
SEARCC88.doc Page 1

SEARCC8 Productivity Tools and Development Methodology

Keynote Address: Software Manufacture
 M A Jackson

1 Introduction

Our business is software development. We can look at software and its development
from many different points of view. For example, we can regard a program as a
mathematical object, and its development as a mathematical activity having much in
common with the conception and proof of a mathematical theorem. Or we can
regard software as an engineering product, and look to traditional branches of
engineering, such as civil and chemical and aeronautical engineering, for indications
of how we may advance our understanding and practice of software engineering.
Some people point to the increasing power and scope of expert systems, and invite us
to think of software development as a special case of what they call knowledge
engineering. Others point out that software development is a human social activity,
and focus their attention on the personal and group relationships among the people
involved in buying, building, and using software systems.

There is truth in all of these views, and we can learn from them all provided that we
recognise that no one view has a monopoly of the truth. Each view present a
different aspect of the truth, and because software and its development are very
complex the truth about them has many aspects. In this talk I would like to present
another view, hoping that it will be illuminating but recognising that it can offer at
most a part of the truth. I would like to view software development as a
manufacturing activity, in which a product is created by creating, modifying, and
combining various parts made from various raw materials. For example, we may
view the Pascal text of a procedure as a part that is processed by the compiler to give
another part, which is the relocatable machine-language text; and we may view that
machine-language text as one of several parts that are combined by the link-editor to
give an executable machine-language program. The work of software development
is the work of carrying out such manufacturing operations using whatever machine
tools are available.

I do not mean to limit this view to programming, or to what might be called the
implementation stage of software development. On the contrary, I wish to apply it to
the whole of software development from the earliest stages of requirements analysis
and specification through to delivery of the product to the customer and its
installation and maintenance. Throughout the development stages, the developers
are concerned with textual and diagrammatic documents, and it is all of these that I
wish to regard as parts in the manufacturing activity. Because the word 'part' is
likely to suggest a module of the finished product, I prefer to use the more neutral
word 'description': software developers are concerned with descriptions of the
customer's requirements, of the problem domain, of the context in which the
software will be embedded, of the system's behaviour, of the rules for its use, of the

SEARCC88.doc Page 2

system's operational characteristics, and with descriptions of the software itself and
of its components at every level of abstraction and detail. A Pascal program text is a
description, in terms of Pascal semantics, of a computation to be performed; a
machine-language text is another description, in terms of the semantics of the
execution machine, of the same computation; a procedure hierarchy diagram,
showing the procedure invocation structure, is yet another description of the
program, and a proof of correctness, showing pre-conditions and post-conditions and
loop invariants, is yet another again. A statement of the behaviour of a company's
employees - their arrival at work and their leaving after work, their promotion from
grade to grade, their holidays and illnesses - is a description of an aspect of the
problem domain for a payroll system, just as a statement of the grammar of Pascal is
a description of an aspect of the problem domain for a Pascal compiler.

For any non-trivial piece of software there is an infinity of descriptions that may be
made and used, manipulated and composed. Software development methodology is
concerned with the creation of effective manufacturing schemes that apply to
usefully large classes of software product. A manufacturing scheme for software
defines the set of descriptions that should be produced, the order - usually a partial
order - in which they should be produced, and the operations to be used in their
production. We can not, of course, hope to devise a single manufacturing scheme
that will be applicable to all classes of software and will also be effective, but must
aim instead to devise several schemes, each applicable to a particular class. A
method appropriate for developing life-critical avionics software will not be
appropriate for developing personal computer applications on DBase III, alhtough
they may have much in common. However, in this talk I do not wish to concentrate
on methodological issues, but rather to explore other implications of the
manufacturing view of software that I have briefly outlined above.

2 Raw Materials for Descriptions

A software description, like any part made in an ordinary manufacturing activity, is
made of some raw material; I take the raw material of a description to be the
language in which it is expressed. Here I am using the word 'language' in a very
broad sense, to include any textual or graphical notation that may be used in software
development. Thus Pascal and COBOL are languages, and so too are directed
graphs and lambda notation and Hoare's CSP and BNF notation for grammars and
decision tables and OS/360 JCL and Horn clause logic. Nor do I exclude natural
language, which is certainly a necessary raw material for many descriptions that we
must create.

