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1 Introduction

The focus of this chapter is on the dependability of software-intensive systems: that
is, of systems whose purpose is to use software executing on a computer to achieve
some effect in the physical world. Examples are: a library system, whose purpose is
to manage the loan of books to library members in good standing; a bank system
whose purpose is to control and account for financial transactions including the
withdrawal of cash from ATMs; a system to control a lift, whose purpose is to ensure
that the lift comes when summoned by a user and carries the user to the floor de-
sired; a system to manage the facilities of a hotel, whose purpose is to control the
provision of rooms, meals and other services to guests and to bill them accordingly; a
system to control a radiotherapy machine, whose purpose is to administer the pre-
scribed radiation doses to the patients, accurately and safely.

We will restrict our attention to functional dependability: that is, dependability in
the observable behaviour of the system and in its effects in the world. So safety and
security, which are entirely functional in nature, are included, but such concerns as
maintainability, development cost, and time-to-market are not. The physical world is
everything, animate or inanimate, that may be encountered in the physical universe,
including the artificial products of other engineering disciplines, such as electrical or
mechanical devices and systems, and human beings, who may interact with a system
as users or operators, or participate in many different ways in a business or adminis-
trative or information system. We exclude only those systems whose whole subject
matter is purely abstract: a model-checker, or a system to solve equations, to play
chess or to find the convex hull of a set of points in three dimensions.

Within this scope we consider some aspects of software-intensive systems and
their development, paying particular attention to the relationship between the soft-
ware executed by the computer, and the environment or problem world in which its
effects will be felt and its dependability evaluated. Our purpose is not to provide a
comprehensive or definitive account, but to make some selected observations. We
discuss and illustrate some of the many ways in which careful use of structure, in



both description and design, can contribute to system dependability. Structural ab-
straction can enable a sound understanding and analysis of the problem world prop-
erties and behaviours; effective problem structuring can achieve an informed and
perspicuous decomposition of the problem and identification of individual problem
concerns; and structural composition, if approached bottom-up rather than top-down,
can give more reliable subproblem solutions and a clearer view of software archi-
tecture and more dependable attainment of its goals.

2 Physical structure

In the theory and practice of many established engineering branches—for example,
in civil, aeronautical, automobile and naval engineering—structure is of fundamental
importance. The physical artifact is designed as an assemblage of parts, specifically
configured to withstand or exploit imposed mechanical forces. Analysis of designs in
terms of structures and their behaviour under load is a central concern, and engi-
neering education teaches the principles and techniques of analysis. Engineering
textbooks show how the different parts of a structure transmit the load to neighbour-
ing parts and so distribute the load over the whole structure. Triangular trusses, for
example, distribute the loads at their joints so that each straight member is subjected
only to compression or tension forces, and not to bending or twisting, which it is less
able to resist. In this way structural abstractions allow the engineer to calculate how
well the designed structure will withstand the loads it is intended to bear.

When a bridge or building fails, investigation may reveal a clear structural defect
as a major contributing cause. For example, two atrium walkways of the Kansas City
Hyatt Hotel failed in 1981, killing 114 people [21]. The walkways were supported,
one above the other, on transverse beams, which in turn were supported by hanger
rods suspended from the roof. The original design provided for each hanger rod to
give support to both the upper and the lower walkway, passing through the trans-
verse beam of the upper walkway as shown in the left of Fig. 1. Because this design
was difficult to fabricate, the engineer accepted the modification shown in the right
of the figure. The modification was misconceived: it doubled the forces acting on the
transverse beams of the upper walkway, and the retaining nuts on the hanger rods
tore through the steel beams, causing the collapse.
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Fig. 1. Kansas City Hyatt: collapse of walkways



The modification should have been rejected, and the engineer responsible for ac-
cepting it rightly lost his licence.

The ability to analyse structure in this kind of way allows engineers to design
products with necessary or desirable properties in the large while expecting those
properties to carry over successfully from the structural abstraction to the final
physical realisation of the design. As the Kansas City disaster demonstrates, the
established branches of engineering have an imperfect record in the dependability of
their products. But it is still a record that software developers should envy. Whether
by explicit quantitative analysis, or by applying less formal knowledge derived from
a long history of carefully recorded successful experience, engineers have been able
to design a large range of successful structures whose properties were reliably pre-
dicted from their designs. Roman engineers, for example, exploited the circular arch
structure to build aqueducts like the Pont du Gard at Nimes, which is still standing
after nearly two thousand years, and bridges like the Pons Fabricius over the Tiber in
Rome, built in 62BC as a road bridge and still in use today by pedestrians.

This possibility, of predicting the properties of the final product from analysis of
a structural abstraction, depends on two characteristics of the physical world at the
scale of interest to engineers. First, the physical world is essentially continuous:
Newton’s laws assure the bridge designer that unforeseen addition of parts of small
mass, such as traffic sign gantries, telephone boxes and waste bins, cannot greatly
affect the load on the major components of the bridge, because their mass is much
larger. Second, the designer can specify implementation in standard materials whose
mechanical properties (such as resistance to compression or tension or bending) are
largely known, providing assurance that the individual components of the final prod-
uct will not fail under their designed loads.

In the design of software-intensive systems, too, there is some opportunity to
base development on structural abstractions that allow properties of the implemented
system to be determined or analysed at the design stage. This is true especially in
distributed systems, such as the internet, in which the connections among the large
parts of the structure are tightly constrained to the physical, material, channels pro-
vided by the designed hardware configuration. For such a system, calculations may
be made with some confidence about certain large properties. Traffic capacity of a
network can be calculated from the configuration of a network’s paths and their
bandwidths. A system designed to achieve fault-tolerance by server replication can
be shown to be secure against compromise of any m out of n servers. A communica-
tions system can be shown to be robust in the presence of multiple node failures,
traffic being re-routed along the configured paths that avoid the failed nodes.

Design at the level of a structural abstraction necessarily relies on assumptions
about the low-level properties of the structure’s parts and connections: the design
work is frustrated if those assumptions do not hold. In the established engineering
branches the assumptions may be assumptions about the properties of the materials
of which the parts will be made, and how they will behave under operational condi-
tions. For example, inadequate understanding of the causes and progression of metal
fatigue in the fuselage skin caused the crashes of the De Havilland Comet 1 in the
early 1950s. The corners of the plane’s square passenger windows provided sites of



stress concentration at which the forces caused by the combination of flexing in
flight with compression and decompression fatally weakened the fuselage.

In the case of the Comet 1, a small-scale design defect—the square windows—
frustrated the aims of an otherwise sound large-scale design. In a software example
of a similar kind, the AT&T long-distance network was put out of operation for nine
hours in January 1990 [27; 31]. The network had been carefully designed to tolerate
node failures: if a switching node crashed it sent an ‘out-of-service’ message to all
neighbouring nodes in the network, which would then route traffic around the
crashed node. Unfortunately, the software that handled the out-of-service message in
the receiving node had a programming error. A break statement was misplaced in a
C switch construct, and this fault would cause the receiving node itself to crash when
the message arrived. In January 1990 one switch node crashed, and the cascading
effect of these errors brought down over 100 nodes.

This kind of impact of the small-scale defect on a large-scale design is particu-
larly significant in software-intensive systems, because software is discrete. There
are no Newton’s laws to protect the large-scale components from small-scale errors:
almost everything depends inescapably on intricate programming details.

3 Small-scale software structure

In the earliest years of modern electronic computing attention was focused on the
intricacies of small-scale software structure and the challenging task of achieving
program correctness at that scale.

