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Abstract

The notion of a problem frame is introduced and explained, and its use in analysing and structuring problems is
illustrated. A problem frame characterises a class of simple problem. Realistic problems are seen as compositions of
simple problems of recognised classes corresponding to known frames.
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1 Introduction
Software developers have aspired to the status of an
engineering profession since the NATO conferences of
thirty years ago [Naur 69, Buxton 70]. But few believe
that the aspiration has been fulfilled. A leader in the field
recently claimed [Parnas 97] that Software Engineering is
an ‘unconsummated marriage’: “The majority of
engineers understand very little about the science of
programming or the mathematics that one uses to analyse
a program, and most computer scientists don’t understand
what it is to be an engineer.” He continued: “Chemists are
scientists; chemical engineers are engineers. Software
engineering and computer science have the same
relationship.”

The underlying assumption is that software engineers are
practising a single discipline, properly aspiring to become
a member of the same set as chemical, aeronautical,
electrical, civil or electronic engineers. Like them, we aim
to build useful products to serve practical purposes in the
physical world. And indeed we do build physical
products. The product of successful software development
is a machine that interacts with its human users and with
other parts of the world. The machine is almost always
physically embodied in a general-purpose computer built
by hardware engineers; but the software describes the
particular machine needed for the purpose in hand, and
transforms the computer into that machine.

1.1. The General SE Problem

We may characterise the general form of the software
development problem as presented in [Jackson 95] and
shown in Figure 1.

The striped rectangle represents the physical machine we
must build by specialising a general-purpose computer.
The plain rectangle represents the part of the world that
interacts with the machine. The solid line connecting the
two rectangles represents an interface of shared
phenomena — for example, shared events and shared
state. The dotted ellipse represents the intangible
requirement, the dotted arrow indicating that the
requirement is a description — we might say, a predicate
— over the phenomena of the world. In the terminology
of Polya [Polya 57], the machine, the world and the
requirement are the principal parts of the software
development problem; the solution task is to construct a
machine such that its interactions with the world will
ensure satisfaction of the requirement.

1.2. Descriptions

Although the end product is a description of the machine,
a successful result can rarely be achieved by describing
the machine alone. In general we need to make the
following descriptions:

• The requirement R  is an explicit description of the
behaviour and properties that we want the world to
have as a result of its interaction with the machine. R
is a description in the optative mood — that is, it
expresses what we would like to be true. It is a
description over the phenomena of the world that are
of interest to the customer of the development: it
captures the purpose for which the machine is to be
built and installed.

• The unconditional behaviour and properties of the
world that do not depend on the machine are
expressed in a world description W. W  is an
indicative description — that is, it expresses what is
true of the world regardless of its interaction with the
machine. It is a description over any phenomena of
the world whose relationships are significant for the
purpose in hand; in particular, it is not restricted to
phenomena shared with the machine.

• The specification S  describes the behaviour and
properties that we want the machine to have at its
interface with the world. S  is an optative description.
It is a description over the shared phenomena at the
interface, consistent with the properties of the world
and satisfiable by appropriate action of the machine.
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Figure 1
The General SE Problem
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• The program P  describes the behaviour and
properties that we want the machine to have, without
restriction to its interface with the world. Again, P  is
an optative description. It is a description of the
phenomena of the machine, including those private
machine phenomena that are in the scope of the
programming language.

• The unconditional behaviour and properties of the
machine that do not depend on the program are
expressed in a machine semantics C. C  is an
indicative description: it expresses what it true of the
general-purpose computer independently of the
specialisation imposed by the program. It can be
thought of as a description of the programming
language semantics in terms of the behaviour of the
concrete machine.

Two relationships among these descriptions constitute a
description of the original problem and a demonstration
that it has been solved. First, we must have

S, W  ú R

If the machine achieves the behaviour S  at its interface
with the world, then, given the known properties W  of
the world, the requirement R  will be satisfied. Second,
we must have

P, C  ú S

If the machine is as described in C, then execution of the
program P will ensure the behaviour S at the machine’s
interface with the world.

Strictly, none of these descriptions may be omitted. R
captures the purpose of the system: many systems have
failed because their requirements were not correctly
articulated. W captures the properties of the environment:
these properties both constrain what the machine can do
and permit it to affect and be affected by world
phenomena that it does not directly share. S  provides a
convenient staging post in the often long chain of
reasoning from the system’s purpose to the program text;
it also allows a practical separation between those
developers whose interests and knowledge focus on the
application domain world and those who focus instead on
the machine and its programs. P  is the indispensable end
product of the development. C  provides the underlying
justification for refinement steps in the path from the
specification S  to the program P.

In practice, of course, C is already available in the
manuals for programming language and its
implementation in the particular computer to be used.
And the sometimes limited attention paid to S, W  and R
is a measure partly of the development team’s
competence and partly of their assessment of the risk of
system failure and its consequences.

1.3. Specialisation

Unfortunately, this tidy characterisation of software
development problems is a grossly insufficient basis for
software engineering practice. Projects to develop
systems for program compilation, for telephone switching,
for banking, for controlling the brakes of a car, for word
processing, and for searching the web are radically
different and demand different engineering techniques.
They differ hugely in their principal parts: their
requirements, their worlds and their machines are so
different that they need different languages for their
description, different description structures, and different
reasoning over those descriptions. The worlds of

telephone switching software and car braking software are
as different as the worlds of communications engineering
and automobile engineering.

Established engineers specialise for exactly this reason.
Communications engineers and automobile engineers
build completely different kinds of product to meet
completely different kinds of purpose. Each established
engineering field deals with a narrowly defined problem
class, applies narrowly defined design methods, and
produces equally narrowly constrained solutions. From a
perspective that embraces every established branch of
engineering, this year’s cars are indistinguishable from
last year’s, and next year’s will be no different. Each
branch of engineering adjusts its problem definitions and
refines its products only gradually, by small perturbations
from an established standard. This specialisation allows
product function and quality to improve by small steps
over many generations of products and engineers: today’s
cars are recognisably solving the same problem as the
cars of 1930, but they are much better in almost every
way.

