingDomain

queue : SENSOR� seqDEST
precedes : SENSOR� SENSOR

bin : SENSOR� BIN

reader : SENSOR

Init PackageTrackingDomain

PackageTrackingDomain 0

queue 0 = (dom bin) � (SENSOR � hi)

Transfer

�PackageTrackingDomain
se : SENSOR
d : DEST

se 6= reader ^ se 62 dom bin

d = head queue(precedes(se))
queue 0 = queue�
fprecedes(se) 7! tail queue(precedes(se));
se 7! queue(se) � hdig

ReadDest

�PackageTrackingDomain
se : SENSOR
d : DEST

se = reader

queue 0 = queue � freader 7! queue(reader) � hdig

32

Deposit

�PackageTrackingDomain
se : SENSOR
d : DEST
b : BIN

se 2 dom bin ^ b = bin(se)
d = head(queue(precedes(se))
queue 0 = queue � fprecedes(se) 7! tail queue(precedes(se))g

RightBin

Deposit

b = d

WrongBinMessage

Deposit

actual !; desired ! : BIN

b 6= d

desired ! = d

actual ! = b

Switch Control View

SwitchSettings

setting : SWITCH " DIR

SwitchesModel

SwitchSettings

choice : (SWITCH �DEST)# DIR

empty : � SWITCH

33

ArriveAndFlip

�SwitchModel

sw : SWITCH

d : DEST

sw 2 empty

choice�fsw ; dg� = f
ipped(setting(sw))g
setting 0 = setting � fsw 7!
ipped(setting(sw))g

ArriveNoFlip

�SwitchModel

sw : SWITCH

d : DEST

: pre ArriveAndFlip
setting 0 = setting

Connections

PackageRouterControl

RouterRequestsAndRules

PackageTrackingDomain

SwitchesModel

bin = sensDn� � �lls
choice = way

empty = guards � dom(queue � hi)�

TransferAndFlip

�RouterRequestsAndRules
Transfer

ArriveAndFlip

(se 7! sw) 2 guards

d = head queue(precedes(se))

34

TransferNoFlip

�RouterRequestsAndRules
Transfer

ArriveNoFlip

(se 7! sw) 2 guards

d = head queue(precedes(se))

Init PackageRouterControl b=
�PackageRouterControl ^ �RouterRequestsAndRules ^
Init PackageTrackingDomain

PassSensor b=
�PackageRouterControl ^ �RouterRequestsAndRules ^
(ReadDest _WrongBinMessage _ RightBin _
TransferAndFlip _ TransferNoFlip)

35