It was recognised very early in the modern history of software development [19]
that program complexity, and the need to bring it under control, presented a major
challenge. Programs were usually structured as flowcharts, and the task of designing
a program to calculate a desired result was often difficult: even quite a small pro-
gram, superficially easy to understand, could behave surprisingly in execution. The
difficulty was to clarify the relationship between the static program text and the
dynamic computation evoked by its execution. An early approach was based on
checking the correctness of small programs [32] by providing and verifying asser-
tions about the program state at execution points in the program flowchart associated
with assignment statements and tests. The overall program property to be checked
was that the assertions “corresponding to the initial and stopped states agree with the
claims that are made for the routine as a whole”—that is, that the program achieved
its intended purpose expressed as a precondition and postcondition.

The invention of the closed subroutine at Cambridge by David Wheeler made
possible an approach to programming in which the importance of flowcharts was
somewhat diminished. Flowcharts were not an effective design tool for larger pro-
grams, and subroutines allowed greater weight to be placed on structural considera-
tions. M V Wilkes, looking back on his experiences in machine-language program-
ming on the EDSAC in 1950 [36], writes:

A program structured with the aid of closed subroutines is much easier to find
one’s way about than one in which use is made of jumps from one block of



code to another. A consequence of this is that we did not need to draw
elaborate flow diagrams in order to understand and explain our programs.

He gives an illustration:

... the integration was terminated when the integrand became negligible. This
condition was detected in the auxiliary subroutine and the temptation to use a
global jump back to the main program was resisted, instead an orderly return
was organised via the integration subroutine. At the time | felt somewhat shy
about this feature of the program since | felt that | might be accused of undue
purism, but now I can look back on it with pride.

Programming in terms of closed subroutines offered an opportunity to develop a
discipline of program structure design, but in the early years relatively little work
was done in this direction. Design in terms of subroutines was useful but unsystem-
atic. Among practitioners, some kind of modular design approach eventually became
a necessity as program size increased to exploit the available main storage, and a
conference on modular programming was held in 1968 [7].

For most practising programmers, the structuring of program texts continued to
rely on flowcharts and go to statements, combined with an opportunistic use of sub-
routines, until the late 1960s. In 1968 Dijkstra’s famous letter [10] was published in
the Communications of the ACM under the editor’s heading “Go To Statement Con-
sidered Harmful”. IBM [1] and others soon recognised both scientific value and a
commercial opportunity in advocating the use of Structured Programming. Programs
would be designed in terms of closed, nested control structures. The key benefit of
structured programming, as Dijkstra explained, lay in the much clearer relationship
between the static program text and the dynamic computation. A structured program
provides a useful coordinate system for understanding the progress of the computa-
tion: the coordinates are the text pointer and the execution counters for any loops
within which each point in the text is nested. Dijkstra wrote:

Why do we need such independent coordinates? The reason is—and this
seems to be inherent to sequential processes—that we can interpret the value
of a variable only with respect to the progress of the process.

Expressing the same point in different words, we may say that a structured pro-
gram places the successive values of each component of its state in a clear context
that maps in a simple way to the progressing state of the computation. The program
structure tree shows at each level how each lexical component—elementary state-
ment, loop, if-else, or concatenation—is positioned within the text. If the lexical
component can be executed more than once, the execution counters for any enclosing
loops show how its executions are positioned within the whole computation. This
structure allowed a more powerful separation of concerns than is possible with a
flowchart. Assertions continued to rely ultimately on the semantic properties of ele-
mentary assignments and tests; but assertions could now be written about the larger
lexical components, relying on their semantic properties. The programmer’s under-
standing of each leaf is placed in a structure of nested contexts that reaches all the
way to the root of the program structure tree.



The set of possible program behaviours afforded by structured programming was
no smaller than the set available in flowchart programs. The essential benefit lay in
transparency—the greatly improved clarity and human understanding that it moti-
vated and supported. Any flowchart program can be recast in a structured form [3]
merely by encoding the program text pointer in an explicit variable, and a somewhat
better recasting could be obtained by applying a standard procedure for converting a
finite-state machine to a regular expression. But as Dijkstra pointed out in his letter:

The exercise to translate an arbitrary flow diagram more or less
mechanically into a jump-less one, however, is not to be recommended. Then
the resulting flow diagram cannot be expected to be more transparent than
the original one.

Another important advantage of structured programming over flowcharting is
that it allows a systematic and constructive approach to program design. A precondi-
tion and postcondition give the program specification: that is, its required functional
property. For each component, starting with the whole program, the developer
chooses a structured construct configured so that satisfaction of its parts’ specifica-
tions guarantees satisfaction of the specification of the component. As the design
proceeds, the required functional property of the program is refined into required
properties of each component, explicitly stated in preconditions, postconditions and
loop invariants. As Dijkstra put it: the program and its proof of correctness were to
be developed hand in hand [11; 14].

This formal work was fruitful in its own area of program development. But its
very success contributed to an unfortunate neglect of larger design tasks. The design
of systems—seen as large assemblages of programs intended to work cooperatively,
especially in commercial or administrative data processing—or even of a very large
program, was often regarded as uninteresting. Either it was nothing more than a
simple instance of the appealingly elegant principle of stepwise refinement or recur-
sive decomposition, or else it was much too difficult, demanding the reduction to
order of what to a casual glance seemed to be merely a mass of unruly detail. Both
views were mistaken. Realistic systems rarely have specifications that can be cap-
tured by terse expressions inviting treatment by formal refinement. And although
some parts of some data processing systems did indeed seem to present a mass of
arbitrary detail—for example, payroll rules originating in long histories of fudged
legislation and compromises in negotiations between management and unions—the
unruly detail more often reflected nothing other than the richness of the natural and
human world with which the system must inevitably deal.

4 The product and its environment

Software engineering has suffered from a deep-seated and long-standing reluctance
to pay adequate attention to the environment of the software product. One reason lies
in the origins of the field. A ‘computer’ was originally a person employed to perform
calculations, using a mechanical calculating machine, often for the construction of
mathematical tables or the numerical solution of differential equations in such areas



as ballistics. The ‘electronic computer’ was a faster, cheaper, and more reliable way
of performing such calculations.

The use of computers interacting more intimately with their environments to
bring about desired effects there—that is, the use of software-intensive systems—
was a later development. Dependability of a software-intensive system is not just a
property of the software product. It is a property of the product in its environment or,
as we shall say, in its problem world. Dependability means dependability in satisfy-
ing the system’s purposes; these purposes are located, and their satisfaction must be
evaluated, not in the software or the computer, but in the problem world into which it
has been installed.

In considering and evaluating many engineering products—such as aeroplanes
and cars—it seems natural to think of dependability as somehow intrinsic to the
product itself rather than as residing in the relationship between the product and its
environment. But this is misleading. The environment of a car, for example, includes
the road surfaces over which it must travel, the fuel that will be available to power it,
the atmospheric conditions in which the engine must run, the physical dimensions,
strength and dexterity that the driver is likely to possess, the weight of luggage or
other objects to be carried along with the passengers, and so on. The designer must
fit the car’s properties and behaviour to this environment very closely. The environ-
ment, or problem world, comes to seem less significant only because for such prod-
ucts the purposes and the environment are so fully standardised and so well under-
stood that knowledge of them becomes tacit and implicit. That knowledge is
embodied in well-established product categories—a family hatchback saloon, a 4x4
sports utility vehicle, a luxury limousine, and so on—and in the parameters of the
corresponding normal design [34] practices. The purchaser or user of a car in a par-
ticular category doesn’t need to ask whether it is suitable for the intended purpose
and environment unless something consciously unusual is intended: transporting
contestants to a sumo wrestling competition, perhaps, or making an overland trip into
the Sahara. The car designer does not need to reconsider these requirement and envi-
ronment factors afresh for each new car design: they are built into the normal design
standards.