Against this background one can see that the notion of
software engineering as a single discipline is
misconceived. Software engineering can no more be a
single discipline than can ‘physical engineering’ — an
imaginary discipline that embraces all the established
branches from aeronautical to telecommunications
engineering. Like the established branches, it relies on a
core body of fundamental mathematics and science, but
these fundamentals lie some distance below the level at
which the practising engineer works. At this level, of
practical technique, engineering varies enormously from
one specialised branch to another.

So too must it be for software engineering. We must deal
in specialities, not generalities. Already some established
specialities have emerged. Compiler construction,
operating systems, GUIs and expert systems are notable
examples. As each specialised branch emerges and begins
to establish a substantial body of practical technique of its
own, it breaks away from the parent tree. Compiler
construction and operating system design cease to provide
illustrative problems for courses on software engineering,
and become the rich subject matter of their own separate
courses.

2 SE Problems for Generalists
As its specialised branches emerge and take their leave,
software engineering finds itself concerned with those
particular problems and solutions that are not yet well
enough understood to furnish the subject matter for
additional specialities. This problem set is very rich
indeed: the computer is so versatile that its applications
are virtually unbounded. Today most realistic
development problems fall into this set: only a few fall
squarely into an established speciality. We are not at
liberty to disdain these problems on the grounds that
specialised knowledge is absent or inadequate. We must
do what we can, approaching them as competent
generalists.

In the best case this means recognising that the problem is
a composition of simpler problems that we do know how
to solve, and that a solution can be constructed from the
known solutions to those simpler problems. An alarm
clock satisfies a certain requirement; a radio satisfies
another. A clock radio satisfies both requirements.
Similarly, a breakdown truck satisfies the requirements of
a crane and a vehicle. The combination may satisfy
additional requirements — for example, the alarm can be



set to turn on the radio; and it may exploit common
solution parts — for example, the breakdown truck
powers uses the same engine to power both the crane and
the vehicle.

The work on object-oriented patterns [Gamma 94,
Buschmann 96, Pree 97] addresses the need to identify a
repertoire of software components and to consider their
properties and the ways in which they can interact. Work
on software architecture [Shaw 96, Bass 98] addresses
larger structures of interaction. Both patterns and
architecture are primarily concerned with the space of
solutions. Inevitably they pay some attention to the
problems being solved, but this attention is focused
chiefly on the impact of the problem on the solution.
There is a need to address problem structure and
classification in a more sharply focused and explicit way.
That is the theme of this paper.

2.1. Problem Structures and Problem Frames

We regard particular problem classes as characterised by
problem frames. Each frame is an elaboration of the
general form shown above in Figure 1. Each frame is
either elementary or composite. A problem of the class
characterised by an elementary frame is to be captured by
building descriptions appropriate to the frame. A problem
of a composite class is first decomposed into subproblems
characterised by elementary frames.

A particular problem frame elaborates and specialises the
general form of Figure 1 in the following ways:

• The world is decomposed into domains. For
example, if the problem concerns the production of
an output text stream from an input text stream, we
may decompose the world into the domains
InputText and OutputText. (The term domain is
considered to include the machine. The machine is
not decomposed within one elementary problem
frame, but there is a submachine — a projection of
the machine — for each subproblem of a composite
problem.)

• Different types of domain are distinguished according
to the role they play in the problem. For example, one
domain may embody a tangible description of
another domain; or one domain may be given, while
another is created by the action of the system.

• Interfaces of phenomena shared between domains are
shown by connecting lines as in Figure 1. Not all
domains need be connected to the machine. For
example, in the well-known Patient Monitoring
problem [Stevens 74] the Patients and the Analogue
Devices are two domains: the Analogue Devices are
connected to the machine, but the Patients are
connected only to the Analogue Devices.

• The connections among the parts of the problem
frame are more closely characterised in terms of the
types of the connecting phenomena. For example, an
interface connecting two domains may have only
shared event phenomena, while another interface
between two other domains may have both shared
events and shared states. The control of phenomena
is also indicated, as explained in the following
section.

• The phenomena related by the requirement are
similarly characterised according to their types. Also,
they are identified, where appropriate, with
phenomena at interfaces in the frame.

• The characteristics of domains at their interfaces with
other domains are classified. For example, an Inert
Reactive domain initiates no events; it responds to
each shared event initiated by the connected domain
by changing the shared state, and returns to an inert
state until a fresh shared event occurs. In general, the
characteristics of a domain are different at its
interfaces with different sharing domains: in the
Patient Monitoring problem, the Analogue Devices
are Inert Reactive at their interface with the Patients,
but Active at their interface with the machine.

These elaborations are illustrated and discussed in
subsequent sections. They support a repertoire of
elementary frames, each very simple.

Composite frames, also illustrated in subsequent sections,
are essentially parallel compositions of elementary
frames. For some composite frames it is necessary to
introduce additional created domains that mediate
between subproblems, somewhat after the fashion of local
program variables. In general the creation of such an
additional domain becomes a subproblem in its own right,
with its own elementary problem frame. Such an
elementary frame is called a partial elementary frame,
because the problems it characterises — like the creation
of a local variable — can never be independent problems
in their own right but occur only as subproblems. Other
partial elementary frames, as discussed in subsequent
sections, arise from explicating implicit assumptions
about the environment of a problem.

2.2. Phenomena and Control

Domains and interfaces, and hence problems, differ in
their phenomenological characteristics. For example, a
static domain, in which there are no events and no state
changes, is different from a dynamic domain in which
events and state changes occur over time. They will raise
different considerations in the treatment of problems in
which they appear, and will demand different kinds of
description.

We must also consider the control of events and state
changes at the domain interfaces of shared phenomena.
For example, in a problem to control a lift, the pressing of
buttons is controlled by the users, the polarity of the
winding motor is controlled by the computer, and the
closing and opening of sensors in the lift shaft is
controlled by the lift mechanism itself through the
movement of the lift car. (We are, of course, concerned
here with proximate control by one of the sharing
domains. The sensors are controlled by the lift
mechanism, not by the computer, because the proximate
cause of the closing of a sensor is the arrival of the lift
car; the fact that the computer can indirectly cause the lift
car to travel in the shaft is not relevant here.)

