
Engineering and Software 
(Draft of 30th January 2009) 

Michael Jackson, The Open University 
jacksonma@acm.org 

 
Abstract   Software development has long aspired to merit the status of a professional 
engineering discipline like those of the established engineering branches. This paper discusses 
this aspiration with particular reference to software-intensive or computer-based systems. Some 
opportunities are pointed out for learning important lessons from the established branches. These 
lessons stem above all from the highly specialised nature of traditional engineering practice. 
They centre on the crucial distinction between radical and normal design, the content of normal 
design practice, and the social and cultural infrastructures that make effective specialisation 
possible. 

1. INTRODUCTION 

In the earliest years of software development some notable successes were achieved. Perhaps 
the most remarkable was the development of business data processing systems for J Lyons, 
an English company that blended its own teas and baked its own breads and cakes for sale in 
its restaurants and teashops. As early as 1947, the company understood the potential benefit 
of computerised data processing at a time when few people imagined that workable 
computers would eventually become commercial products available for purchase and use. 
The company contributed to the funding of the EDSAC computer being built at Cambridge 
University, and on the basis of the EDSAC design they developed and manufactured their own 
electronic computer, LEO 1. The name LEO was an acronym—Lyons Electronic Office—and 
the computer was intended to run business data processing applications that Lyons own staff 
would design and program. The first application, bakery valuation, computed the money 
value of the cakes, pies and pastries produced by the company’s bakeries and distributed to 
their teashops, restaurants and other sales channels: it ran successfully on 16th November 
1951 and every week thereafter for many years. In 1954 the J Lyons payroll application 
began weekly operation, and from December 1955 the payroll of the Ford Motor Company’s 
Dagenham plant ran on LEO as a service outsourced by Ford to J Lyons. By the end of 1956 
[Caminer97], “LEO was processing a representative load of office applications—payroll, 
distribution, sales invoicing, accounting and stock control—and, at the same time, expediting 
the physical operations of Lyons and providing timely information for remedial managerial 
action.”  

A remarkable system of a very different kind was SAGE, the Semi-Automatic Ground 
Environment system designed to defend North America against bombing attack by aircraft 
fleets of potentially hostile powers. Based on an earlier prototype system, and using AN/FSQ-
7 and AN/FSQ-8 computers specially developed by IBM, SAGE collected and processed radar 
inputs for display to operators, and helped the operators to react appropriately and to 
communicate indirectly with interceptor aircraft. The system first became operational in 
1959 and ceased operation nearly twenty five years later in 1983. The system was never put 
to the test by a real hostile attack, and became obsolete quite early in its life when the 
perceived threat from long-range missiles superseded that from bombers; but its 
development was judged to have been very successful, and was certainly extremely 
ambitious for its time. Herbert D Benington was one of the leaders of the software 
development for SAGE, and described the work in a 1956 paper [Benington56]. When his 

SWEngineering.doc 01/02/2009 Page 1 



1956 paper was republished [Everett83] in 1983, Benington added a foreword in which he 
reflected on his experiences. He was in no doubt about the foundation of the project’s 
success:  

“It is easy for me to single out the one factor that I think led to our relative success: 
we were all engineers and had been trained to organize our efforts along engineering 
lines. We had a need to rationalize the job; to define a system of documentation so 
that others would know what was being done; to define interfaces and police them 
carefully; to recognize that things would not work well the first, second, or third 
time, and therefore that much independent testing was needed in successive phases; 
to create development tools that would help build products and test tools and to 
make sure they worked; to keep a record of everything that really went wrong and to 
see whether it really got fixed; and, most important, to have a chief engineer who 
was cognizant of these activities and responsible for orchestrating their interplay. In 
other words, as engineers, anything other than structured programming or a top-
down approach would have been foreign to us.” 

In the later 1950s, and in the first half of the 1960s, there were still successes, but now there 
were very many failures too. As machines became more affordable there was a need for 
many more programmers, and inevitably few, if any, of the new recruits were trained 
engineers like Herbert Benington or deeply experienced business analysts like David 
Caminer. Jules Schwartz [Buxton70] colourfully described the later recruitment to the SAGE 
project: 

“People were recruited and trained from a variety of walks of life. Street-car 
conductors, undertakers (with at least one year of training in calculus), school 
teachers, curtain cleaners and others were hastily assembled, trained in 
programming for some number of weeks and assigned parts in a very complex 
organization.”  

Whatever the reasons, by the early 1960s there was widespread talk of a ‘software crisis’. It 
was commonly said that software was full of errors; that software systems did not deliver the 
functionality that was needed; and that software projects too often grossly exceeded their 
budgets and schedules—many very expensive software projects even failing to deliver 
anything usable at all. Something had to be done. 

In 1967 the NATO Science Committee established a Study Group on Computer Science. The 
Study Group recommended the holding of a working conference on ‘Software Engineering’, 
and two NATO conferences were held: one in Garmisch and one in Rome. The introduction to 
the report of the first conference [Naur69] states the motivation clearly:  

“The phrase ‘Software Engineering’ was deliberately chosen as being provocative, in 
implying the need for software manufacture to be based on the types of theoretical 
foundations and practical disciplines, that are traditional in the established branches 
of engineering.” 

The motivation was clear: software developers should learn from engineers. What exactly 
they should learn was less clear. For some people, ‘Software Engineering’ meant simply an 
improved and more careful approach to the programming task: programmers should be more 
meticulous; they should pay more attention to design, and should check their programs 
before executing, or even before compiling, them; they should abandon the ‘code-and-fix’ 
approach that had caused so much trouble. For others, there were more specific lessons to be 
learned.  

SWEngineering.doc 01/02/2009 Page 2 



Some saw software development as an essentially industrial production process that could, 
and should, be subjected to fine-grain industrial disciplines of the kind that Frederick Taylor 
had devised and promoted in the early 20th century under the title “scientific management”. 
Unsurprisingly, software workers, like factory workers, were inclined to resist the imposition 
of this kind of managerial rule. In a book [Kraft77] published in 1977, the sociologist Philip 
Kraft even argued that the introduction of structured programming was an attempt by 
managers to control their workers by imposing a form of Taylorism on them:  

“Until human programmers were eliminated altogether, their work would be made as 
machine-like—that is, as simple and limited and routine—as possible. Briefly, 
programmers using structured programming would belimited to a handful of logical 
procedures which they could use—no others were permitted. They could call only 
for certain kinds of information ... They could not, for example, call for information 
not contained in the original data set assigned to them. ... in this way, the ability to 
produce large and complex systems has not been impaired, only the opportunity of 
the average programmer to produce them.”  