By contrast, the dependability and quality of some other engineering products,
such as bridges, tall buildings and tunnels, is very obviously evaluated in terms of
their relationship to their specific individual environments. The designer of a suspen-
sion bridge over a river must take explicit account of the properties of the environ-
ment: the prevailing winds, the possible road traffic loads, the river traffic, the cur-
rents and tides, the geological properties of the earth on which the bridge foundations
will stand, and so on. When William J LeMessurier was led to re-evaluate his design
for the Citicorp Center and found it inadequate, a major criterion was based on the
New York City weather records over the previous century: he discovered that a
storm severe enough to destroy his building had a high probability of occurring as
often as once in every sixteen years. Although the building had already been finished
and was already occupied, he confessed his design error and immediately arranged
for the necessary—and very expensive—strengthening modifications to be put in
hand [23].



The environment or problem world is especially important for software-intensive
systems with a need for high dependability. One reason is that such systems very
often have a unique problem world. Each nuclear power plant, or large medical ra-
diation therapy installation, is likely to have its own unique properties that are very
far from completely standard. Another reason is that the system may be highly auto-
mated: in a heart pacemaker there is no operator to take action in the event of a crisis
due to inappropriate software behaviour.

4.1The formal machine and the non-formal world

The scope of a software-intensive system is shown by the problem diagram Fig. 2.
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Fig._2. A problem diagram: Machine, Problem World, and Requirement

The machine is connected to the problem world by an interface a of shared phe-
nomena—for example, shared events and states. The requirement captures the pur-
pose of the system—the effect to be achieved in the problem world, expressed in
terms of some problem world phenomena b. Because the purposes to be served by a
system are almost always focused on parts of the problem world that lie some dis-
tance from the interface between the machine and the world, the requirement phe-
nomena b are almost always distinct from the phenomena at a which the machine
can monitor or control directly.

The success of the system therefore depends on identifying, analysing, respecting
and exploiting the given properties of the non-formal world that connect the two sets
of phenomena. For a lift control system, dependable lift service must rely on the
causal chains that connect the motor state to the winding drum, the drum to the hoist
cables, the cables to the position of the lift car in the shaft, and the lift car position to
the states of the sensors at the floors. A library administration system must depend
on the physical correspondence between each book and the bar-coded label fixed
into it, on the possible and expected behaviours of the library members and staff, on
the physical impossibility of a book being simultaneously out on loan and on its shelf
in the library, and on other properties of its problem world.

The concerns of the developers of such a system must therefore encompass both
the machine and the problem world. This enlarged scope presents a special difficulty.
A central aspect of the difficulty was forcefully expressed by Turski [33]:

Thus, the essence of useful software consists in its being a constructively
interpretable description of properties of two ... structures: [formal]
hardware and [non-formal] application domain, respectively. ...



Thus, software is inherently as difficult as mathematics where it is concerned
with relationships between formal domains, and as difficult as science where
it is concerned with description of properties of non-formal domains.
Perhaps, software may be said to be more difficult than either mathematics or
science, as in most really interesting cases it combines the difficulties of both.

The difficulty of dealing with the non-formal problem world arises from the un-
bounded richness, at the scale that concerns us, of the physical and human world. In
forming structural abstractions of the software itself we are confronted by the task of
finding the most useful and appropriate structures, analysing them, and composing
them into a software product. In structuring the problem world we are confronted
also by the difficult task of formalising a non-formal world. The task was succinctly
described by Scherlis [28]:

... one of the greatest difficulties in software development is formalization—
capturing in symbolic representation a worldly computational problem so
that the statements obtained by following rules of symbolic manipulation are
useful statements once translated back into the language of the world. The
formalization problem is the essence of requirements engineering ...

We can read Scherlis’s statement as a description of the development work: first
formalise, then calculate formally, then reinterpret the calculated results as state-
ments about the world. But we can also read it as an account of the relationship be-
tween development and execution: the developers formalise and calculate, then the
machine, in operation, executes the specification we have calculated, blindly pro-
ducing the effects of translating our calculated results back into the language of real-
ity in the world.

The difficulty of formalisation of a non-formal problem world is common to all
engineering disciplines: a structural abstraction of a physical reality is never more
than an approximation to the reality. But in software-intensive systems the formal
nature of the machine, combined with its slender interface to the non-formal problem
world, increases the difficulty dramatically. The developers must rely on their as-
sumptions about the non-formal problem world, captured in formal descriptions, in
specifying the machine behaviour that is to satisfy the requirement: as the desired
level of automation rises, those assumptions must necessarily become stronger.

The problem world formalisation, then, is determinative of the system. Because
the system behaviour must be designed specifically to interact with the problem
world, and the developer’s understanding of the properties and behaviour of that
world are expressed in the formal model, any defect in the model is very likely to
give rise to defective system behaviour. This is not true of a system in which human
discretion can play a direct part in the execution of the ‘machine’. For example, an
airline agent can use common sense to override the consequences of a defective
model by allowing a passenger holding a boarding card for a delayed flight to use it
to board another flight. Nor is the model of the problem world, or of the product,
determinative in the established branches of engineering. Knowing that their models
are only approximations, structural designers routinely over-engineer the product,
introducing safety factors in accordance with established design precedent and
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statutory codes. In this way they can avoid placing so much confidence in their
model that it leads to disaster.' The developer of a software-intensive system has no
such safety net to fall back on. The formal machine has no human discretion or
common sense, and a discrete system aiming at a high degree of automation offers
few opportunities for improving dependability by judicious over-engineering. If the
reality of the problem world is significantly different from the developer’s assump-
tions, then the effects of the system are likely to be significantly different from the
requirements. There is no reason to expect the deviation to be benevolent.

5 Simple structures describing the problem world

The intimate and determinative relationship between the formal machine and the
informal world places a special stress on understanding and formalising the proper-
ties of the problem world. Structural abstraction is a chief intellectual tool in this
understanding. It supports separation of concerns at two levels. At one level the
choice of parts and relationships in the reality to be understood reflects a separation
of just those aspects from other aspects of the problem world. At the next level, each
part and each connection is clearly separated from the other parts and connections. In
this section we briefly illustrate and discuss some other aspects of structural descrip-
tion of a given reality. Here the primary concern is to obtain an appropriate structural
abstraction of something that already exists: it is description rather than design. Dis-
cussion of design—the composition of multiple structures into one—is deferred to
later sections.

As in any descriptive activity, the goal is to make a description that captures the
properties of interest for the purpose in hand. In the non-formal problem world this is
not a trivial matter: Cantwell Smith [5] pointed it out as a potential source of failure:
the technical subject of model theory studies the relationship between formal de-
scriptions and formal semantic domains, but there is no good theory of the relation-
ship between formal semantic domains and properties of the problem worlds we
must describe.

An example of simple structural description is the formalisation of the layout of
an urban Metro railway, of which a fragment is shown in Fig. 3:

! The famous collapse of the Tacoma Narrows bridge in 1940 [15] can be attributed to ex-
actly such overconfidence. Theodore Condron, the engineer employed by the finance corpora-
tion, pointed out that the high ratio of span to roadway width went too far beyond currently
established precedent, and recommended that the roadway be widened from 39 feet to 52 feet.
But other notable engineers, relying on the designer’s deflection theory model, persuaded
Condron to withdraw his objections, and the bridge was built with the fatal defect that led to
its total collapse six months after construction.
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Fig. 3. A fragment of a local Metro railway structure

One purpose of making such a structure is to allow us to compose it later with
another structure. For example, we may want to relate the railway connections to the
road connections by bus in a part of the system that plans journeys. Another purpose
is to allow us to reason about the mathematical properties of the graph and thus to
deduce properties of the railway. For example, if the graph is connected we can infer
that every station is reachable from every other station. If it is acyclic we can infer
that between any two stations there is exactly one non-looping path, and hence that if
one of the connecting tracks is destroyed or put out of action by a major accident the
stations will thereby be partitioned into two disconnected subsets.