In characterising interface properties we use a simple
classification of phenomena. We recognise three kinds of
individual:

• Values (‘V’) are timeless individuals: for example,
integers and characters.

• Entities (‘N’) are individuals that change over time:
for example, people and bicycles and bank accounts.

• Events (‘E’) are atomic events occurring in time: for
example, the pressing of a lift button or the starting of
the winding motor.

We recognise three kinds of relation over individuals:



• Truths (‘U’) are timeless relations: for example,
‘x>y’ over integers.

• States (‘S’) are relations that change over time: for
example, ‘IsChild(x)’ over human beings. Changes of
an entity over time are changes in states in which it
participates.

• Roles (‘R’) are relations indicating participation of an
individual in an event: for example, ‘IsButtonIn(b,p)’
over buttons and button-press events.

We must also express the temporal ordering of events and
capture the relationship between events and states. In
[Jackson 93], [Zave 93] and [Jackson 95] this relationship
was captured by introducing intervals between events as
explicit individuals. Here, as in [Bhargavan 98], we use
instead a convention in which state symbols are decorated
with the prefix or suffix ‘Then’ and the argument list
augmented by an event identifier. For example,
‘IsChildThen(x,e)’ means ‘IsChild(x) is true immediately
before event e occurs’, and ‘ThenIsChild(x,e)’ may mean
‘IsChild(x) is true immediately after event e occurs’.
These relationships will not play a part in the discussion
of problem frames, and we will not pursue them further
here.

Larger classes of phenomenon that will be useful are:

• All phenomena (‘H’) is the class containing all the
phenomena.

• Controllable phenomena (‘C’) is the class containing
those phenomena that can be controlled by a sharing
domain. They are roles, states and events.

Controllable phenomena at a domain interface may be
initiated (‘+’) by one of the sharing domains. For
example, a state change of the lift shaft sensors is initiated
by the lift mechanism, and the pressing of a button is
initiated by the intending passenger. Truths at a domain
interface are determined (‘=’) by one of the sharing
domains. For example, an ordering over strings may be
shared by the machine and a strings domain, and is
determined by the strings domain. In some cases a domain
may exercise inhibition (‘-‘) over a controllable
phenomenon. For example, the user of a personal
computer may initiate a key depression, and the computer
may inhibit it by locking the keyboard.

The use of these classifications and control indications is
illustrated in subsequent sections.

2.3. Frames, Subproblems and Methods

The use of tightly constrained problem frames can offer
two important advantages. The first advantage is that it
underpins a repertoire of known and recognised
subproblem classes into which realistic problems can be
decomposed. The difficulties of unguided problem
decomposition are now widely accepted. The traditional
top-down process involves decomposing a problem of no
recognised class into a number of subproblems also of no
recognised class, and continuing recursively until — if the
process succeeds — elementary subproblems are
recognised at the lowest level. This process can not be
expected to produce a good result. Fred Brooks [Brooks
75] sums up his experience in the aphorism: “Plan to
throw one away; you will  anyhow.” The outcome of the
process is not a good decomposition; it is a degree of
insight into the difficulties of the problem, so that a
second complete attempt can then be based — at least in
part — on recognised problem characteristics. A
sufficient repertoire of problem frames would allow the

first decomposition to be guided by a more systematic
problem taxonomy.

The second advantage is that a problem frame is, ideally,
associated with one or more methods for capturing the
problem in full detail and developing a solution. Software
development method is chiefly concerned with stipulating
the descriptions to be made, the languages to be used, and
the large structures within which the descriptions are
related. The decomposition of a problem into
subproblems of recognised classes allows the appropriate
method to be used for each subproblem. Within each
frame the method stipulates descriptions of the problem’s
principal parts, and the particular way in which their large
structures specialise the general structure outlined in
Section 1.2 above.

A method associated with a tightly constrained problem
frame can take advantage of the known characteristics of
the problem in several ways. In particular, it can stipulate
a less expressive language than might be needed in a more
unconstrained problem. For example, a method may
stipulate the use of a regular expression language. A
problem whose relevant part can not be described by a
regular expression may be deemed to fall outside the
frame. Or, in some cases, the method may provide a
technique for overcoming the difficulty. For example, the
description may consist of two or more regular
expressions over intersecting alphabets, perhaps with a
corresponding problem decomposition.

More fundamental difficulties may demand a further
decomposition of the problem. The use of a model within
the machine, simulating a part of the world outside it, may
be the result of such a decomposition. This difficulty, and
others, are illustrated in subsequent sections.

3 Elementary Problem Frames
In this section some elementary problem frames,
including partial frames, are outlined and briefly
discussed. Composite frames are discussed in the
following section.

3.1. Simple Control Frame

The Simple Control frame characterises problems in
which the machine is required to control a simple device.
An example of such a problem is the control of a simple
pair of traffic lights used to ensure one-way traffic in
alternating directions over a stretch of road undergoing
repair. The problem frame diagram is shown in Figure 2.

In this frame the general form of a software development
problem has been elaborated only by more specialised
names for the principal parts and by markings on the
connecting lines indicating the types and control of the
phenomena concerned. The markings indicate that:

• The Required Behaviour RBV is a condition over
controllable phenomena (C3).

Figure 2
Elementary Frame: Simple Control
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• The interface between the Machine MC and the
Controlled Domain CD consists of two sets of shared
controllable phenomena: C1, controlled by MC, and
C2, controlled by CD.

In the traffic light control problem, the Machine  is the
control computer and the Controlled Domain is the pair of
traffic lights. The Required Behaviour is a specified
sequence of displayed light states: for example
(Stop1+Stop2; Stop1+Go2; Stop1+Stop2; Go1+Stop2;)*,
each state being required to persist for 50 seconds. The
phenomena C3 are the states Stop1, Go1 etc. The
phenomena C1 controlled by the Machine are events
Red1, Green1, On1, Off1, Red2, Green2, On2 and Off2.
The set of phenomena C2 is empty, since the traffic light
devices control no phenomena that they share with the
control computer.