Watts Humphrey [Humphrey00] softened the harsh wind of Taylorism by inviting 
programmers to be their own managers, but his view of their work was consciously based on 
Taylor’s principles:  

“The principal difference between manual and intellectual work is that the 
knowledge worker is essentially autonomous. That is, in addition to deciding how to 
do tasks, he or she must also decide what tasks to do and the order in which to do 
them. The manual worker commonly follows a relatively fixed task order, 
essentially prescribed by the production line. So studying and improving the 
performance of intellectual work must not only address the most efficient way to do 
each task but also consider how to select and order these tasks. The is essentially the 
role of a defined process and a detailed plan. The process defines the tasks, task 
order, and task measures, while the plan sizes the tasks and defines the task schedule 
for the job being done.” 

Less harshly yet, some people saw the software problem as an interplay of technical and 
managerial aspects, still with a strong emphasis on the definition and management of the 
development process. There was general agreement that software development should 
become like engineering, but little agreement about what that would mean. The present 
author has suggested [Jackson82] that specialisation is a basic characteristic of successful 
engineering, but that suggestion was not related in any detailed way to the practices of the 
established engineering branches. The present paper aims to repair that omission to some 
extent. 

In an insightful paper [Shaw90] published in 1990, Mary Shaw described the evolution of 
the established branches of engineering from their beginnings in crafts and cottage 
industries. Chemical engineering—which she took as her primary example—evolved in 
three stages. An industrial process emerged in the late 18th century, under the commercial 
pressure for more efficient production of the alkali needed for the manufacture of glass, soap 
and textiles. Early in the 19th century Dalton’s atomic theory provided a scientific 
foundation by explaining the underlying chemistry. In the mid-19th century G E Davis 
recognised that chemical manufacturing depended on a core set of basic operations, later 
called unit operations, of which every manufacturing process in use was composed.  

Shaw also points out the distinction between routine and innovative design, and the crucial 
value of a handbook in which known good designs and their applicable parameters are 
recorded and codified. Finally, among her recommendations for the steps necessary for 

SWEngineering.doc 01/02/2009 Page 3 



software development to become a true engineering discipline, she includes the development 
of specialisation: internal specialisation in the technical content of program design “as the 
core of software grows deeper”; and external specialisation in “applications that require both 
substantive application knowledge and substantive computing knowledge.” 

The intent of this paper is to build on some of these insights, especially Shaw’s, and to draw 
some further lessons from a consideration of the practice of the established engineering 
branches. The specific lessons drawn are applicable chiefly to a particular, but very broad, 
class of system—what are often called computer-based systems. The central role of 
specialisation, and its essential preconditions, are discussed, and a particular dimension of 
specialisation—specialisation by artifact—is identified that has played a vital role in 
achieving dependably successful engineering products.  

2. COMPUTER-BASED SYSTEMS 

It is in computer-based systems, or CBSs, that software development can learn the deepest 
lessons from the traditional branches of engineering, and can gain most from learning them. 
In a CBS, sometimes called a software-intensive system, the computer’s role is to interact 
with the physical world—that is, with the natural world of the universe and the physical 
products of human engineering, with human beings themselves, and with other CBSs. The 
machine that we produce as software developers is a computer executing the software we 
develop. It plays its role in its problem world—the relevant parts of the physical world— 
functioning as one part among several, monitoring and controlling the behaviours of the 
other parts and establishing and maintaining relations among them.  

For an avionics system the earth’s atmosphere is a part of its problem world, along with 
the aircraft itself, the pilot, the airport runways, the passengers, the air traffic control system, 
and so on. For a heart pacemaker system the problem world contains the human patient, 
regarded from both behavioural and physiological points of view, the external devices by 
which the pacemaker’s behaviour can be monitored and adjusted, and the operators of those 
devices. For a theatre booking system the problem world contains the theatres, the potential 
audiences, credit cards, the physical tickets to be issued, and so on. For a medical radiation 
therapy system the problem world includes the patients, the radiation equipment, the 
equipment operators, the medical staff, and the movable bed on which patients lie and are 
precisely positioned for treatment. For a system to control the lifts in an office building the 
problem world contains the electrical and mechanical lift equipment, the arrangement of the 
building’s floors, the behaviour of individual users, and their group behaviour evidenced in 
patterns of traffic between the building’s floors.  

These parts, or domains, of the physical world are heterogeneous, varying greatly in the 
inherent properties and behaviours they exhibit, both in general and in their participation in 
different systems. The relevant capabilities and propensities of an airline pilot flying an 
aircraft are different from those of the same person engaged in booking a theatre seat. The 
properties of the earth’s atmosphere that are important in an avionics system are different 
from those that matter in a system to control fuel injection in a motor car. For each system 
the developers must investigate and analyse the properties of the problem world domains and 
of their interactions with each other and with the machine to be built: they must devise a 
machine whose interactions with the domains to which it is directly connected will ensure 
that the system requirements—the purposes of the system—are satisfied. If they 
misunderstand the requirements, or misunderstand the behaviours and properties of the 
problem world domains, they will fail as surely as if they produce erroneous programs. This 
possibility of failure is not confined to control systems: an information system, too, will fail 
if its developers have misunderstood how the phenomena about which information is to be 

SWEngineering.doc 01/02/2009 Page 4 



produced are related by the domain properties to the phenomena directly accessible to the 
machine.  

The success or failure of the developed software in a CBS, then, is not to be judged by its 
satisfaction of a formal specification of machine behaviour, but by its observable effects in 
the problem world. The theatre booking system is successful if people can book seats 
conveniently, if duplicate tickets for the same seat at the same performance are never issued, 
if better seats at each price are sold first, if credit cards are correctly charged, and so on. The 
radiation therapy system is successful if the patients receive their doses of radiation exactly 
as prescribed, if the equipment is efficiently utilised, and if safe operation of the equipment 
is ensured.  