Whatever our purpose, we must be clear about the relationship between this for-
mal representation and the reality of the subject matter. The graph formalisation is in
terms of nodes, node names, edges, and an incidence relation. Each node represents a
station of the Metro. But what exactly does this mean? Is every station represented
by a node? If a disused station lies on a track represented by an arc—for example,
the old Exchange station is on the line between Main and Market—does it appear in
the graph? If two stations are connected by an underground pedestrian passageway
are they represented by two nodes or by one? Are all the connecting tracks repre-
sented by arcs of the graph? Is the Metro connected by tracks to any other railway
system? The arcs are undirected. Does that mean that all connecting tracks allow
trains in both directions? Presumably we are not to assume that the track layouts at
the stations allow all possible through trains—for example, that each of the 6 possi-
ble paths through Main Station can be traversed by a train in either direction. But
what—if anything—is being said about this aspect of the structure?

Clarity about this relationship between the abstraction and the reality is essential
if the structure is to serve any useful purpose. And we must be clear, too, about the
purpose we want it to serve. What useful statements about the problem world do we
hope to obtain by our reasoning? Are we concerned to plan train operating sched-
ules? To analyse possible passenger routes? To plan track maintenance schedules?
Different purposes will demand different formalisations of the problem world. As
John von Neumann observed in The Theory of Games [35]: “There is no point in
using exact methods where there is no clarity in the concepts and issues to which
they are to be applied”. In Scherlis’s terms, a formal abstraction with an unclear
purpose and an unclear relationship to its subject matter may allow symbolic ma-
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nipulation: but the results of that manipulation cannot yield useful statements about
the world.

Another example of a simple structure, this time of a software domain, is the ob-
ject class structure shown in Fig. 4: it represents an aliasing scheme to be used by an
email client. Each potential recipient of an outgoing email message is represented by
an address, an alias can refer, acyclically, to one or more addresses or aliases, aliases
and addresses are generalised to ids. Each email message has a target, which consists
of a non-empty set of include ids and a set of exclude ids: this feature is considered
convenient because it allows the sender to target, for example, a set of work col-
leagues while excluding any who are personal friends.

* include 1..*

message | ———Jpi target id B
—»
* exclude * ZF refers
| | 1.
address alias

Fig. 4. A structure for e-mail recipients

For the conscientious specifier of requirements, and certainly for the designer of the
email client software, the question will arise: How should the target of a message be
resolved? Does it matter whether the difference set include — exclude is formed be-
fore or after resolution of alias references? The question is about a putative property
of the structure, and it certainly does matter. The developer must find a way of an-
swering this question reliably.

One way of answering the question is by formal or informal reasoning. Another
is model-checking. For example, the significant parts of the structure, and the asser-
tion of the putative property, can be formalised in the relational language of the Al-
loy model-checker [17] as shown in Fig. 5.

module aliases
sigid{}
sig address extends id { }
sig alias extends id{refers: set id}
fact {no a: alias | a in a.”refers} // aliasing must not be cyclic
sig target {include, exclude: set id}
fun diffThenRefers (t: target): set id {t.(include - exclude).*refers - alias}
fun refersThenDiff (t: target): set id {(t.include.*refers - t.exclude.*refers) - alias}
assert Orderlrrelevant {
all t: target | diffThenRefers(t) = refersThenDiff(t)

Fig. 5. Model-checking a putative object structure property
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In the Alloy language an object class is represented by a signature, and its associa-
tions by fields of the signature, + and — denote set union and difference, and » and *
denote transitive and reflexive transitive closure of a relation. The assertion Orderlr-
relevant asserts the equality of the result regardless of the order of evaluation: the
model-checker will find, if it can, a counter-example to this assertion.

Running the checker produces the trivial counterexample of Fig. 6. aliasO refers
to address0, and targetO includes aliasO and excludes addressO. If the difference set
include — exclude is computed first, the target is address0, but if aliases are resolved
first, then the target is empty.

targetO

Fig. 6. A counterexample found by model-checking a structure

include
refers

exclude

As this tiny example shows, faults in data structures are not limited to
misrepresenting the reality the structure is intended to capture. Data structures, like
program structures, have properties; by stating the expected or desired properties
explicitly, and checking them carefully, the designer can eliminate or reduce a
significant source of failure.

In the Metro example completeness is clearly likely to be a vital property. For
almost all purposes the structural description must show all the stations and track
connections, not just some of them. For a behavioural structure completeness is
always a vital property. A dramatic failure’ to accommodate some possible behav-
iours in an entirely different kind of system was reported [22] from the 2002 Af-
ghanistan war. A US soldier used a Precision Lightweight GPS Receiver (a ‘plug-
ger’) to set coordinates for an air strike. Seeing that the battery low warning light
was on, he changed the battery, before pressing the Fire button. The device was
designed, on starting or resuming operation after a battery change, to initialize the
coordinate variables to its own location. The resulting strike killed the user and three
comrades.

Fig. 7. A behavioural structure of a vending machine carousel

2 T am grateful to Steve Ferg for bringing this incident to my attention.
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Figure 7 shows an incomplete structural description of the behaviour of a carou-
sel mechanism of a vending machine.

This incompleteness is a serious flaw in a descriptive structure: it invites misun-
derstandings that may give rise to development faults and consequent failures. One
putative justification for incompleteness can be firmly dismissed at the outset—a
claim that the control program for the carousel, described elsewhere, never emits the
signals that would correspond to missing transitions. Such a claim would be irrele-
vant to the vending machine behaviour because it relies on an assertion that is not
about the domain of the description in hand: we are describing the behaviour of the
vending machine’s carousel mechanism, not its controller.

In such a description, an input signal may be missing in a state for any one of
three reasons. The carousel mechanism itself may be capable of inhibiting the signal
(this is unlikely to be true in the example we are considering now). The omitted
signal may be accepted by the mechanism but cause no state change. Or the response
of the carousel mechanism to the signal may be unspecified: it causes the mechanism
to enter an unknown state in which nothing can be asserted about its subsequent
behaviour. The user of the description must be told the reason for each omitted tran-
sition.

One technique is to add a global annotation to indicate that any omitted outgoing
transition is implicitly a transition to the unknown state, or that any omitted outgoing
transition is implicitly a self-transition to the source state. Alternatively, each of the
three cases can be explicitly represented in the syntax of the structure. For an inhib-
ited input an annotation can be added to the state symbol. For an accepted signal that
causes no state change a self-arc can be added to the state. An unspecified transition
can be represented by an explicit transition to an additional Unknown state. Fig. 8
shows one possible completion of the carousel behavioural structure.

left
stop

' stop
Stopped
stop
. Anti-
right Clockwise

right

Fig. 8. A complete behavioural structure of a vending machine carousel

In the Stopped state, stop signals are accepted and ignored. In the Clockwise
state, left signals are accepted and ignored and right signals cause a transition to the
Unknown state. Similarly in the Anti-Clockwise state, right signals are accepted and
ignored and left signals cause a transition to the Unknown state. The Unknown state
has no outgoing transitions because exit from the Unknown state is, by definition,
impossible. Figure 8, of course, is merely an example. Whether it is the correct ex-
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plicit completion is a factual question about the particular carousel mechanism being
described.

The value of providing context in a structure is not limited to program texts.
Helping the reader to understand complexity is often a decisive factor in choosing a
structural representation, and a decisive factor in understanding complexity is often
the context in which each structural part must be understood. Figure 9 shows the
structure of a monthly batch billing file in a system used by a telephone company.

For convenience in producing the bills, which are to be printed and bulk-posted,
the file is sorted by postal region and, within that, by customer number. For each
customer in the file there is an account record giving details of the customer’s name
and address, a plan record detailing the payment plan applying to the month, and,
where applicable, a record of the balance brought forward. These are followed by
records of the calls and messages of the month in chronological order.