The relationship between the traffic light states {Stop,
Go} and the events {Red, Green, On, Off} is obscure.
This obscurity illustrates  the need, in capturing any
Simple Control problem, to describe the internal
properties of the Controlled Domain CD explicitly, even
when they are not obscure. In the traffic lights problem is
it necessary to describe explicitly how the states Stop and
Go are determined by sequences of the Machine-
controlled events Red1 etc. This description, of course, is
the indicative description W  of the real world discussed
in Section 1.2 above.

3.2. Simple Enquiry Frame

The Simple Enquiry frame characterises problems in
which the machine is required to answer enquiries about a
connected part of the world. An example of such a
problem is an experimental laboratory set-up in which
voltages are measured at sixteen points and
communicated to a computer by A/D devices. The
experimenter can enter enquiries asking for the current
value at any of the sixteen points, the current highest
value, the current average value, and so on.

The problem frame diagram is shown in Figure 3. In this
frame the general form of a software development
problem has been elaborated not only by more specialised
names for the principal parts and by markings on the
connecting lines indicating the phenomena concerned, but
also by a decomposition of the World into distinct
domains. The part of the world about which information
is sought is the Real World RW; the source of the
enquiries is the Enquirer ENQ; and the responses
produced by the Machine are the Responses domain RSP.
The single vertical stripe on the RSP domain indicates
that it is not given, but is created when the system runs.

The markings indicate that:

• The requirement IRL is a condition over phenomena
of RW (H2), events of RSP (E2) and events of ENQ
(E1). For example, for the E1 enquiry ‘V5’,
occurring when the voltage at point 5 is 3.2 volts (a
state phenomenon in H2), the response event in E2
must be ‘3.2’.

• The interface between the Machine MC and the Real
World RW consists of a set of shared phenomena of
any type (H1), controlled by RW. Since RW has no
interface at which it shares phenomena controlled by
another domain, it is autonomous.

• The interface between the Machine MC and the RSP
domain consists of a set of shared events (E2),
controlled by the Machine. RSP controls no
phenomena at any interface, but shares phenomena
controlled by MC: it is passive.

• The interface between the Machine MC and the ENQ
domain consists of a set of shared events (E1),
controlled by ENQ. ENQ is active.

One aspect of the simplicity of this frame is that the
requirement is over the phenomena of RSP and ENQ that
those domains share with MC. Further, each response
event E2 is a function of the Real World phenomena and
of the enquiry event E1 to which it responds, not of
preceding or otherwise related enquiry events. More
precisely, RSP has no structure more complex than E2*,
and ENQ no structure more complex than E1*. There is
therefore no need to consider the internal behaviours of
those domains.

A source of potential difficulty in this problem frame is
that the information to be provided is over phenomena H2
of RW, while the Machine MC has access only to
phenomena H1. If the sets H1 and H2 are identical, or if
H1 contains H2, there is no difficulty. Otherwise it will be
necessary to examine and describe the relationship
between H1 and H2. This relationship is embodied in the
internal properties and behaviour of RW. In the
experimental voltages problem, a trivial relationship
presenting no difficulty is that a voltage v at point n (an
element of H2) corresponds to a value v in AD register n
(an element of H1). A more complex relationship would
be one in which an enquiry may refer to voltages at past
times. This kind of difficulty and its consequences are
discussed in subsequent sections.

3.3. Information Display Frame

The Information Display frame characterises problems in
which the machine is required to maintain a display about
a connected part of the world. An example of such a
problem is the provision of a display in a hotel lobby
showing the current positions of the hotel lifts. The
problem frame diagram is shown in Figure 4.

The Display Machine MC is connected to the Real World
RW about which information is to be displayed by an
interface of shared controllable phenomena controlled by
RW. In the lift problem these phenomena may be the
states of sensors in the lift shafts and button-press events.

The Information Display domain DIS is controlled by the
Machine through the shared phenomena C2. The
requirement DRL stipulates the states S2 of the Display
domain that must correspond to states S1 of the Real
World. For example, in the lift problem DRL may
stipulate that whenever a lift is ascending an Up arrow
should be illuminated in the column corresponding to that
lift.

Figure 3
Elementary Frame: Simple Enquiry
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In an Information Display problem it is necessary to
describe the internal properties of both DIS and RW. The
relationship between the phenomena C2 and their effects
on the states S2 of the Display must be examined and
described. The properties of RW are likely to be more
complex. For example, in the lift problem it may be that
the Display must show outstanding requests: an
outstanding request is a member of S1. The phenomena
C1 shared by RW with the Machine may be only button-
press events and lift-shaft sensor states. It will then be a
non-trivial task to determine how the Machine should
calculate S1 from C1. We will return to this topic in a
later section.

3.4. Simple Workpieces Frame

A Simple Workpieces problem requires the provision of a
tool for constructing and editing intangible artifacts such
as texts or graphics. The artifacts are restricted to
extremely simple objects that can be edited ‘blind’ as
shown in the problem frame in Figure 5.

The machine to be built is the Tool TL. The Workpieces
WP are constructed by the Tool and are entirely
contained within it, the containment being shown by the
heavy dot on the connecting line representing the
interface. Containment means that all the phenomena of
the contained domain are shared with the containing
domain; in the Workpieces frame shown above we can
infer that WP has no phenomena other than E2 and S1.

The Operation Requests domain is a stream of events E1,
each requesting an operation on a workpiece. Because
some requests — for example, a request to delete an

element from a non-existent workpiece — are
unacceptable, the Tool can inhibit E1 events. Inhibition
by the Tool is, of course, quite different from returning a
null result to an accepted request — for example, a
request to change all occurrences of ‘1’ to ‘2’ in a text
containing no occurrence of ‘1’. Inhibition might be
implemented by ignoring the E1 input except to respond
with a bleep.

In this simple frame, requests are mutually independent:
the meaning of a request does not depend on any other
request. Similarly, the workpieces are mutually
independent: no operation involves more than one
workpiece. The requirement stipulates the effect of each
operation in terms of the preceding and resulting states of
the affected workpiece.