This character of the development of a CBS is shared by the work of the established branches 
of engineering. G F C Rogers defined [Rogers83] engineering as 

“the practice of organising the design and construction of any artifice which 
transforms the physical world around us to meet some recognised need,”  

The artifice, or artifact, constructed by CBS software developers is the machine—the 
computer executing the software; the physical world around us is the problem world; and the 
system requirements are the recognised need. In this fundamental sense, software 
development of a CBS is indeed engineering, and should be able to profit from what 
engineers have learned over their long history. 

3. SPECIALISATION BY ARTIFACT 

An obvious aspiration has been to enrol software engineering as one new member of the 
established college: automotive engineers develop motor cars, and naval engineers develop 
ships: clearly, people who develop software should be enrolled as software engineers. This 
aspiration is based on the identification of the software itself, considered in its narrow 
confines within the computer, as the artifact produced by CBS software development: the 
product of software development is identified with the program text.  

Certainly, from a pure programming point of view this aspiration to a single engineering 
discipline seems to make good sense: the software of practically all computer-based systems 
has much in common. The program text describes the computer’s internal behaviour and 
states by which it can be brought to exhibit the desired behaviour at its interface with the 
problem world. From a pure programming point of view, this internal behaviour, and the 
technical challenge of designing it and describing it in a program text, are of direct and 
intense interest. The programmer must take proper account of the relevant algorithms and 
data structures, the practicalities of the operating system and programming language, the 
allocation of the computer’s resources, the possible failures of the hardware and software 
infrastructure on which the program is to be executed, and many other matters that engage 
the attention of software engineers.   

Nonetheless, in the case of computer-based systems, and perhaps of some other software 
systems too, this identification of the product with the program text is misplaced: software 
engineering for computer-based systems is not one aspiring engineering discipline, but 
many. The real artifact produced by the software developers is the combined behaviour of 
the machine and of the physical problem world: not only at the interface where they meet 
and interact, but also in their respective hinterlands remote from that interface. The pure 
programming point of view does not capture the essential purpose of the work: the internal 
computations signify nothing except as an instrumental means to achieve the machine’s 
external behaviour; and the external behaviour signifies nothing except as an instrumental 

SWEngineering.doc 01/02/2009 Page 5 



means to achieve the purposes of the system in its problem world. The meaningful artifact of 
a CBS is the whole system, considered with a primary focus on the problem world. The huge 
variety in the physical problem worlds of CBSs, together with the variety of their required 
functions in those worlds, is then seen to constitute a huge variety in the artifacts of CBS 
software development. From this point of view, the most conspicuous practical characteristic 
of the established branches is their very plurality. There is not just one established branch of 
physical engineering. We should not expect, then, that there should be just one branch of CBS 
software development. We should expect a broad structure of specialisation according to the 
different classes of system—or subsystem—to be developed.   

Certainly, there are common intellectual principles shared by all engineers, and both the 
‘hard’ science of physics and chemistry and the ‘soft’ behavioural sciences are of shared 
relevance because of engineers’ intense concern with the physical and human world. 
However, most of this common ground lies far below the working practice of engineering, 
which is concerned with particular outcomes in particular situations. As more scientific 
knowledge becomes available it informs the possibilities of innovation; but engineering 
practice is concerned with the design and analysis of particular artifacts. At the level of 
particularities, the artifacts and the associated problem worlds of the different engineering 
branches are very different. This is why they specialise. Civil engineers do not design 
chemical plants, and automobile engineers do not design ships or networks for the 
distribution of electrical power. If we hope to emulate their successes, and achieve the levels 
of quality and dependability that we have come to expect in their products, we must study 
and emulate their degree and manner of specialisation.  

Specialisation in the established branches has many dimensions, and software development 
can legitimately claim to exhibit parallel or analogous specialisations in some of those 
dimensions. They have specialisations by theory, such as control and structural engineering, 
and fluid dynamics; software has concurrency, type theory and complexity theory. They 
have specialisations by technology, such as micro-electronics and welding; software has 
functional and object-oriented programming. They have specialisations by materials, such as 
pre-stressed concrete and electrically conducting plastics; software has Java and PHP and 
SQL. All of these specialisations are important, and all feed into the overall success of the 
established branches, and into the successes of software developers.  

Where software development falls short in specialisation is in the most fundamental 
dimension of all: specialisation by artifact. The other dimensions are important, but the 
crucial dimension is specialisation by artifact. Only the specialist in a particular class of 
artifact—motor cars, or dams, or electric motors, or disk drives—can bring together and 
understand all the particular factors that determine the quality of the artifact and its value for 
its designed purpose, and make judicious choices about the interactions of those factors. The 
extent to which engineering rests chiefly on a foundation of science is debatable; but science, 
quite certainly, is not enough, even when expanded into its own branching specialisations. 
The full effects of applicable scientific laws on a particular artifact in the particular situations 
it will encounter are in principle incalculable: the phenomena that might affect the outcomes 
cannot be exhaustively enumerated; nor can their effects be quantified with enough precision 
for the engineer to know with certainty which laws will have the largest effects and will thus 
combine to dominate the outcome. This is why one must not expect a group of physicists, 
however brilliant and however perfect their understanding of the laws of physics, to be able 
to design and build a good motor car or aeroplane or bridge. In this difficulty, only the 
engineer specialised by artifact can address the totality of what the ‘end-user’ of the artifact 
(who may, of course, be another engineer for whose artifact the first engineer’s artifact is 
one of several components) can expect to experience.  

SWEngineering.doc 01/02/2009 Page 6 



Software development does show some specialisations by artifact, but too few of them are 
found in the development of CBSs. For example, one very successful specialisation is in SAT 
solvers, which solve the completely abstract problem of finding an assignment of values to 
variables that satisfies a given predicate; another is in model checking, which is again an 
entirely abstract problem. Others are in compilers, file systems, relational database systems, 
and networking, in all of which the problem world is approximately bounded by the world of 
other software systems and of hardware devices—for example, disk drives—specifically 
designed for high reliability and for interacting conveniently with software. In the 
development of CBSs, there is clear evidence of specialisation in some kinds of computer-
controlled system or subsystem that work very well and very reliably: these probably include 
modern lift-control systems provided by the major manufacturers, ATMs, credit-card 
charging software used by major e-commerce websites, ABS braking systems in cars, and 
others. However, artifact specialisation is more than the production of successful examples: 
it is essentially the product of an evolved culture.  