The structure is shown as a regular expression in graphical form, with all subex-
pressions labelled. Without the subexpression labels it is equivalent to:

(Addr,Plan, (Bal|nul),Call*, (Addr,Plan, (Bal |nul),Call*)*)*

Billing
File

Postal
Region

+
Customer
Record Group

Address Plan Possible call

Record Record Balance Record Group
Balance °© nul o call *
Record Record

Fig. 9. The regular structure of a monthly billing file

The record sequence described by this structure could instead be described by a
finite automaton, but for many purposes the form shown is clearer and more useful.
In particular, it offers one of the advantages of structured programs over flowcharts:
every part is set in a clear context. By attaching region and customer identifiers as
attributes to the nodes we can easily associate each record and record group explic-
itly with the postal region and the customer to which it belongs—analogous to the
coordinate system of a structured program. As a final observation we may add that
the graphical representation has important advantages over an equivalent text—for
example, over an attributed grammar written in the usual form of a sequence of pro-
ductions—because it represents the structural context transparently by the graphical



16

layout on the page. Even those programmers who are most devoted to formalism
write their program texts in a nested, indented, layout.

One issue to consider in describing the structure of any subject is the description
span. How much of the subject matter must be described—in terms of time, or space,
or any other relevant coordinate system—to capture the relationships of importance
for the purpose in hand adequately, and as clearly and simply as possible?

The issue is particularly important in two respects in behavioural structures. First,
when the description shows an initial state it is necessary to say explicitly what seg-
ment of the subject’s life history is being described and is known to begin in that
state. In the description of the carousel mechanism no initial state is shown, so the
question does not arise: the structure shown in Fig. 8 describes any segment of the
carousel mechanism’s life, starting in any of the four states. If an initial state were
specified it would demand explanation. Does it represent the mechanism’s state on
leaving the factory? The state entered each time that power is switched on? The state
following receipt of a reset signal not represented in the structure? The choice of
span, of course, must be appropriate to the purpose for which the description is being
made.

Second, span is important in behavioural structures whenever it is necessary to
consider arbitrarily-defined segments of a longer history. This necessity was com-
monplace in batch data-processing systems, which are now for the most part old-
fashioned or even obsolete. But batch processing has many current manifestations,
especially where batching is used to improve efficiency—for example, in managing
access to a widely-used resource of variable latency, such as a disk drive. In such
cases it may be essential to avoid the mistake of trying to describe the behaviour over
exactly the span of interest. Instead it may be much clearer to describe the longer
span and to specify that the span of interest is an arbitrary segment of this. Many
faults were introduced into batch data-processing systems by the apparent need to
describe explicitly the possible behaviours of an employee, or a customer or supplier,
or an order, over the one-week span that separated one batch run from the next. A
description of the whole life history of the entity, accompanied by a statement that
the behaviour over one week is an arbitrary week-long segment of this life history,
would have been much simpler both to give and to understand”.

6 Problem decomposition into subproblems

The non-formal richness of the problem world partly reflects a richness in the system
requirements, stemming from many sources. It is therefore necessary to decompose
the system requirements in some way. This decomposition is not to be achieved by
decomposing the software. It is necessary to decompose the whole problem, with its
problem world and requirement, into subproblems, each with its own problem world
and requirement. The problem world for each subproblem is some subset of the
whole problem world: some parts will be completely omitted, and for some or all of
the others only a projection will be included.

3 Any reader who is unconvinced of this point should try the analogous task of describing
the structure whose elements are any 50 consecutive records of the billing file of Fig. 9.
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This decomposition into subproblems is not in itself a structuring: it identifies the
parts of a structure, but specifically does not concern itself with their relationships.
Each subproblem is considered in isolation, and the recombination of the subproblem
solutions into a solution to the complete problem is deferred until later. We discuss
the recombination task in later sections. The justification for this approach, which
may at first sight appear perverse, is an ambition to see each subproblem in its sim-
plest possible form: only in this way can subproblems of familiar classes be easily
recognised, and the concerns arising in each subproblem be easily identified and
addressed.

One goal of problem decomposition is to ensure that each subproblem has a rela-
tively simple purpose of achieving and maintaining some relationship between dif-
ferent parts of its problem world. As an illustration, consider a small traffic control
system operating a cluster of lights in accordance with a stored regime that can be
changed by the system’s operator. A good decomposition of this problem is into two
subproblems: one in which the operator edits the stored regime, and one in which the
traffic is controlled by setting the lights as stipulated by the regime. The first, editing,
subproblem is concerned to relate the operator’s edit commands and the regime’s
changing state. The second subproblem is concerned to relate the states of the lights
and the regime. The task of recombining the two subproblems is deferred.

Designing software to create and maintain relationships between different parts
of the problem world can be seen as a task of structural composition. Each part of the
world, considered from the point of view of the subproblem, has its own structure,
and the solution to the subproblem depends on a composition—whether static or
dynamic—of those structures. For example, certain simple kinds of program—espe-
cially, but not only, terminating programs—can be viewed as transformers of se-
quential inputs to sequential outputs. A one-pass compiler for a simple language can
be of this type. The program in execution must traverse its inputs while using their
values, in context, to produce its outputs. If the problem is a simple one, the program
structure can be designed as a static composition of the structures of its inputs and

outputs. Figure 10 shows a trivial illustration of the idea.

a |&obody | |

|&opa|r

| bec | bad |

miaEn

Fig. 10. Two constituent structures and a static composition structure

[
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The regular structures in and out describe the input and output streams of a program
to be designed. The program is required to derive one opair from each ipair,
calculating the value of ¢ from the first b and the value of d from the second b; f is a
total computed from a and all the ipairs. The program structure in&out has been
formed by merging the two constituent structures. Each node of the program
structure corresponds to an in node whose value it uses, an out node whose value it
produces, or both, as indicated by its name.

In this example, the required relationships are that the program should produce
the output stream incrementally in a single pass over the input, and that the output
values should be those specified. The successful accommodation of both constituent
structures without distortion can be seen directly. Each constituent structure can be
recovered by pruning the composition structure.* Using this kind of merging compo-
sition structure eliminates a significant source of error: the retention of each con-
stituent structure ensures that the context of each part is preserved intact in the com-
position.

In this trivial example the composition structure is formed from given constitu-
ents whose individual properties are independent of the composition: in forming the
composition it is therefore necessary to accommodate every possible instance of each
constituent considered independently. A more complex task is the design or descrip-
tion of an interactive behavioural composition structure—that is, of a structure gen-
erated by interaction between two or more participating constituents. In such a com-
position the behaviour of each participant can be affected by the behaviour of the
others: the possible choices for each participant are governed not only by that par-
ticipant’s state but also by the requests and demands of the other participants.

Consider, for example, the design of an ACB (Automatic Call-Back) feature in a
telephone system. The purpose of an ACB feature is to assist a subscriber s who dials
the number of another party u and finds that it is busy. The system offers the feature
to the subscriber. If the offer is accepted and confirmed, the subscriber hangs up
(‘goes onhook’ in the industry jargon). When the called number u is free, the system
calls back the calling subscriber s, and when the subscriber answers it rings the re-
quested number u. The system acts rather like a traditional secretary of subscriber s,
but with one major difference. The secretary would first make the connection to u
and avoid troubling s before u is on the line. The ACB feature is more mannerly:
since it is s who wishes to make the call, s must wait for u.

The designed structure shown in Fig. 11 was intended to capture the required be-
haviour of the ACB feature itself. Clearly, this must compose the relevant behaviour
and states of the subscriber s, of the connection to subscriber u, and of the telephone
system that is responsible for basic telephone service into which the ACB feature is
eventually to be integrated. The basic system is assumed, for purposes of the de-
signed structure, to have no pre-existing features: it only provides connections in
response to dialled requests.