One of the most crucial choices in software development is the choice of a language
for each description that is to be manufactured, just as a crucial choice in
conventional manufacturing is the choice of raw material for each part. The software
developer may delegate this choice by default, perhaps to the inventor of the chosen
development method, or to the provider of a complete development environment, but
the choice must still be made, and must be made for each individual description.

SEARCC88.doc Page 3

The criteria for choice are quite simple. First and foremost, the language must allow
a direct and clear expression of the meaning of the description; in particular, the
description must be immediately understandable to any person who will need to
create or read it. We are not talking here about the expressive power of languages in
the formal sense in which regular languages have the same expressive power as
finite-state machines, but about immediacy of human understanding. We would not
choose to describe a project plan in SQL or a mathematical computation in the form
of a decision table: they are inappropriate raw materials for those descriptions.
Second, we should prefer a formal to an informal language wherever possible. There
is no point in creating gratuitous opportunities for ambiguity and misunderstanding.
We would not choose to describe the operations on an abstract data type in natural
language when we might give an unambiguous description in an algebraic or state-
based formalism instead. Third, we should prefer a language that allows us to use
mechanical manipulations over one for which we have no useful tools. We want to
mechanise as much as possible of our work in software development, and the
availability of tools is a valid criterion in the choice of language for an individual
description.

These criteria lead us to see at once that in any non-trivial software development we
will need to use many languages, in the broad sense in which I am using the word
'language'. Just as the automobile engineer sees that certain parts must be made of
steel and others of glass or aluminium or plastic, so the software engineer must see
that some of his descriptions must be made of graphs and others of predicate logic
and others again of recursively defined functions. It is a mark of the extreme
immaturity of the computing discipline that so much of the serious academic work,
and so much too of the practical work, is confined to consideration of one language
in virtual isolation from all others. There is great intellectual and aesthetic beauty to
be found by exploring the limits of what can be done with a single material: the
silversmith and the sculptor who works in stone may produce great works of art. But
you can not make a motor car in that way. A motor car must have windows made of
glass and pistons made of steel and tyres made of rubber, or it will be of little value.
A software development must similarly use many materials, each one where it is
appropriate.

3 Informal Languages

I have suggested above that the languages to be used in software development must
include informal languages, and, in particular, natural language. We are, of course,
reluctant to use informal languages where we could use a formal language, because
of their potential for ambiguity and our inability to manipulate them mechanically;
but sometimes we have no good alternative. One reason may be that we simply
know too little about some aspect of what we wish to describe to give a formal
description: for example, we want input formats to be convenient, or output formats
to be easy to read and appealing to the eye, but we know too little about the
ergonomics of the human-computer interface to be able to express such requirements

SEARCC88.doc Page 4

in any formal way, and must rely, at the requirements stage, on such vague
statements expressed in natural language.

A more significant reason appears in descriptions of the problem domain, where the
problem domain is in the natural world. This will be true of most data processing
systems, such as administrative systems, payroll systems, and sales order processing
systems. Here the problem domain is inherently informal, and we wish to compute
about it in a system that is itself necessarily formal: we are therefore required to
build a bridge between the informal natural world and our formal system, and this
bridge can be made only in an informal language. It is an important methodological
principle that this bridge between the problem domain and the system should be as
narrow and as localised as possible, to ensure that the unavoidable informality does
not spread to descriptions that have no need of it.

4 Simple Manufacturing Operations

In conventional manufacture of things like motor cars and washing machines, there
is a repertoire of relatively simple operations such as drilling, turning, milling,
pressing, and grinding. These simple operations are applied to a single part, and they
have the effect of modifying it in some way: for example, by drilling a part we make
a hole in it, by pressing we convert a flat part into a three-dimensional part. The
original form of the part is, of course, lost in the operation, and only the modified
result is available once the operation is complete.