The Workpieces domain WP is Inert Reactive at its
interface with the Tool. That is to say, it responds to each
event in E2 by a (possibly null) state change in S1, and
immediately returns to quiescence. WP never initiates
state changes in S1 except in response to events in E2.

3.5. Methods and Descriptions

The characteristics of the principal parts of a problem
frame and of their interfaces govern the choice of method,
both for capturing the problem in full detail and for
developing a solution.

For example, the inert reactive nature of the Workpieces
domain WP in the Simple Workpieces frame allows WP
to be described as a set of instances of an abstract data
type: the events E2 are the operations of the type, and the
states S1 define the data representation. In developing a
solution this description of WP may be refined into the
definition of an object class. Because WP is inert reactive,
and not active, the object class definition needs no ‘run’
or ‘live’ method: its methods are all externally invoked
and executed sequentially. Both the problem statement
and the solution therefore avoid the potential complexities
of concurrency.

The domain RQ, of requests for operations on
Workpieces, is active and autonomous. The requirement
EFF therefore can not constrain RQ in any way although
it constrains the relationship between RQ events E1 and
WP states S1: EFF must be satisfied solely by constraints
on the behaviour of TL and WP. Further, the domain RQ
has the trivial structure request*. Hence RQ needs only an
indicative description of a simple kind.

In the Simple Control frame discussed in Section 3.1
above, the properties of the Controlled Domain CD and of
its interface with the Machine MC will govern the kinds
of description needed to capture the problem and  to
develop a solution. In the very simple case of the traffic
lights problem the following descriptions will be
appropriate:

• The requirement R  is described as a finite-state
machine in which the states denote the pairs of lights
showing in the two sets of lights and the transitions
denote timeouts for the delays.

• The world description W  is a finite-state machine in
which the states denote the single light showing in
one set of lights and the transitions denote the events
shared with the control computer. Additional states
may be needed if more than one event must occur for
the light to change. The same finite-state machine
describes the properties of both sets of lights.

• The specification S  is given as a Mealy machine in
which transitions are timeouts for the delays and
outputs on the transitions are events shared with the
lights. The states are not significant: in a
diagrammatic representation of the Mealy machine
they need not be named; in a transition-list
representation their names are bound variables.

More complex variants of the Simple Control frame may
demand more expressive languages. But, as a rule, a
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problem that demands a more elaborate descriptive
structure is not a problem of the class characterised by the
frame.

4 Difficulties and Problem Frames
Possession of a set of close-fitting frames and associated
methods arms the developer to recognise and deal with
problems of the corresponding classes. A method should
not be used if the problem does not fit its frame.
Construction of a compiler, for example, can not be
treated as a Simple Control problem: the compiler world
must be structured into at least two domains — the input
source program and the output object program; further,
the output object program is not given but must be created
when the system runs. Similarly, developing a controller
for a chemical plant is not a Simple Workpieces problem.
The plant evidently does not have the characteristics
stipulated for the Operation Requests domain, and it is
certainly not inert: even in the absence of shared events
initiated by the control computer liquids and gases will
continue to flow, to condense or evaporate, and to rise or
fall in temperature. Development of an avionics system is
not an Information Display problem: the aircraft is neither
autonomous like the Real World domain nor inert reactive
like the Information Display domain. Developers of an
avionics system who mistakenly try to use the Information
Display frame will find that the associated methods are
quite unable to handle many of their most important
concerns. (Regrettably, such misfits between problem and
method are often ignored by proponents of development
methods that claim very wide, or even universal, validity.)

Recognition of a frame misfit may simply lead to the
selection of another available frame. But sometimes it will
lead to recognition of a difficulty of a known kind to
which the solution may be a standard elaboration of the
misfitting frame or a standard decomposition into two or
more frames. In this section some simple illustrations are
given.

4.1. Flexible Requirements Difficulty

A common difficulty that can occur in almost any
problem frame is a need for flexibility, when a  fixed
requirement is inappropriate. In the traffic lights problem,
for example, the sequencing of light states and the delay
for each transition are fixed in the requirement; they will
then become fixed in the control computer’s program. It
may be necessary to arrange for the sequences and delays
to be conveniently specified by insertion of a floppy disk
or setting switches on a console attached to the computer.
The disk or console then becomes a distinct domain,
playing the part of a description in the problem frame as
shown in Figure 6.

The oval outline of the Sequence Description domain
SQD indicates that it plays the part of a description in the
problem; the outline is solid — unlike the outline of the
requirement — because it has a tangible embodiment in
the problem. The requirement SQI is no longer a
requirement to evoke a particular sequence of lights, but
rather to produce a sequence corresponding to the
interpretation of the SQD domain. The phenomena
marked as “G1”, “50s” &c in the diagram are the
syntactic elements of the description SQD. They are
shared with the Control Computer CTL, which has access
to the Sequence Description — as it must if it is to satisfy
the requirement. The marking ‘SQD: = “G1”, “50s”, &c’
on the interface between CTL and SQI indicates that these
non-controllable phenomena are determined by SQD, not
by the machine CTL.

The difficulty recognised here, and its solution, are
absolutely standard in software development: part of what
might have been treated as compiled program is instead
treated as data, and the compiled program then becomes
responsible for interpreting that data.

We are assuming here that the Sequence Description is a
given part of the problem, fixed for any instance of the
system. That is, we regard its construction as falling
outside the problem context. The Controller CTL is
capable of interpreting any instance of SQD that satisfies
the syntactic and semantic rules of that problem part, but
it is not responsible for constructing that instance. If
instead the Sequence Description is to be created by the
operator of the system, the problem fits a more complex,
composite, frame. That frame, Simple Control Under
Operator’s Regime, is discussed in a later section. The
frame shown in Figure 6 is then only a partial frame: it
addresses only one subproblem in the original problem.