4 Tt is also necessary, after each pruning, to remove the interposed nodes b&c and b&d,
which, having only one part each after pruning, are not significant in the pruned structures.
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Fig. 11. Proposed designed behaviour of an Automatic Call-Back feature
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Unneeded

The interaction begins when s dials u#’s number. The basic system then attempts
to reach u, with three possible outcomes. If #’s number is free, then s hears ringTone,
indicating that u’s phone is alerting, and the ACB feature is not needed. If ©’s num-
ber is unobtainable, then s hears unobTone, and the ACB feature is not applicable. If
u’s number is busy, then s hears busyTone, and the ACB feature is applicable. In the
last case, the feature is offered by a recorded voice message, inviting s to accept the
offer by pressing ‘5’ on the dialpad; refusal is indicated by s hanging up. If the offer
is accepted, a confirming voice message is played and s hangs up.

Provision of the ACB service begins by waiting for #’s number to become free.
When this happens s’s phone starts to ring, and when s answers it the system at-
tempts to reach u. If «’s number is free, then s hears ringTone, indicating that u’s
phone is alerting, the ACB feature has succeeded and the service is now completed.
If «’s number is unobtainable or busy, then s hears unobTone or busyTone, and the
current attempt to provide the service has failed: when s hangs up, further attempts
are made until an attempt succeeds or the service is abandoned because too many
attempts have been made or too much time has elapsed.

A crucial question about such a structure is: What are its intended designed prop-
erties? One essential property is that the structure, like all composition structures,
should accommodate all possible behaviours of the constituents—here the partici-
pants in the interaction. Each participant has a full repertoire of potentially available
actions. The actions actually available at any moment are limited by the participant’s
local state, and in some cases also by external enabling or disabling of actions. Ac-
commodating all possible behaviours means that at each point in the interaction the
composition accommodates every one of the currently possible actions.
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The full repertoire for subscriber s, for example, is to go onhook, go offhook, or
press any button on the dialpad’, and subscriber u can do likewise. Each subscriber’s
local state limits the available actions according to whether the subscriber’s phone is
onhook or offhook: when it is offhook, all actions are possible except ofthook, when
it is onhook, no action is possible® except offhook. The basic telephone system, into
which the ACB feature is to be integrated, has its own behaviour with its own reper-
toire of states and actions. For example, when s dials u initially, the system attempts
to connect them, producing one of the three outcomes according to whether u is free,
busy, or unobtainable.

It is immediately clear that the designer’s obligation to accommodate all possible
behaviours has not been fulfilled. The omissions include: s dials any number in any
state, s hangs up in the Reaching(u)(2) state, s does not hang up in the Confirming-
ACB state, s does not answer in the Waiting for s state, s neither hangs up nor ac-
cepts in the ConfirmingACB state, u dials s in the Waiting state. The structure of
Fig.11 has many faults.

7 Structure within subproblems

When direct merging of contexts can not be achieved without distortion, a structural
difficulty is present for which some resolution must be found. Consider, for example,
the problem, well known to accountants, of combining a cycle based on seven-day
weeks with one based on the months of the solar calendar. The week context and the
month context are incompatible: that is, they can not both be fitted into the same
regular structure. One unsatisfactory approach to the difficulty is to create a single
composition structure that correctly accommodates only one of the two structures
and includes the incompatible parts of the other in a distorted form, as shown in
Fig.12.

yearly
calendar

month >

*

day

start O — start O
of week of week

Fig. 12. A composition structure distorting one of its constituent structures

5 We are assuming a simple old-fashioned handset here, and a simple old-fashioned land-
line-based telephone service.

6 In a certain sense, pressing a dialpad button is always possible, but has no effect when
the phone is onhook: no signal is transmitted to the exchange computer, and no change is
made to the local state of the phone.
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The effect of the distortion is a partial loss of context. The composition structure
provides no context corresponding to one week: the discrimination introduced here,
between a day (a Monday) that starts a week and a day that does not, is a very poor
substitute for this context. Any program computations that depend on the week con-
text—perhaps calculating weekly average or maximum or minimum values of some
variable associated with each day—must be fitted somehow into the structure shown.
A program based on this structure will be complicated by the multiplicative effect of
the month and week contexts: it may become necessary to distinguish the cases in
which the month begins on a Monday, those in which it ends on a Sunday, those in
which a month contains exactly four weeks, those in which it straddles five, and
those in which it straddles six weeks, and so on. In this very small example the com-
plexity may seem manageable, but in practice such complexities in realistic exam-
ples are a potent source of error and hence of system failure.

This kind of difficulty can often be handled much more effectively by exploiting
one aspect of the malleability of software—the reification of program context in
data. Dynamic context, associated in a structured program with a program text loca-
tion and an appropriate set of execution indices [10], can be captured in one struc-
ture, reified in data values, and transported to another structure. In the case of the
calendar problem the weekly and monthly contexts can be kept separate. In one
program structure, based on weeks, the computations that depend on the week con-
text are performed and the results appended to each day record in an output stream.
This output stream furnishes the input to another program structure based on months,
which then has no need to provide or reconstruct the week context: it treats the com-
puted weekly values in each day record as attributes of the day. The general tech-
nique used here is a particular form of separation or decoupling [8]. It is more effec-
tive than forming and using a single inadequate composition structure, because it
separates conflicting contexts and so reduces the likelihood of faults.

In such separation, a further level of problem decomposition has been introduced
below that of the originally identified subproblems. This decomposition is based not
on the identification of subproblems of familiar classes, but rather on a general prin-
ciple—the separation of conflicting contexts—applied in a particular form to a par-
ticular subproblem class [16]: essentially, each of the conflicting contexts must be
represented in a separate part of the subproblem.

For some subproblem classes a certain decomposition is completely standard.
Consider, for example, a subproblem in which a rolling analysis is to be displayed of
the current and historical prices of trades in a stock exchange. The dynamic structure
of the trading activity to be analysed is different from the structure of the analysis to
be computed and displayed, and the two structures are—almost certainly—in con-
flict. The conflicting structures are decoupled by introducing an intermediate data
structure and decomposing the subproblem into two parts: one, based on the structure
of the trading activity, to build and maintain the data structure, and the other, based
on the structure of the analysis, to produce and update the display output. The inter-
mediate data structure may take the form of a database on disk or an assemblage of
objects in shorter-term memory.
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8 Composition concerns

Problem decomposition produces a collection of subproblems that do not yet form a
structure because their relationships have been intentionally—albeit temporarily—
ignored. To recombine the subproblems is to form them into a complete problem
structure by identifying the points at which they must enter into relationships, and
determining what those relationships should be. This activity is in some respects
similar to the activity of treating a single subproblem. It is concerned with compos-
ing existing structures according to some requirement, the requirement often emerg-
ing only when the possibilities of composition are considered. In some cases this
composition will itself demand to be treated as a subproblem in its own right.

In general, two subproblems must be brought into relationship whenever their
problem worlds are not disjoint. The composition of subproblems is not restricted
to—and often not even concerned with—the composition of their machines: it is
concerned rather with the composition of their effects in the problem world they
share. One simple case arises in the traffic control system of the previous section.
The regime appears in both subproblems: it is written in the editing subproblem and
read in the other subproblem. This raises a classic interference concern: some
granularity must be chosen at which mutual exclusion can be enforced. But this is
not the only concern. There may be additional requirements governing the changeo-
ver from the old regime to the newly edited regime: for example, it may be necessary
to introduce an intermediate phase in which all the lights are red.

Another example of a composition concern arises from direct conflict between
subproblem requirements. An information system in which the more sensitive infor-
mation is protected by password control can be decomposed into a pure information
subproblem and a password control subproblem. On a particular request for infor-
mation by a particular user the two subproblems may be in conflict: the information
system requirement stipulates that the requested information should be delivered, the
password control requirement stipulates that it should not. In forming a composition
where conflict is present it is necessary to determine the precedence between the
subproblems. Here the password control problem must take precedence.