In software manufacture there is, or there ought to be, a similar repertoire of simple
operations on descriptions, with the important and useful difference that the original
form of the description remains available after the operation, along with the modified
form. The possible operations will, of course, depend on the raw material - the
language - of the description. Obvious examples of such operations may be drawn
from the standard literature: for example, a non-deterministic finite-state machine
may be converted into a deterministic finite-state machine; a deterministic finite-
state machine may be converted into a regular grammar, and vice versa; a finite-state
machine may be reduced to a minimum form; a grammar with left recursion may be
converted to an equivalent grammar without left recursion; some grammars may be
converted directly into recursive descent parsers. It is notable that the most fruitful
source for such examples is to be found in compiler technology, where historically
there has been both a trend to specialisation and a broad cooperation between the
theoreticians and the practitioners of software manufacture.

We may characterise these simple operations as being non-interactive and as being
functions of one argument. They can be executed without human intervention, and
they simply take one description and modify it to give another. There are many
trivial additions we might make to the list of such operations: for example, we might
derive a list of terminals from a grammar, or a list of non-terminals, or a list of nodes
from a finite-state machine or indeed from any graph. But it is not yet clear that such

SEARCC88.doc Page 5

operations would be useful, because we do not yet have a context in which we could
put them to good use.

5 Composing Descriptions

The simple operations mentioned above are certainly not enough for the manufacture
of motor cars or washing machines: they suffice only for the manufacture of products
that can be machined from a single block of raw material. To make a motor car or a
washing machine it is necessary to be able to put parts together, and in the same way
the manufacture of non-trivial software requires the ability to put descriptions
together. That is, we need operations that compose two or more descriptions to give
a combined result: our repertoire of manufacturing functions must include functions
of two and more arguments.

Composition, I suggest, is the fundamental type of activity in software manufacture.
Some traditional techniques of software development, such as top-down functional
decomposition, and stepwise refinement, have embodied the opposite view, that the
fundamental activity is decomposition: we begin with a notion of the complete
software product, and we decompose this notion, level by level, until we reach a
level at which the decomposed parts are already available in the programming
language. I believe that this view is seriously misleading. I prefer to think of
software development as an activity in which we create descriptions - among others -
of the desired product from a number of different points of view, and successively
manipulate and compose those descriptions until we have succeeded in describing a
product of which all of our original descriptions are true.

I am not here arguing for bottom-up development in place of top-down development.
The descriptions to be composed are not, in general, descriptions of software parts to
be fitted together in a hierarchical structure. Rather, they are descriptions of
different aspects of the software, different abstractions of the same thing,
descriptions of the same thing viewed from different angles. There is an illuminating
analogy with architectural descriptions of a building. The architect may produce a
perspective drawing of the building, and also floor plans and several elevations at
different cross-sections; eventually the architect and builder must produce a building
of which all those descriptions are true, but there will be no part of the building that
can be identified with a particular plan or elevation.

Software manufacture abounds in simple examples of this kind of composition. For
instance, consider the operation of composing two finite-state machines to give their
union, the machine that accepts any sequence that is accepted by either of the two
machines. If we interpret the description of each of the two original machines as
meaning 'this machine accepts at least this set of sequences', then we may interpret
the description of their union as meaning 'this machine accepts at least this set of
sequences and at least that set also'. Another example is the composition of data
structures to give a program structure in the JSP design method. Given descriptions
of a program's input and output streams as regular grammars represented as trees, the

SEARCC88.doc Page 6

program structure is formed as a superset tree, of which each of the stream structure
trees is a pruning and simplification.

We may also consider a much larger example of such composition. Suppose that we
are developing a data processing system, perhaps a payroll system, that has a
significant database. Then we may give several different descriptions of the system:
we may describe the structure of the database by some kind of decorated graph; we
may describe the way in which the system models the problem domain by a set of
cooperating sequential processes, one process instance for each employee; we may
describe the semantics of each transaction in terms of a partitioned global state with
pre-conditions and post-conditions for the transaction. Each of these descriptions is
appropriate for certain aspects of the system structure and behaviour. A full
description of the finished system is a composition of such descriptions: the finished
system is an object of which each of the individual descriptions is true.