4.2. Identities Difficulty

An important and common class of difficulty is the
identities difficulty. Whenever a domain contains multiple
instances of entities of the same type that must be
distinguished by the machine, the mechanism by which
each instance is distinguished and identified becomes of
interest. It can also become a source of major difficulty.
The well-known British Midland 737 crash at Kegworth
[Neumann 95] occurred because the engine safety-control
system was ‘cross-wired’, causing the pilot to shut off the
starboard engine in response to smoke and vibration in the
port engine. Subsequent inspection showed that many
737s were cross-wired in this way.

A tiny manifestation of this difficulty appears in the traffic
lights problem. There are two sets of lights to be
distinguished by the machine. In the simplest version of
the problem the distinction is actually not necessary,
because both sets of lights are treated identically after
system startup. But as soon as the sequences for the two
sets must differ, because traffic in one direction is heavier
or slower than in the other direction, the distinction may
become important.

A substantial — and life-threatening — version of the
difficulty occurs in the well-known Patient Monitoring
problem. Patients have names; they are in hospital beds;
they are attached to analogue devices; the devices are
plugged into ports on the monitoring computer; medical
staff specify periods and ranges for monitoring each
patient individually, referring to them by their names. The
difficulty is evident: to satisfy the requirement, the
machine’s reading of a patient’s pulse rate or temperature
or blood pressure at a port must be associated with the
correct patient. This association is mediated by mappings
between patients’ names and patients, patients and
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devices, and devices and ports. Dealing correctly with
these mappings is a vital and substantial aspect of the
whole problem.

Generally, solution of an identities difficulty requires the
introduction of one or more explicit Mapping domains
into the problem frame. In some cases a mapping may be
degenerate: the two sets of traffic lights, for example, may
be visibly labelled ‘1’ and ‘2’, and the operator instructed
to plug them into ports 1 and 2 of the Control Computer.
It is then unnecessary to treat the mapping as a distinct
domain; it is enough to distinguish it as an element in
other descriptions in the development.

In the worst cases — and the Patient Monitoring problem
is such a case — a Mapping domain is dynamic. The
developers might reasonably ignore the case in which a
patient changes her name while under monitoring, leaving
the correct handling of this kind of change to the hospital
staff. But certainly patients leave the hospital and new
patients arrive; additional monitoring, and hence
additional devices, may become necessary for an existing
patient; and analogue devices could become unplugged
from the computer and plugged into the same — or
different — ports. The developers must build a system
that deals correctly with all of these events.

Introduction of an explicit Mapping domain raises similar
issues to the introduction of a flexible requirement
domain such as SQD in the traffic lights problem. If the
Mapping domain is not a given domain in the problem
context it must be created by the action of the system; the
creation task is then a separate subproblem in its own
right.

4.3. Connection Difficulty & Model Domains

In many problems the available connection between the
machine and a domain of the world is not immediately
adequate: the shared phenomena are deficient, or are
displaced in time, in relation to the requirement.

This is, of course, one fundamental reason why it is
necessary to describe the world at all. We must describe
the properties of the traffic light sets because the
requirement is over the sequence of lights showing and
the machine can control this only indirectly by causing
signal events. The indicative properties of the traffic light
sets guarantee that appropriate sequences of signal events
will evoke the required sequences of lights. The
specification S  can then be written in terms of the signal
events accessible to, and controllable by, the machine.
Similarly, in the problem of responding to queries about
the experimental voltages, the properties of the
experimental set-up and the AD devices allow questions
about real voltage values to be answered by inspection of
integer registers accessible to the machine.

A connection difficulty arises when even the most careful
description and exploitation of the indicative properties of
a domain in the world are not enough. It is then necessary
to find an implementation of some of the ‘data freedom’
facilities discussed in [Balzer 82]. The standard technique
is to create a model of the domain inside — or readily
accessible to — the machine. The machine can then
derive from the model information that it can not obtain
directly from the modelled domain. For example, in a
more demanding version of the experimental voltages
problem in which a required response is the highest
average voltage achieved at a specified point over any
previous period of ten consecutive seconds, the machine
must create, and continually maintain, a dynamic model

of the domain of voltages. The required response can then
be calculated from data available in the model.

Creation of such a model becomes a problem in its own
right, characterised by a partial problem frame such as
that shown in Figure 7.

The frame shown is for creation of a dynamic model. The
Real World RW is dynamic and autonomously active, and
controls phenomena C1 shared with the Machine MC.
The Model MDL is passive; it is contained in the
Machine MC and is created by the Machine when the
system runs. The requirement is that the Model MDL
should correspond to the Real World in respects specified
by COR. Essentially the correspondence is an
isomorphism between individuals and relations in the two
domains, possibly augmented by additional phenomena in
the Model.

The central concerns in the problem are selecting the
Machine phenomena to be used in the Model — that is,
choosing representation and abstraction functions — and
capturing and exploiting knowledge of the properties of
the Real World to overcome any mismatch between C1
and H1. Suppose, for example, that the Real World is
wheeled traffic on a road segment, the purpose of the
model being to allow traffic density to be monitored.
Suppose also that C1 are states of sensor tubes laid across
the road to detect the passage of traffic, and that the set
H1 consists of events such as ‘motor car passes’, ‘motor
cycle passes’, ‘light lorry passes’ and ‘heavy lorry
passes’. Then the Real World properties to be captured in
the indicative world  description W  are the relationships
between the distinct kinds of traffic event in H1 and the
accompanying distinct patterns of the sensor states in C1.

The problem frame for constructing a static model is
sometimes similar, mutatis mutandis, to the Dynamic
Model frame. However, it is usually more elaborate,
because static domains are often isolated from the
Machine. It is then necessary to introduce a human
Informant to convey the Real World phenomena to the
Machine, and the Informant becomes an additional
domain in the problem frame. In a problem concerned
with the scheduling and control of a railway, for example,
the system must have access to the details of the track
layout. This will usually be achieved by manual entry of
the layout information, and the manual entry process may
be seen as execution of a problem fitting the partial frame
Static Model with Informant.

5 Composite Frames
If we were to restrict our repertoire of problem frames to
elementary and partial elementary frames, it would be
necessary to decompose each realistic problem into a
structure of subproblems, each small and simple enough
to fit one such elementary frame. This in itself would be
disadvantageous: we would be restricting ourselves, in the
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problem sphere, to the equivalent of a rather low-level
programming language in the solution sphere.