Subproblem composition concerns can be regarded as the genus to which the
feature interaction problem [4] belongs. Features, as they appear in telephone sys-
tems, can be regarded as subproblems of the overall problem of providing a conven-
ient and versatile telephone service. It is particularly valuable to consider telephone
call-processing features in isolation, because most features can indeed be used in
isolation, superimposed only on the underlying basic telephone service. Consider, for
example, the (flawed) structure shown in Fig. 11, intended to describe the ACB
feature. It composes the interactions of four participants: the two subscribers s and u,
the underlying basic telephone system, and the software machine that implements the
ACSB feature.

The structuring of telephone systems in terms of a number of such call-
processing features developed partly because it is an effective way to decompose the
complete functionality of such a system, but more cogently because telephone sys-
tems of this kind evolved over time under competitive pressure. The customers of the
companies developing such systems were local telephone service companies, who
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wanted to compete by offering their subscribers more features and better features
than the available alternative service suppliers. The call-processing (and other) fea-
tures were added to the competing systems in a fast-paced succession of versions of
the electronic switches on which they were implemented. In this way the switch
developers were constrained by commercial forces to structure at least the functional
requirements of their switches in terms of these features. From the beginning, pro-
ducing a new version by complete redevelopment and redesign of the millions of
lines of switch software was entirely impractical. Development was inevitably in-
cremental, and the features were the increments.

The nature of the telephone system, in which users can invoke any of a large set
of features, and any user can call any other user, gave rise to a huge number of po-
tential feature interactions. Suppose, in the ACB example, that while s is initially
dialling u, u is similarly dialling s. Each subscriber will find the other busy, and will
be offered ACB service. If both accept the offer, there will then be two instances of
the ACB feature with interleaved complementary behaviours. Further, the original
assumption that the basic system has no pre-existing features, but only provides
connections in response to dialled requests, is unrealistic and cannot stand. The de-
signed structure of the ACB feature behaviour must therefore coexist not only with
other instances of itself but also with other features.

The feature interaction problem is difficult both for requirements and for soft-
ware design and construction, and can affect the dependability of a system in both
respects. For the software designer it can give rise to huge and continually increasing
complexity. Unmastered, this complexity will have the usual consequences: the
system behaviour will sometimes be disastrous—for example, the system may crash;
sometimes it will merely fail, as software may, to perform its specified functions. For
the system user it can give rise to behaviour that is arguably in accordance with the
specified—or at least the implemented—functionality, but is nonetheless surprising.
In the formulation and analysis of requirements the complexity often manifests itself
as conflict between one required function and another.

Consider, for example, the OCS (Originating Call Screening) feature, which al-
lows a subscriber to specify a list of numbers to which calls will not be allowed from
the subscriber’s phone. This feature is particularly useful for subscribers with teen-
age children. Initially, the requirement is: “If the number dialled is a listed number
the call is not connected.” Then a new SD (Speed Dialling) feature is introduced.
The subscriber specifies a ‘SpeedList’, mapping ‘speedcodes’ of the form ‘#xx’ to
frequently dialled numbers. The subscriber’s teenage child adds to the subscriber’s
SpeedList a speedcode that maps to a forbidden number, and the OCS ban is now
bypassed by the SD feature. Alternatively, the teenager can rely on a friend whose
phone has the CF (Call Forwarding) feature. The friend arranges to forward calls to
the forbidden number, which the teenager can now reach by calling the friend’s
number. Or the teenager can simply rely on a friend who has the 3-Way Calling
feature (3WC), and is willing to set up a conference call between the teenager and
the forbidden number. In effect, the OCS feature is actually or potentially in conflict
with the SD, CF and 3WC features: satisfying their requirements prevents—or ap-
pears to prevent— satisfaction of the OCS requirements.
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9 Top-down and bottom-up architecture

In software development the word architecture can mean many things [25; 2; 29].
Here we mean the identification of software components, their arrangement into one
or more larger structures of chosen types, and the choice of component types and
connecting interfaces.

This is, in a sense, programming in the large, a term introduced by DeRemer and
Kron [9]. As DeRemer and Kron recognised, software architecture can be ap-
proached top-down, or bottom-up, or in some combination of the two. In a top-down
approach, the components are identified and specified just well enough for the de-
veloper to feel confident—or at least hopeful—that their eventual implementations
will fit as intended into the large structure. In a bottom-up approach the components
are investigated in detail and their analysis and design carried to a point not far short
of full implementation before their detailed interfaces and relationships are chosen
and the larger structure is determined. In practice some combination of top-down and
bottom-up is inevitable, not least because development is always to some extent
iterative [24].

The traditional approach to software development favours an approach that is
primarily top-down. It has an important appeal both to the manager, who must allo-
cate the development work among several developers or groups of developers, and to
the chief designer, who would like to sketch out the broad structure of the system
implementation at the earliest possible stage. But it suffers from an important disad-
vantage that is apparent from the very nature of any kind of composition structure. A
top-down approach to designing a composition structure of N components involves
simultaneous engagement in at least N+1 intellectual tasks: the N component design
tasks, and the task of composing them. An error in the conception or design of a
component is likely to entail reconsideration of its relationships with its neighbours
in the structure, with further consequences for those components, for their neigh-
bours in turn, and for the whole structure. Because a full redesign is economically
infeasible, the development must proceed with known design defects that will give
rise to complexities, faults and a reduction in dependability of the whole system.
This point was made by the physicist Richard Feynman in his contribution to the
Rogers Committee’s report on the Challenger space shuttle disaster, where he casti-
gated the top-down development of the space shuttle main engine [6; 12]:

In bottom-up design, the components of a system are designed, tested, and if
necessary modified before the design of the entire system has been set in
concrete. In the top-down mode (invented by the military), the whole system is
designed at once, but without resolving the many questions and conflicts that
are normally ironed out in a bottom-up design. The whole system is then built
before there is time for testing of components. The deficient and incompatible
components must then be located (often a difficult problem in itself),
redesigned, and rebuilt—an expensive and uncertain procedure. ... Until the
foolishness of top-down design has been dropped in a fit of common sense,
the harrowing succession of flawed designs will continue to appear in high-
tech, high-cost public projects.
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Scepticism about a top-down approach to architecture is well-founded, and is re-
inforced by recognition of the need for problem analysis and for decomposition into
subproblems. Software architecture can be seen as the composition of subproblem
machines, and it is hard to see how that composition can be reliably and finally de-
termined before the machines to be composed have been identified and understood.

9.1 Uniform architectures

Nonetheless, for some systems, certain kinds of architectural decision can usefully be
made at an early stage, when the subproblems have not yet been identified. These are
decisions about the design and adoption of a uniform architecture, based on a clearly
identified need to master an overwhelming complexity by casting every subproblem
into a form in which the complexity of its machine’s interactions with other sub-
problem machines can be tightly controlled.

One example of such a use of uniform architecture is the recovery-block scheme
for fault tolerance [26]. This is based on a recursive uniform architecture in which
each component has the same idealised structure. A component embodies one or
more software variants, each intended to satisfy the component specification. The
controller within the component successively invokes variants, in some order of
decreasing desirability, until either one succeeds or no further variant is available. In
the latter case the component has failed, causing the failure of the higher-level com-
ponent by which it was itself invoked. By introducing this uniform scheme the po-
tential complexities of error detection and recovery at many points of a large soft-
ware structure can be brought under control.

Another example of using a uniform architecture to master a potentially over-
whelming complexity is found in the DFC abstract architecture for telephone—or,
more generally—telecommunications systems [18]. The complexity comes from two
distinct sources. First, the system contains many call-processing features, all ac-
cessed through the same narrow interface of a telephone handset and all therefore
demanding use or control of its relatively few phenomena. Second, and more impor-
tant, manufacturers of telephone switches compete by bringing new features to mar-
ket in product releases that follow one another in quick succession. To address the
feature interaction problem, it is therefore essential to be able to add new features
quickly and easily without breaking the features already provided.