4. THE GROWTH OF SPECIALISATIONS 

Specialisation is fundamental to intellectual progress. In the earliest stages outstandingly 
able people can master all the existing knowledge of a field. As knowledge increases, 
acquired from experience or from a deepening understanding of an underlying science, the 
sum of available knowledge in the field becomes more than any one person, however able, 
can master. Eventually, each able individual must choose between becoming a generalist, 
who knows less and less about more and more, or a specialist, who knows more and more 
about less and less. In the first half of the 19th century, the great engineer Isambard 
Kingdom Brunel pursued a masterful career as an engineer of railways, bridges and tunnels, 
large ocean liners, artillery pieces, and modular, transportable, military hospitals. Today, 
with the exception of bridges and tunnels, both of which fall within the competence of some 
practising civil engineers, knowledge in each one of these artifact categories has developed 
to a point at which only a specialist can be fully competent: Brunel himself would be unable 
to master them all.  

The pressure to specialise is not felt only by individuals. In fact, is it only in the earliest 
stages that specialisation is the possession of individuals. The touchstone of this kind of 
specialisation is that the artifact knowledge becomes the valued possession of a community 
rather than of individual people. Individual people pursue specialised careers; companies 
specialise their products; there are research journals and educational curricula; there are 
careful descriptions, models, and sometimes even repositories or museums of notable 
exemplars—all of these focused on the design on the specialised artifact classes in question. 
The community works to increase its knowledge and improve the quality of its products, 
often under pressure of competition among individuals or companies within the community.  

For the most part, specialisations emerge in response to commercial opportunities, technical 
opportunities and challenges, and sometimes legal and social pressure arising from a high 
incidence of failures in a particular class of artifacts. The specialisation in compilers arose in 
response to a commercial opportunity of the early 1960s when computer hardware 
architecture was still hugely varied. Some computers used a machine order code in which 
each instruction specified one address; some used two; some used three addresses. Word 
length could be 12, 16, 24, 36, 48 or almost any other even number of bits. There were 
different schemes for structuring and addressing primary and secondary storage; some 
machines had a built-in hardware stack. The manufacturers needed to be able to supply a free 
Fortran compiler to each customer who bought or rented one of their very expensive 
machines. Companies like Digitek and Computer Sciences Corporation saw the commercial 

SWEngineering.doc 01/02/2009 Page 7 



opportunity and rushed to exploit it. Over the next twenty years or more, compiler 
construction became a notable specialisation. Applied theory of grammars, parsing, code 
generation and optimisation developed along with a recognition of the accepted 
decomposition of a compiler: lexical analyser, symbol table, syntax analyser, semantic 
routines to be associated with nodes of the syntax tree, global and peephole optimiser. The 
field has continued to develop: faster machines allow just-in-time compilation and 
compilation to a bytecode for interpretation by a virtual machine; integrated development 
environments integrate compilation into program design, editing, and debugging, along with 
the use of comprehensive module libraries. The result was that compilers eventually 
exhibited high quality and reliability, and were easily capable of compiling programs in 
languages that in earlier years would have been thought impossibly difficult to compile. 

5. THE BENEFITS OF ARTIFACT SPECIALISATION 

In engineering, the primary benefit of artifact specialisation is the emergence, adoption and 
evolution of normal design for the artifacts. Following Constant [Constant80], Vincenti 
describes [Vincenti93] normal design: 

“[Normal design is] the improvement of the accepted tradition, or its application 
under new or more stringent conditions. ... The engineer engaged in such design 
knows at the outset how the device in question works, what are its customary 
features, and that, if properly designed along such lines, it has a good likelihood of 
accomplishing the desired task.  

“A designer of a normal aircraft engine prior to the turbojet, for example, took it for 
granted that the engine should be piston-driven by a gasoline-fueled, four-stroke, 
internal-combustion cycle. The arrangement of cylinders for a high-powered engine 
would also be taken as given (radial if air-cooled and in linear banks if liquid-
cooled). So also would other, less obvious, features (eg, tappet as against, say, 
sleeve valves). The designer was familiar with engines of this sort and knew they 
had a long tradition of success. The design problem—often highly demanding 
within its limits—was one of improvement in the direction of decreased weight and 
fuel consumption or increased power output or both.” 

Normal design in this sense is conspicuous in modern cars, in large passenger aircraft, in 
mobile phones, in television sets, and in many other well designed and reliable artifacts with 
which we are familiar. Certainly, there are differences between one manufacturer’s products 
and another’s, and between this year’s models and last year’s. There are also differences 
between subclasses within one class—in cars, for example, between people carriers and five-
door hatchbacks. But these differences are less significant than the similarities, which have 
emerged from the gradual evolution of normal design and its adoption by the specialised 
engineering communities. 

Vincenti contrasts normal design with radical design: 

“In radical design, how the device should be arranged or even how it works is largely 
unknown. The designer has never seen such a device before and has no presumption 
of success. The problem is to design something that will function well enough to 
warrant further development.”  

A clear example of radical design is Karl Benz’s Patent Motorwagen of 1886, arguably the 
first successful motor car. (A very careful replica of the car has been built, and a good 
selection of photographs is available at [Benz86]). The car was completely open to the 
elements; there were three wire-spoked wheels with solid tyres, and an unsprung single front 

SWEngineering.doc 01/02/2009 Page 8 



wheel; the driver sat in the centre and steered with a small tiller. The engine was started by 
manually turning the large horizontally mounted flywheel; it was lubricated by a drip feed; 
the single crank was unenclosed; the drive to the rear wheels was by belt and pulley, and 
there was no gearbox to vary the ratio of engine speed to road speed. It was a remarkable 
achievement by Benz’s wife, Berta, to drive this car 65 miles from Mannheim to Pforzheim 
in the course of a single day. Benz had succeeded in solving the radical design problem 
exactly as Vincenti characterised it: he had ‘designed something that functioned well enough 
to warrant further development’.  