More important, we would be forgoing the opportunity to
build a repository of experience about problem and
solution composition. A substantial part of the knowledge
and experience of established engineering branches is
concerned with putting parts together to make a complete
product. Automobile engineering is not just about
engines, gearboxes, steering, differentials and other
components of a motor car: it is also, crucially, about
their composition into a well-designed whole. One of the
most important advances was the recognition that the
availability of large powerful presses for sheet steel
permitted the integration of the chassis with the body, two
components that had previously been regarded as
separate. This kind of advance is a nourishing fruit of
specialisation.

Being concerned with the residue of non-specialised
problems that is the subject matter of Software
Engineering, we can go only a short way towards
identifying composite problem frames. If we go very far
we will give birth to new specialities that will
immediately leave their parents’ house. Unselfishly, we
must go as far as we can. In this section we identify and
discuss some small composite frames and some
characteristic difficulties they can raise.

5.1. Simple Information System Frames

We use the term Simple Information System for a system
in which the primary decomposition is into the
construction of a model of a Real World domain and the
use of the model to provide information about the Real
World.

Figure 8 shows the undecomposed problem frame for a
static information system with a human informant.

An example of such a problem is the answering of queries
about a text such as Tyndale’s Bible. The decomposition
into the two constituent subproblems is shown in Figure 9.

The original requirement IRQ, over RW, ENQ and OUT,
is satisfied by the obvious composition of the
subrequirements COR, over RW and MDL, and IRL, over
MDL, ENQ and OUT. The two machine domains, MC1
and MC2, both contain the same Model domain MDL.
They must therefore share at least the phenomena of
MDL, and in practice this means that they must both be
implemented in the same computer. If we choose to make
MDL a domain external to the machine, such as a
removable disk, the two machines can then be
implemented in different computers.

The obvious scheduling of the two machines is to run
MC1 to completion before running MC2. However, it
may be possible and useful to overlap their executions. In
the Bible problem, for example, if the transcription of the
text takes several months it will be useful to provide
responses to queries of certain kinds on the basis of a
model restricted to the books already transcribed.

5.2. Simple Control Under Operator Regime

In Section 4.1 the Traffic Lights problem was elaborated
to provide flexibility in the required sequencing of lights.
A common composite frame in control programs is
shown, decomposed, in Figure 10.Figure 8
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The first subproblem, in which the operator constructs the
Current Regime, fits the Workpieces frame; the second
fits the Simple Control frame with the Current Regime as
an explicit description of all or part of the requirement.
The Current Regime domain is, as will often be the case,
of different types in the different subproblems. The world
is not typed — let alone  strongly typed.

A major concern in the composition of the two
subroblems here is the scheduling of the machines CM1
and CM2. In the simplest case CM1 can be run to
completion before CM2 is run. In the Traffic Lights
problem this means that the operator must set up the
regime before using the lights to control the traffic, and
can not then alter it. However, it may be necessary to alter
the regime during a period of traffic control — for
example, because the regime must be altered to handle
morning and evening rush hours; execution of the
machines must then be interleaved in some way.

There are several possibilities for this interleaving. For
example:

• Machine CM2 is halted from the start to the finish of
the creation of CRG by CM1. In the traffic lights
problem this is unlikely to be acceptable because
traffic in at least one direction must then wait while
the operator changes the regime. This is the coarsest
grain of interleaving.

• Machine CM2 is halted while the operator alters
CRG from one valid state to another, and machine
CM1 is halted while CM2 progesses through one
cycle of CRG. This scheme gives a finer granularity
of interleaving while maintaining the invariant ‘CRG
is a valid regime’.

• Two copies of CRG are used. Machine CM2 runs on
one copy concurrently with the creation of the other
copy by CM1. At the end of the creation process
CM2 switches to the new copy, and the other is now
available for updating by CM1.

Describing and managing the last of these possibilities is a
non-trivial problem in itself, justifying its own problem
frame. In this subproblem a third machine treats CM1 and
CM2 as parts of the world, controlling their behaviour in
relation to controllable phenomena of other domains.

5.3. Visible Workpieces Frame

The Simple Workpieces frame discussed in Section 3.4
above is very unrealistic. It is hard, though not
impossible, to think of a practical problem, however
small, that could fit it. The lack of realism lies in the
absence of any feedback to the source of the Operation
Requests: the operator must perform the editing
operations ‘blind’, without seeing any representation of
the object being edited. A slightly more realistic version is
the Visible Workpieces frame shown in Figure 11.

The feedback is provided by the Display domain DSP,
whose state is the set S1 of phenomena shared with the
Operator. The Work Support requirement WSP stipulates
not only the effects of the operations requested by the
operator but also the visible state of the Display in
relation to the states of the Workpieces. This visible state
of the display is not shared by the Tool TL, although it is
indirectly controlled by TL through its control of the
events E1. If the relationship between the Display state
and the Workpieces state is not simple, it may be
necessary for the Tool to create and maintain its own
model of the state of the Display. (This would, of course,
be a third subproblem in addition to the two shown in
Figure 12.)

The first subproblem is a Simple Workpieces problem, in
which the source of operation requests is the union of the
Display and Operator domains: the initiation of a request
event (E2) is controlled by the Operator, but the selection
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of the operands that play roles (R) in the event is
controlled by the Display. The second subproblem is an
Information Display problem, in which the Real World
about which information is to be displayed is the union of
the Operator and Workpieces domains.

For the present discussion, the most important point about
the Visible Workpieces frame is that it exemplifies the
advances that can be made by even a modest degreee of
specialisation. The problem class is, of course, the class
addressed by the MVC object pattern: in MVC, roughly,
the Workpieces are the Model, the Display is the View,
and the Tool is the Controller. It is notable that the MVC
pattern has received much attention — because it is a
common fundamental component of GUI systems — and
undergone much discussion, criticism and improvement
[Buschmann 96] in the ten years or so since its
introduction [Krasner 88]. This process is very similar to
the improvement that takes place in products like motor
cars; only a specialised focus on a particular problem
class allows a sufficient concentration of attention for
significant improvement to take place. The problem frame
of Figure 12 is only a first crude characterisation of the
problem class.