Each feature in DFC is regarded as a filter program, in the broad spirit of a pipe-
and-filter architecture, whose input and output streams carry both the signals and the
media content necessary for communication. The structure is dynamic, feature
‘boxes’ being assembled incrementally into a structure by the system router in re-
sponse to ‘virtual calls’ placed by the boxes themselves. When a box places a virtual
call, the router connects it to another feature box or to a line interface box, the con-
nection forming another ‘pipe’ in the structure. In a very simple case the result may
be what is shown in Fig. 13.
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Fig. 13. A simple subproblem composition structure of telephone features

The caller’s and callee’s phones have persistent interfaces to the system, provided by
line interface boxes LIr and Lle. The call shown has been assembled by the router by
including the caller’s features Frl and Fr2 (in response to successive virtual calls
from LIr and Frl), and the callee’s features Feland Fe2 (in response to successive
virtual calls from Fr2 and Fel). During progress of the whole connection, any of the
feature boxes in the assemblage may place further calls that will cause the structure
to change and grow. For example, if Fe2 is the CFB (Call Forward on Busy) feature,
and the callee is busy when the original call is placed, Fe2 will terminate its
connection to Lle and place another call to the forward number. Boxes for the
features of the forward number will then be inserted into the structure by the router.

A uniform scheme of this kind provides a high degree of isolation for the fea-
tures. Conceptually, each feature box can be specified and designed as if it were the
only box between the caller and callee line interfaces, which corresponds closely
with the way the users of the system may think of the feature. To allow for the pres-
ence of other feature boxes it need only act transparently for signals and media that
are not significant to its own feature behaviour, passing them on unchanged from its
input to its output connection. In general, the behaviour of a feature box, like a filter
program in a conventional pipe-and-filter architecture, does not depend on the be-
haviours of its neighbours, and because the specification of the connections is uni-
versal—the same for all virtual calls—the features can be assembled in different
orders’. This possibility of assembling the features in different orders provides a
dimension of control over their interactions: the DFC router inserts feature boxes
into a usage according to a specified precedence ordering. If the CFB (Call For-
warding on Busy) feature has a higher precedence than the VMB (Voice Mail on
Busy) feature, it will be placed closer to the callee’s line interface box. It will there-
fore be able to respond to a busy signal, satisfying its requirement, and the signal will
not reach the VMB box, which has lower precedence.

Use of a uniform composition architecture has a strong backwards influence on
the structure and content of the system requirements. It becomes natural and desir-
able to structure the requirements—that is, the problem—in the form of a set of
functionalities fitting naturally into the architectural scheme. Thus in DFC the notion
of a feature becomes identified with what can be implemented in a DFC feature box®.

7 In fact, DFC feature boxes, like filters, can have more than two connections, and can be
assembled not only into linear configurations but more generally into directed acyclic graphs.

8 More exactly, a feature in DFC is identified with one or two feature box types. The EBI
(Emergency Break In) feature, for example, allows the operator at an emergency service sta-
tion to break into a normal subscriber call, requires one box associated with the subscriber and
a box of a different type associated with the emergency service. Some features are associated
with different box types for incoming and outgoing calls.
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This influence can be seen as a beneficial rather than harmful kind of implementation
bias: the form of a DFC box matches closely the form that the feature would take if it
were used in isolation. The same effect can be seen in recovery blocks. The recovery
block structure, with the controller, adjudicator (a component to determine whether
the specification has been satisfied) and set of variants, provides a natural pattern for
components in a high-dependability system. The controller’s rule for selecting the
next variant to be tried reflects, like the DFC router’s behaviour, a precedence or-
dering between what may be regarded as distinct subproblems.

9.2 Component relationships

The primary concern in software architecture is the composition of subproblem
machines in a way that satisfies required relationships among them. These
relationships may emerge from the subproblem composition concerns, but they are
also subject to other demands and influences.

One particular kind of relationship lies close to the heart of system dependability.
Precedence between subproblems whose requirements are in conflict is addressed
along with other subproblem composition concerns. But there is another kind of
precedence, based on the criticality of the purpose served by the subproblem. The
most critical functions must be the most dependable. It follows that correct execution
of the machines providing those functions must not be allowed to depend on the
behaviour or correctness of less critical subproblem machines. A dramatic error of
this kind was made in the software architecture of a medical therapy machine. One
requirement was that whenever the operator’s safety button is pressed the treatment
beam should be immediately turned off. Another requirement was command logging:
the system was required to provide an audit trail of all commands issued to the
equipment by the computer either autonomously or when requested by the operator.
A partial data flow view of the architecture of the chosen design is shown, in a
highly simplified form, in Fig.14.

—Pp Operator —P Command —_— Equipment > Therapy

Console Logging Interface Equipment

Fig. 14. A design guaranteeing logging of all commands

The design does guarantee that any command reaching the equipment has passed
through the Command Logging component, but it also has the property of making all
command execution dependent on the Command Logging module. Examination of
the program code showed that the Command Logging module fails if the log disk is
full, and does not then pass on the commands from the Operator’s Console to the
Equipment Interface. The console emergency button is therefore disabled when the
log disk is full. It would be wrong to attribute this egregious fault to the faulty design
or implementation of the Command Logging component. The design fault lies sim-
ply in making the emergency button function—arguably the most critical of all func-
tions of the system—depend on any part of the structure from which it could instead
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have been made independent. An interesting discussion of this point, in the context
of a lift control system, can be found in [30].

10 Concluding remarks

The most important positive factor for system dependability is the availability and
use of an established body of knowledge about systems of the kind that is to be built.
This allows the developer to practice normal design, where the developer is con-
cerned to make a relatively small improvement or adaptation to a standard product
design satisfying a standard set of requirements. The structure of the product is well
known, the problem world properties are essentially standard, the expectations of the
product’s users are well established and understood. If the design cleaves closely to
the established norms there is good reason to expect success. In radical design, by
contrast, there is no such established standard of design, requirements and problem
world properties to draw on, and the designer must innovate. There can then be ‘no
presumption of success’ [34].

One factor militating strongly against the dependability of software-intensive
systems is the proliferation of features. A sufficiently novel combination of features,
even if each feature individually is quite well understood, places the development
task firmly in the class of radical design in respect of the subproblem composition
task. A vital part of the knowledge embodied in a specialised normal design practice
is knowledge of the necessary combination of functionalities. A car designer knows
how to compose the engine with the gearbox, how to fit the suspension into the body,
and how to interface the engine with its exhaust system. A designer confronted with
a novel combination of features can not draw on normal design knowledge in com-
posing them.

In the development of software-intensive systems, whether the task in hand is
normal or radical design, a pervasive precondition for dependability is structural
clarity. The avoidance of faults depends on successful structuring in many areas.
Good approximations must be made to problem world properties. Structural compo-
sitions must accommodate the composed parts fully without distorting or obscuring
the individual structures. Architectural relationships among subproblem machines
must respect their precedence and relative criticality.

An aspect of dependability that has so far been entirely ignored in this chapter is
the social context in which the development takes place. It is worth remarking here
that normal design can evolve only over many years and only in a specialised com-
munity of designers who are continually examining each others’ designs and sharing
experience and knowledge. The established branches of engineering have been able
to improve the dependability of their products only because their practitioners are
highly specialised and because—as the most casual glance at examples [13; 20] will
show— their educational and research literature is very sharply focused.

There are some such specialised communities in the software world, gathering
regularly at specialised conferences. The long-term goal of improving dependability
in software-intensive systems could be well served by continuing the purposeful
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growth of such specialised communities, and embarking on the creation of new ones,
each focused on a particular narrowly-defined class of system or subproblem.
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