6 The Importance of Parallel Composition Operations

This kind of composition is parallel rather than hierarchical. It is important because
of what Dijkstra has aptly called 'the separation of concerns': we need to be able, in
software development, to pay attention now to one aspect of our task and now to
another. But the separation of concerns is of little value unless we are able at a later
stage to merge the results of what was previously separated. Sometimes we will be
able to avoid this merging, allowing ourselves to map the individual descriptions we
have made on to individual components of the finished software. But more often we
will be compelled to compose the descriptions so that we obtain a product of which
they are all true.

One compelling reason for composing different descriptions is that they may be
describing different structures over the same elements. The records of the employee
database are the activation records of the processes that model the employees, and
the components of the global state are the components of those activation records.
We can not separate these elements in the finished system, so we must compose the
different descriptions.

Another reason is the need for efficiency. Pierre de Marneffe called attention long
ago to what is known as the Shanley principle in mechanical engineering, the
principle that one component should satisfy more than one part of the specification.
In the rocket technology of the 1940s it was recognised that a rocket required an
aerodynamic outer skin, a vessel to hold the rocket fuel, and considerable structural
strength; a major breakthrough came when the engineers followed the Shanley
principle and designed the body as a tube that had the required aerodynamic
properties, was capable of containing the fuel directly, and provided the necessary
structural strength: the one component satisfied all three parts of the specification.
Another example may be taken from motor car design. Until the 1950s, motor cars
were built with the chassis separate from the body. The chassis provided the frame
on which the engine, the wheels, and the power transmission were mounted; the

SEARCC88.doc Page 7

body, carrying the seats and providing protection for the passengers, was a separate
component. Then it became evident that the body and chassis could be designed as
one component made from welded pressed steel panels, with considerable savings in
weight and in manufacturing costs.

The Shanley principle applies equally to software manufacture. Even where it is
possible to realise different descriptions by different components of the finished
system, it will often be inefficient and cumbersome. If we need to compute two
functions of a graph, we will want to describe each function separately but compute
both functions together in one traversal. If we have a large master file from which
we require two summaries, we will want to give separate descriptions for the two
summaries but obtain them both from one pass of the file.

7 Composition of Dissimilar Materials

Motor car manufacturers have techniques that allow them to compose different parts
made from the same material: a car body is made by welding together several
pressed steel panels. But they also have a much wider range of techniques for
composing parts made from different materials: they know how to bolt aluminium to
cast iron, how to mould rubber round nylon cords, how to glue glass to mild steel
channel, how to shrink a steel component around a brass bearing.

An analogous range of techniques is needed in software manufacture. If one aspect
of a program is best described as a recursive function definition, and another aspect
is best described as a sequential process, we need to be able to compose these
descriptions although they are made of different materials. This requirement of
software manufacture has been sadly neglected by computer scientists, partly, I
suspect, because it presents great difficulties, and partly because so much effort has
been invested in techniques limited to the handling of a single material. Many
computer scientists are like the small boy with a hammer, to whom everything in the
world looks like a nail. To a computer scientist with a logic programming system,
everything in the world looks like a Horn clause. Nor is it only academic and
theoretical people who too often think this way. Practitioners too are inclined to seek
panaceas, single languages or techniques that will cure all of the world's ills: one
need only think of the exaggerated claims made for the universality of data
modelling, or functional programming, or relational databases, or expert systems.

But it would be wrong to suggest that no work at all is being done in this important
area. Boyle has shown how functional programs written in Lisp may be translated
into Fortran, thus providing a part of a possible solution of the problem for one pair
of languages - albeit programming languages; Zave has shown how a small system
may be built using a combination of her own functional language, Paisley, and logic
programming and a version of CSP; some work has been done at Imperial College
on the addition of sequential constraints to a functional specification language. It is
my hope that much more work of this kind will be done in the future, especially
concentrating on what might be called specification languages rather than

SEARCC88.doc Page 8

programming languages, and on the static composition of descriptions in different
languages rather than on the dynamic interleaving of their interpretation in
execution.