In the following years, the growing community of specialised automobile engineers 
developed their products to the point at which by about 1920 they could be said to embody a 
normal design: an electric starter for the engine; four sprung wheels, all with pneumatic tyres 
and brakes; a closed cab with the driver sitting on the offside and controlling front-wheel 
Ackerman steering geometry by a raked steering wheel; a standard layout of the drive train, 
including a friction clutch, three-speed or four-speed gearbox, longitudinal propeller shaft, 
and a rear axle casing enclosing a differential driving the rear wheels through half-shafts.  

The successful evolution of a normal design does not mark the end of innovation. On the 
contrary: it provides a stable and dependable foundation on which further innovations can be 
developed. In automobile engineering the last eighty or ninety years have seen continual 
incremental innovation within the established but still evolving normal design. The overall 
vehicle structure has been improved: for example, the separate body and chassis frame have 
been replaced by a unitary pressed steel body that combines the functions of both, and the 
front beam axle has been replaced by independent front suspension. Individual components 
and subsystems have been improved by the introduction of tubeless tyres, automatic 
gearbox, fuel injection and many other new features.  

6. THE CONTENT OF NORMAL DESIGN 

‘Design’, of course, is both a noun and a verb. The phrase ‘normal design’ denotes both the 
standard configuration and component structure of the designed artifact in its particular 
class, and also the practical disciplines that its designers are expected to follow in developing 
each new instance of the class. These practical disciplines do conform to some very general 
notions of engineers’ responsibilities that are common to all or most engineering branches, 
and they rest on a common basis of scientific knowledge of the physical world; but their 
most significant practical content is special to each product class and is largely focused on its 
component structure at all levels.  

This is what makes possible the reliable division of a design project among a group of 
several designers.  Vincenti outlines parts of the typical project structure in aeroplane design 
as “Major-component design—division of project into wing design, fuselage design, 
landing-gear design, electrical-system design, etc” and “Subdivision of areas of component 
design ... according to engineering discipline required (eg aerodynamic wing design, 
structural wing design, mechanical wing design).” This project structuring is, of course, 
closely tied to the normal product structure. While some details of the decomposition into 
work assignments may be open to doubt, the general shape is clearly mandated by the 
normal design.  

The central point here, which deserves repetition, is this: the decomposition of artifact 
functionality in a normal design is not ad hoc. Parnas rightly identified [Parnas78] the 
importance of “the decomposition of programming projects into work assignments 
(modules).” In a normal design discipline this decomposition is already broadly known, and 
the assignment of the components to individuals or groups is likely to be determined by their 
known specialisations at the component level. Any significant departure from the established 

SWEngineering.doc 01/02/2009 Page 9 



decomposition into components arranged in the standard configuration, is to be recognised 
as an innovation, and as the introduction of an element of radical design that inevitably 
brings with it an increased risk of failure.  

The development work within each part of the project is quite tightly constrained by the 
standard, normal, design. In extreme cases the designer is choosing from a small set of 
design options and fixing parameters from a well-defined range. The chosen design must be 
validated, eventually by testing, but in the earlier design stages by analysing the properties of 
each successively proposed design version to determine whether the choices it embodies 
would enable the design to satisfy its requirements. This analysis is typically mathematical, 
and rests on two foundations: one is scientific knowledge of the physical phenomena 
involved; the other is a set of known procedures for sufficiently accurate analysis of 
significant properties of versions that fall within the bounds of the established normal 
design. Without the scientific knowledge, reliable analysis is impossible; it may also be 
impossible if the design to be analysed is unprecedented and arbitrarily chosen. Theoretical 
scientific knowledge is concerned with physical phenomena such as mechanical forces and 
chemical processes acting in isolation. Engineering requires a good enough understanding of 
specific situations and artifacts in which, inescapably, many different forces and processes 
are at work. This good enough understanding can be achieved only by analytical models 
which are simultaneously good enough approximations to the enormously complex reality 
and also tractable by the available mathematics and science. It is a crucial characteristic of 
normal designs that they are susceptible of adequate standard analysis in this way. 

7. CBS COMPONENT STRUCTURE 

In developing, understanding, or analysing a CBS, it is necessary to consider the machine—
the computer or computers executing the developed software—not alone, but in conjunction 
with the problem world domains—the other parts of the whole system. The end product of 
the software development is not the software alone: it is the machine and the problem world, 
and the behaviour that is the product of their interactions. From the point of view of the 
whole system, the machine makes sense only in its role of monitoring and controlling the 
problem world. Without knowledge of the problem world and the requirement, the machine 
must appear as an entirely arbitrary device, imposing an inexplicably obscure regime on the 
electrical and magnetic phenomena at its ports.  

The same perspective is necessary when we consider the decomposition of a CBS into its 
constituent components. A component of a CBS is not a software module, a fragment of the 
machine in the system: it is an assemblage whose parts are a fragment of the machine, a 
fragment of the problem world, and a fragment of the system requirement. Conceptually, 
each component has its own machine, interacting with some subset of the problem domains 
in the physical world and responsible for satisfying some part of the requirement of the 
whole system. The problem domains of the components are not, in general, disjoint: each 
domain can play different roles in different components, each of the components depending 
on different properties of all or part of the same domain. (This multiplicity of roles of a 
problem world domains is no different in a car. Different properties of the earth’s 
atmosphere play their parts in the functioning of the tyres, the engine cooling system, the air 
conditioning, the fuel injection and combustion, and the aerodynamic performance of the 
body.)  

Nor are the component machines themselves likely to remain disjoint in the software as it is 
finally implemented: in addition to communicating by shared problem domains, they will 
need to communicate within the machine, and they will certainly contend for shared 
computer resources such as RAM and disk access. Furthermore, software is intangible and 

SWEngineering.doc 01/02/2009 Page 10 



malleable, and component machines can be dismembered, recombined and reconstituted 
almost at will. The system requirement, also, is decomposed into requirements of the 
individual components. This decomposition, too, is not disjoint: the component requirements 
can interfere with each other in many ways, including cooperation, but not excluding 
outright conflict. 