6 Decomposing a More Realistic Problem
A realistic problem in Software Engineering will always
demand a fresh decomposition. The most to be hoped for
by a developer who commands a good repertoire of
elementary and composite frames is that meeting the
challenge  of decomposition will be eased by the ready
recognition of familiar subproblems. Each subproblem
class has an associated repertoire of potential
characteristic difficulties: checking for each such
difficulty can lead readily to the recognition of further
subproblems. The task of composing the solution
elements, at least above the level of the well-explored
composite frames, will be unique to the problem in hand.

6.1. The Package Router Problem

As an example of a nearly realistic problem we take the
problem of controlling a Package Router [Swartout 82].
The treatment of this problem here is based on the
treatment in [Jackson 96]. Here is the problem as
described in [Swartout 82], translated from the original
German version of Hommel:

“The package router is a system for distributing
packages into destination bins. The packages arrive at
a source station, which is connected to the bins via a
series of pipes. A single pipe leaves the source station.
The pipes are linked together by two-position
switches. A switch enables a package sliding down its
input pipe to be directed to either of its two output
pipes. There is a unique path from the source station
to any particular bin.

“Packages arriving at the source station are scanned by
a reading device which determines a destination bin
for the package. The package is then allowed to slide
down the pipe leaving the source station. The package
router must set its switches ahead of each package
sliding through the pipes so that each package is
routed to the bin determined for it by the source
station.

“After a package's destination has been determined, it
is delayed for a fixed time before being released into
the first pipe. This is done to prevent packages from
following one another so closely that a switch cannot
be reset between successive packages when necessary.

However, if a package’s destination is the same as that
of the package which preceded it through the source
station, it is not delayed, since there will be no need to
reset switches between the two packages.

“There will generally be many packages sliding down
the pipes at once. The packages slide at different and
unpredictable speeds, so it is impossible to calculate
when a given package will reach a particular switch.
However, the switches contain sensors strategically
placed at their entries and exits to detect the packages.

“The sensors are placed in such a way that it is safe to
change a switch setting if and only if no packages are
present between the entry sensor of a switch and either
of its exit sensors. The pipes are bent at the sensor
locations in such a way that the sensors are guaranteed
to detect a separation between two packages, no
matter how closely they follow one another.

“Due to the unpredictable sliding characteristics of the
packages, it is possible, in spite of the source station
delay, that packages will get so close together that it is
not possible to reset a switch in time to properly route
a package. Misrouted packages may be routed to any
bin, but must not cause the misrouting of other
packages. The bins too have sensors located at their
entry, and upon arrival of a misrouted package at a
wrong bin, the routing machine is to signal that
package’s intended destination bin and the bin it
actually reached”.

6.2. Recognising Some Subproblems

Initially this problem appears to be essentially a control
problem. The machine must flip the switches so that the
packages arrive at their proper destinations. The switch
must be flipped when a package passes the sensor at the
bottom of the pipe leading into the switch.

Brief consideration of the phenomena concerned
immediately reveals a connection difficulty. The package
destination is read at the source station, but is no longer
available when the package passes the sensor. The shared
phenomena between the machine and each sensor s are no
more than the states SensorOpen(s) and SensorClosed(s):
the package causing the state change is anonymous, and
its destination bin is unknown. This connection difficulty
is soluble by a dynamic model. Since the packages can
not overtake one another, the state of the packages and
pipes can be regarded as a set of queues. The package
arriving at a sensor above a switch is the package at the
head of the queue in the pipe to which the sensor is
attached. Package destinations, read at the source station,
are attached to the package objects in this queue model.
When a switch is to be flipped the controlling machine
consults the queue model to identify the package
destination and hence the required switch setting.

There is a further connection difficulty. The switch to be
set is determined by the router topology — the
positioning of sensors on pipes, and the pipe and switch
layout. Evidently a static model is needed here.
Augmented with bins, the same model will allow the
required setting of the determined switch to be chosen
according to the route from the switch to the bin.

The switches are attached to ports of the controlling
machine. This is the standard form of an Identities
problem. An exactly similar problem is present for the
sensors.

Signalling arrival of a misrouted package at a wrong bin
is, of course, a Simple Information Display problem.



6.3. Another Concern

In discussing software engineering problems it is always
tempting to look for the sixpence under the light. We
naturally asume that the most important problem aspects
are those for which we have suitable techniques ready in
our toolkit. The list of recognisable subproblems in the
previous section illustrates the point. An important
concern in operating the package router in practice will
undoubtedly be the behaviour of the router and its
controller when a package becomes stuck in a switch. So
far, this concern has been ignored because our repertoire
contains no appropriate problem frame.

In fact, this concern — handling a malfunctioning
physical world — is very common in problems of many
kinds. How it might be captured in a problem frame is left
as an exercise for the reader.

7 Summary
This informal paper has sketched a selection of
elementary, partial and composite problem frames. No
claim, of course, is made that the selection is complete or
canonical, or even that any particular frame presented
truly characterises a set of problems that are best
considered as a class: other classifications are surely
possible. But it is claimed that the approach is valuable in
at least these respects:

• It is useful to consider problems largely — though
not entirely — independently of their putative
solutions.

• Software Engineering problems are located in the
world, and their analysis and structuring is primarily
an analysis and structuring of the world, not of the
machine.

• The classification of phenomena and the
consideration of their control is a central ingredient in
problem analysis. Mathematical abstractions alone
are not enough.

• A repertoire of recognised problem classes, with
associated characteristic difficulties and solution
methods, provides an important structure for the
discipline of Software Engineering. Within this
structure specialisations can emerge and achieve
incremental advances that can not be achieved by
attacks on a more abstract or a broader front.

In short, it is claimed that problem frames are a
contribution to making Software Engineering more like
the established branches of engineering that it aspires to
emulate.
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