8 Wide-Spectrum Languages

It might be suggested that the solution to the problems I have mentioned lies in the
creation of a truly wide-spectrum language, in fact a universal language for software
development. But I think this would be a mistake, analogous to the mistake of
seeking a universal material from which every part of a motor car could be
fashioned. Even if such a language were possible, it would certainly be horrendously
large and complex, much worse than PL/I or Ada. It would not only provide the
possibility of declaring and using every conceivable data type and operation with
every conceivable property, but it would also provide every conceivable mechanism
for combining such types and operations both statically and dynamically.

And there are even more serious objections to the idea. First, the accepted aims in
programming language design of orthogonality and referential transparency would
be completely unattainable: as a result, the language would be bedevilled everywhere
by anomalies and inconsistencies, and its semantics would be quite impossible to
specify even approximately. Second, the idea of a single language, presumably
accompanied by a single processor that processes texts written in that language, is
tied to what we might call the 'big bang' approach to development. Software
manufacture demands the opposite, an incremental approach; not in the sense that a
system should be delivered incrementally to the customer, although that is no doubt
true for many systems, but in the sense that the developer must be continually
involved in the manufacturing process, sometimes to choose what operation should
be performed next and sometimes to introduce new information in the form of new
descriptions or decorations of existing descriptions. Third, many descriptions are
best made in a pictorial language, which would be hard to accommodate in the
notion of a single wide-spectrum language: a graph, for example, may be much more
easily created and viewed in pictorial form than in the form of lists of nodes and arcs.

9 Tools and Operations

There are already very many software tools available. There are editors and
interpreters, compilers and linkers, theorem provers and data dictionaries, CASE
tools and complete development environments. But it seems to me that these tools,
excellent as they may be for their stated purposes, are not enough. With the
exception of the editors and perhaps of some data dictionaries, they are too large and
elaborate to serve the general purposes of software manufacture. We have special
purpose tools to perform highly complex and elaborate operations, but too few tools
to perform simpler and more fundamental operations. We have the machine to bore
out complete cylinder blocks for motor cars, but we lack the general purpose drill to
bore one hole at a time in any component we choose.

SEARCC88.doc Page 9

One reason for this lack is the absence of a context into which such small and simple
tools could be fitted. To some extent this lack is being repaired by the CAIS
(Common Apse Interface System) and PCTE (Portable Common Tools
Environment) standardisation efforts in the USA and Europe. But even if these
projects are moving in the right direction, and many people have doubts about their
underlying technical assumptions, it will be a long time before tangible results
emerge. Meanwhile tool vendors are compelled for good commercial reasons to
provide more or less complete environments instead of individual tools, and such
environments lock their users into a closed world into which no foreign tools can be
introduced. At the programming stage, if you are programming in Smalltalk 80 you
can not switch briefly into Prolog or Lisp. At the specification stage, if you are using
a graphic-based data modelling tool you can not switch into a Larch-style algebraic
specification of an abstract data type, or into CSP or the lambda calculus. At each
step, the software developer is locked into one fixed environment and limited to the
use of one fixed set of tools designed for the handling of descriptions made from one
material only.

10 Re-usability

At the NATO Software Engineering Conference of 1968, Doug McIlroy of Bell
Laboratories complained that re-use of standard components, which is a hallmark of
mature engineering, was sadly rare in software engineering. Today, twenty years
later, the picture is not much better. Certainly there are widely used libraries of
Fortran mathematical routines, and libraries of graphic interface routines for mouse-
driven personal computer systems, and other similar examples can be quoted. But
the world is still full of programmers programming linear searches and tree
traversals, implementing sets and bags and queues and stacks, and translating into
COBOL the same tax regulations as their colleagues in the company across the road.

Some people seek the solution to this problem in object-oriented design and
programming, or in some discipline based on abstract data types. The generics
feature of Ada is intended to allow general purpose software components to be
created that can then be specialised or instantiated for particular uses. In his
delightful book on Ada, John Barnes paints a fanciful picture of the software
component shop of the future. The customer comes into the shop with a component
specification; the shopkeeper offers to instantiate the component while the customer
waits, having first determined that it is the de luxe version - fully validated and
guaranteed to raise no exceptions - that the customer requires rather than the standard
version. The happy customer leaves with the desired component under his arm.
Similar aspirations can be seen in more sophisticated approaches, such as that of the
Larch specification language developed by Guttag, Horning and Wing.