The general conception of such components can be illustrated, superficially, in the context of 
a system to control the lifts in an office building. The overall purpose of the system is to 
provide convenient, efficient and safe lift service in response to users’ requests. The 
requirement of convenience and efficiency can be separated from the requirement of safety. 
The lift_service component operates the electrical and mechanical equipment to provide 
service in response to users’ requests. The lift_safety component continually monitors the 
behaviour of the equipment, including its reactions to the commands issued by lift_service, 
to detect any evidence that the equipment has developed a fault, whereupon the lift_safety 
component ensures user safety, for example, by applying the emergency brake to lock the lift 
in the shaft to prevent it from falling freely. Another component, lobby_display, may be 
responsible for maintaining the display in the ground floor lobby that shows the current 
positions of the lifts. 

We may also suppose that for convenience and efficiency it is necessary to apply different 
priorities at different times—for example, distinguishing the traffic demand patterns of 
weekends from weekdays, and weekday morning, evening and lunchtime rush hours from 
other times. The priorities must be specified by the building manager, changed when 
necessary, and appropriately applied by the machine in scheduling responses to competing 
requests. In a decomposition of our original lift_service component, we may now recognise 
two components: edit_priority, which is the specification and editing of priority schemes by 
the manager, and priority_lift_service, which is the provision of lift service in accordance 
with the currently chosen scheme. These two components share a newly introduced domain: 
the data structure schemes, whose values represent the edited priority schemes.  

For the whole system, the schemes data structure is a local variable of the undecomposed 
machine; but for each of the two components, it is a part of the component’s problem world. 
The problem domains for edit_priority are manager and schemes; for priority_lift_service 
they are schemes together with the electrical and mechanical lift equipment, the request 
buttons, the floors and the users. Introducing the schemes data structure has allowed the 
priority_lift_service function to be decoupled from the edit_priority function. The 
introduction of the data structure exploits the characteristic power of computers to store and 
manipulate data. Its introduction is analogous to the introduction of the propeller shaft in a 
car with front engine and rear wheel drive. The propeller shaft both connects and decouples 
the engine and rear axle components. It separates the function of converting fuel energy into 
rotary motion from the function of applying rotary motion to the wheels; it also forms a 
common subcomponent, conveying the rotary motion from one to the other. 

This briefly sketched decomposition also illustrates how the same problem domain plays 
different roles in different components, the components relying on different—and even 
mutually contradictory—domain properties. For example, for the priority_lift_service 
component the lift equipment must be assumed to be functioning correctly: when the 
machine sets the direction up and turns the motor on, the lift rises in the shaft; when the lift 
car reaches a floor the corresponding floor sensor is set on; and so on. These are the 
properties necessary for provision of the service to users. For the lift_safety component, 
however, the lift equipment may possibly be faulty, and its various failure modes are 
associated with phenomena that the machine can monitor: if the motor is not functioning, the 
lift car does not rise when expected, and the floor sensor at the departure floor remains set 
on; if the hoist cable has broken the lift moves downwards at increasing speed; and so on. 

SWEngineering.doc 01/02/2009 Page 11 



The lift_safety component is concerned with the whole range of equipment faults, all of 
which the priority_lift_service component properly ignores. The decomposition allows the 
different properties of each problem domain to be considered in the design of the component 
to which they are relevant.  

This approach to CBS decomposition is the central theme of the problem frames technique 
[Jackson00]. It is radical in two ways. First, it is radical because it aims to address, 
explicitly, questions that lie at the root of the system and its requirement. What is the 
system’s purpose? How can this purpose be structured for clearer understanding? How can 
different purposes be composed and, if necessary, reconciled? What monitoring and control 
behaviour must the machine exhibit for each individual purpose? How can these  behaviours 
be composed into a coherent overall behaviour? The approach aims to allow the developer to 
address these questions without premature concern for the eventual programming and 
implementation of the component machines. 

Second, it is radical because it is geared to the needs of radical, rather than normal, design. 
That is, its primary use is as a tool for the developer who does not already know how to 
solve the problem. If the problem is already the object of a normal, accepted, artifact design,  
the questions asked by the problem frames approach should already been addressed, and 
satisfactory answers embodied, by the normal design: they should not be asked again for the 
design task in hand. The developer of a system embodying a subproblem that perfectly fits 
the assumptions of the normal Model-View-Controller pattern should not reconsider the 
design from first principles: a satisfactory design is already available. The designers of the 
earliest motor cars tried many different positions for the driver: sitting sideways; sitting on 
the near side; sitting in the cente; even perched high at the back of the car, like the driver of a 
horse-drawn hansom cab. A designer today who considers anything other than the standard 
position—in the front on the off-side, facing forwards—would be engaging in gratuitously 
radical design, ‘rethinking the motor car’, or designing a ‘concept car’, aiming to question 
the established standard design rather than to accept and exploit it. The consequences of such 
an innovation cannot be dependably predicted. 

The radical character of the approach does not disqualify it completely, even if the design 
task is substantially normal. As Vincenti says [Vincenti93] of aircraft design:  

“Whether design at a given location in the [component] hierarchy is normal or radical 
is a separate matter—normal design can (and usually does) prevail throughout, 
though radical design can be encountered at any level.” 

One place in software development where radical design tasks are commonplace is in the 
composition of components. Even if the components themselves are objects of normal 
design, their composition may pose an entirely new problem.  

8. COMPOSITION OF THE COMPONENTS 

Karl Benz’s radical design of 1886 was a remarkable achievement. He had solved many 
difficult problems in the development of the components, especially in refining the design of 
the petrol engine that drove the car, with its inlet and exhaust valves, carburettor and high-
voltage ignition, and of the differential gear by which power was distributed to the two 
driven wheels. He was also remarkably successful in arranging all the components together 
in the space behind the bench seat, finding room for the large horizontal flywheel in a 
position that allowed the driver to grip the rim and pull it round to start the engine. The result 
of his work [Benz86] conveys a striking sense of improvisation; but it is brilliantly inventive 
and successful improvisation. 