Certainly component re-use has been achieved to some extent in such environments
as those of Ada and Smalltalk. But there is something deeply unconvincing about the
fanciful pictures painted of a future in which most software will be built of standard
components. For components to be re-usable, there must be a certain relationship

SEARCC88.doc Page 10

between the complexity of the specification and the difficulty of implementation. An
electrical engineer has no difficulty in re-using such components as resistors and
capacitors, because the required component can be specified in a very few
standardised names and integers. The required resistor is 2 watt wirewound 1 Kilo-
ohm: the specification contains no more than 3 integers of information, and can be
written down in a second or two; the component can be bought for perhaps 10 pence,
and would cost perhaps 100 times as much to make by hand. The specification of a
transistor is more complex, but the cost to make is correspondingly greater in
proportion to the cost to buy, and the same is even truer of integrated circuits which
are prohibitively expensive to make in small quantities.

The best example of software components that exhibit a similar relationship between
the complexity of specification and the difficulty of implementation is found in
mathematical subroutines. Given the body of existing mathematical conventions, a
routine for inverting a matrix or for solving a system of differential equations is
relatively simple to specify and relatively difficult to implement, so it is a natural
candidate for re-use. Furthermore, such a routine, like an integrated circuit, is of a
sufficiently high value for the engineer who uses it to be willing to accommodate his
design to its interface demands. None of this is true of a routine to perform a linear
search, or to traverse a tree in preorder.

And there is another obstacle to re-use to consider. The Shanley principle, which I
discussed briefy a little earlier, will usually lead us to want to combine different
descriptions into one component: we want the component to exhibit more behaviour
than is described in its catalogue specification, so we are led to modify it and thus
lose almost all the benefit of our original purchase: the game is no longer worth the
candle.

I believe that re-use in software manufacture can make sense only if we can re-use
descriptions in quite general ways, and that this will be possible only if we are
equipped with the tools for performing powerful operations to manipulate and
compose descriptions. There is not much more that can be done in the way of re-
using completed software components when our basic toolset contains little more
than a compiler.

11 Some Concluding Remarks

In the very earliest days of software development for electronic computers it seemed
that one description of a program was enough: the developer's task was to describe
the program in machine code, and to have that description punched into paper tape.
Then it became clear that it would be very useful to give a description of the
computation in a language that abstracted to some extent from the execution
characteristics of the particular machine, and simple symbolic assembly languages
and autocodes were introduced along with their associated compilers. Later, the
need for some kind of functional specification became apparent: in the time-
honoured cliche, it was necessary to describe not only how the program worked but

SEARCC88.doc Page 11

also what it did. Then it became apparent that a more general statement of the
customer's requirements was needed, and also an explicit description of the problem
domain - the subject matter about which the software computed - and that the
specification should not be limited to functional aspects but should include also
information about performance and other behavioural characteristics. Meanwhile,
the combination of hardware and software on which the developed system was to be
executed became much richer and more complex: data structures on backing store,
protocols for communication, schemes for managing the use of virtual and cache
storage, all these and much else demanded careful description and design. The
number and complexity of the descriptions that may be given of a non-trivial piece
of software have grown almost without limit.

Some of these descriptions are inherently informal, and can be used only for human
communication. But the others can be used in the software manufacturing activity,
either constructively, to derive other descriptions and, eventually, to derive the
finished product, or analytically, as gauges and templates to measure the conformity
of the product to its specification. No compiler writer doubts that a description of
the problem domain, which for a compiler is a description of the language to be
compiled, can and must be used constructively in the manufacture of the finished
product; or that suitable tools, such as a lexical or syntactical compiler compiler, can
and should be used to carry out manufacturing operations on these descriptions. I am
doing no more than suggesting that we should take the same attitude to most of the
many descriptions that can be produced of our other software products, and that we
should pay much more attention that we do now to making software manufacture in
this sense into a reality.