SWEngineering.doc 01/02/2009 Page 12 



Designing the composition is not, of course, independent of the design of the individual 
components to be combined, but it can be considered a distinct, though related, problem; in a 
more complex component hierarchy, it is not one but several design problems. An important 
question for any design procedure is: Which of the two tasks—component and composition 
design—should be carried out first? Or should they proceed wholly or partly in parallel?  

In a fully evolved normal design the standardised content of the design embraces both the 
individual components and their compositions. Further, the interfaces that implement the 
composition designs have been integrated into the design of the components to be composed. 
In a modern car, for example, almost every interface between two directly interacting 
components consists of a unique design in two mating parts, one on each of the interacting 
components: for example, the exhaust and inlet manifolds fit exactly to the corresponding 
locations on the engine block, sharing a flat surface, and the engine crankshaft is connected 
to the transmission by matching internal and external splines. In the evolution of the normal 
design the components have evolved, not only to fulfil their individual functions, but also to 
fit more efficiently and exactly with each other. The designer working on a car of normal 
design has no more need to ponder how the exhaust manifold should be connected to the 
engine than to consider whether five wheels might be better than four.  

In radical design, by contrast, the individual components are not well understood at the 
outset, and the problems that will be posed by the design of their composition cannot be 
reliably anticipated. It makes sense, therefore, to postpone consideration of the compositions 
until more is known about the components themselves. The danger that some rework of 
components design will be needed in the light of the composition design may be judged less 
than the danger that a top-down design approach will set inappropriate or even impossible 
contexts for the component designs. Richard Feynman [Ferguson92] contrasted top-down 
with bottom-up design:  

“In bottom-up design, the components of a system are designed, tested,  and if 
necessary modified before the design of the entire system has been set in concrete. 
In the top-down mode (invented by the military), the whole system is designed at 
once, but without resolving the many questions and conflicts that are normally 
ironed out in a bottom-up design. The whole system is then built before there is time 
for testing of components. The deficient and incompatible components must then be 
located (often a difficult problem in itself), redesigned, and rebuilt—an expensive 
and uncertain procedure.”  

Premature composition may carry another, larger, penalty than the danger that it will distort 
the design of the components. The chosen nature of the composition itself may be heavily 
dependent on the exact functions of the components. In the lift control system, for example, 
it is necessary to compose the edit_priority and the priority_lift_service components. Either 
on explicit command of the building manager, or at a point specified by the new priority 
scheme itself, lift service must switch from the current scheme to the new one. The design of 
this switching composition will depend on the nature of the permissible schemes. For 
example, consider two possible forms of priority scheme.  

The first scheme specifies relative weights to be assigned to each request as a function of the 
request time, the direction and the floor at which it was issued. Switching between two 
schemes of this form is relatively straightforward: the old weights already assigned to 
unsatisfied requests are retained; new assignments will use the new weights. The chief 
composition concern is then to respect the necessary mutual exclusion between reading the 
old and writing the new scheme into the local store of the priority_lift_service machine. It 
will be relatively easy to show that the new priorities will take effect incrementally as the 
outstanding requests carrying the old weights are satisfied.  

SWEngineering.doc 01/02/2009 Page 13 



The second scheme specifies what is in effect an iterative algorithm of the scheduling 
procedure. Each lift or bank of lifts is assigned to a subset of the floors—for example, to 
provide express service for heavily used upper floors. Switching between two schemes of 
this second form is probably more complex. The composition must not only respect the 
necessary mutual exclusion; it must also such concerns as the treatment of a case in which a 
lift is currently serving a floor under the old schedule to which it is not assigned under the 
new schedule. There is much more here than mutual exclusion. If the switchover is not 
properly designed, there may be such troublesome results as ignored requests issued at a 
floor, failure to deliver a passenger already in the lift to the floor requested, or even, 
conceivably, deadlock of the scheduling system when the scheduling system encounters a 
state in which its behaviour is unspecified. Essentially, the switchover must take place at a 
point in the execution of the old scheme at which the invariant of the new scheme is also 
satisfied.  

It is also necessary to design the composition of the priority_lift_service with the lift_safety 
component. Here there is a  clear conflict between the two components’ requirements. When 
a fault is detected while there are outstanding requests, priority_lift_service is required to 
service the requests, but lift_safety may be required to lock the lift car in the shaft, 
preventing further movement, or to take some other, less dramatic, action such as forcing the 
return of the car to the next floor, opening the doors, and preventing further movement after 
that. When lift_safety detects a fault requiring action, the function of priority_lift_service is 
no longer required, and it is necessary to consider how the system can switch from service 
mode to safety-action mode.  

In summary, the design of a composition will often be most effective in the light of a 
substantial degree of understanding of the components in their initial, uncomposed, forms.  

9. LEARNING FROM FAILURE 

The capacity to learn from failures is a hallmark of the established engineering branches. As 
Henry Petroski writes [Petroski94]:  

“Engineering advances by proactive and reactive failure analysis, and at the heart of 
the engineering method is an understanding of failure in all its real and imagined 
manifestations.” 

Since failures in the products of the established engineering branches are usually extremely 
expensive, and often involve actual or potential loss of life, they are frequently examined 
with the greatest care, and major efforts made to identify the lessons to be learned. Well 
known examples of such disasters include the 1940 collapse of the Tacoma Narrows Bridge 
[Holloway99], the mid-air break-up of several Comet 1 aircraft in the early 1950s [Levy92, 
RAE54], the failure of the Ariane-5 launch in 1996 [Lions96], and the severe injury or death 
of several patients treated with the Therac-25 radiation therapy system [Leveson93].  

The lessons that can be learned from engineering failures are most effective when they are 
highly specific: lessons that can be associated with a specific design fault in a normally 
designed artifact are arguably the most effective of all. At first sight, it may seem that more 
general lessons, being more widely applicable, can spread their benefit more widely. 
However, generality carries a serious disadvantage. A lesson that applies to everything 
applies to nothing: even when explicitly articulated in a disaster enquiry report it is likely to 
add only a grain of additional  emphasis to what was already known to be good general 
practice. If the lesson is “documentation should not be an afterthought,” few software 
developers (except perhaps adherents of some of the various schools of agility) would deny 

SWEngineering.doc 01/02/2009 Page 14 



its truth; but a lesson like this is blunted by endless repetition until it ceases to be heard at 
all.  

The lessons from the Tacoma Narrows and Comet disasters, by contrast, were very specific 
and affected engineering design quite specifically. The Tacoma Narrows Bridge collapsed 
because a moderate wind, of about 40mph, provoked vertical oscillation in the bridge’s very 
slender roadway. The oscillations built up quickly, and in a very short time destroyed the 
bridge completely. The lesson learned was specifically about suspension bridge roadways 
and the aerodynamic effects to which they are subject: the roadway was not stiff enough to 
resist the wind-induced oscillation. The associated lesson about the normal design procedure 
was clear: the designer, Leon Moisseiff, had made the mistake of taking account of 
horizontal, but not of vertical, oscillation. After the disaster, its lessons were taken to heart. 
Steps were taken to strengthen other bridges whose roadways were thought to be too slender 
or too shallow. The normal design discipline for suspension bridges changed: designers were 
subsequently expected to check explicitly for vertical roadway oscillation. 

 In the case of the Comet 1, the aircraft broke up because of metal fatigue. In an enormously 
expensive investigation, pieces of one of the destroyed aircraft were recovered from the sea 
bed and reassembled in a hangar in a research establishment. The tentative results of that part 
of the investigation were then confirmed by destructive tests on another sample of the same 
design. The investigation showed that the cause was metal fatigue in the fuselage, and that 
the fatigue cracks had started at the corners of the square passenger windows. Again, the 
normal design, in this case, of pressurised jet aircraft, was specifically modified: no such 
aircraft today has square corners in the passenger windows or cargo apertures. The normal 
design discipline, too, was affected. It was recognised that fuselage tests for torsional rigidity 
and for resistance to pressurisation and depressurisation must be carried out in combination: 
separate testing had been proved insufficient.  

The Tacoma and Comet investigations were concerned with failures of the physical fabric of 
the engineered products. When the failure is attributable to software, it is harder for the 
investigation to reach very specific conclusions and to offer very specific lessons. Partly, this 
is because software failures, unlike physical failures, often leave no trace in the resulting 
wreckage. As Donald MacKenzie writes [MacKenzie94]:  

“A more particular problem concerns what this data set suggests are the two most 
important ‘technical’ causes of computer-related accidental death: electromagnetic 
interference and software error. A broken part will often survive even a catastrophic 
accident, such as an air crash, sufficiently well for investigators to be able to 
determine its causal role in the sequence of events. Typically, neither 
electromagnetic interference nor software error leave physical traces of this kind. 
Their role can often only be inferred from experiments seeking to reproduce the 
conditions leading to an accident.” 

Of equal, or perhaps greater, importance, is the fact that in most cases the software under 
investigation was not the object of normal design. The investigators, even when they can 
identify defects in the software as a contributory cause of failure, cannot express their 
conclusions in sufficiently specific terms to be confident of affecting either the usual design 
practices or an identifiable, currently accepted, standard design that has proved dangerous. 
Instead, they must content themselves with generalities that, if the truth is told, are unlikely 
to have a substantial effect. The case of the Ariane-5 launch, whose failure was entirely 
attributed to software error, is to some extent an exception. The investigation conclusions 
contained some general recommendations such as “Include external participants in reviews” 
and “Pay the same attention to justification documents as to code;” but they also included 
some quite specific recommendations for designers of software of the Ariane-5 class: 

SWEngineering.doc 01/02/2009 Page 15 



“•  Failing sensors should not cease to transmit, but should send best-effort data. 
•  Alignment functions should be switched off immediately after lift-off. 
•  Design of the switchover between on-board computers needed more care. 
•  More data should be sent to telemetry on any component failure. 
•  Trajectory data should be included in specifications and in test requirements.” 

These specific recommendations are possible only because the terms used—‘failing sensors’, 
‘alignment functions’, ‘computer switchover’, ‘data sent to telemetry’, and ‘trajectory 
data’—have specific meanings, referring to specific parts of their designs, that designers 
working on this class of software will certainly understand.  

The Therac-25 disasters also were essentially attributable to software failures. In their 
excellent unofficial investigation [Leveson93] of these failures, Nancy Leveson and Clark 
Turner identified specific software errors that had certainly played a major, or even decisive, 
role in the failures. Yet, in the absence of even a vestigial normal design for software to 
control radiation therapy equipment, they were compelled to content themselves with 
identifying ‘basic software engineering principles that apparently were violated with the 
Therac-25’:  

“•  Documentation should not be an afterthought. 
•  Software quality assurances practices and standards should be established. 
•  Designs should be kept simple. 
•  Ways to get information about errors—for example, software audit trails—should 
be designed into the software from the beginning. 
•  The software should be subjected to extensive testing and formal analysis at the 
module and software level: system testing alone is not adequate.”  

A reiterated general principle has value, especially when its application is in the hands of 
managers who can mandate improvements in development practice; but its effect for a 
practising design engineer is dissipated by its very generality. It calls for a degree of culture 
change across the whole range—or, at least, across an unspecified segment—of software 
development, and a quality change across the whole range of designed software. For a 
pratcising engineer, a lesson directly associated with a specific design artifact has a more 
restricted, but far stronger and more certain effect. That can be seen today by every airline 
passenger, in the frustrating rounded shape of the window that obscures the view of the 
terrain over which they are flying. Unlike too many software design mistakes, the design 
mistake of square corners for aeroplane windows has not been repeated.  

10. HARDER AND SOFTER CBSS 

What may be called the ‘softer’ CBSs are concerned with business and administration—
which are primarily human activities—rather than with lift equipment and radiotherapy 
devices and chemical plants. For these systems the emphasis on the physical world, as the 
basis for suggesting analogies with the established branches of engineering, may seem 
misplaced.  

Not so. It is true that such systems are rarely safety-critical; and in most cases some part of 
the required functionality may be very loosely textured and imprecise, admitting wide 
variations in quality and exactness without causing failure or even significant difficulty. For 
example, some of the functionality in an e-commerce system may be of this kind. If the 
collaborative filtering doesn’t work well, or the purchase recommendations offered to 
regular customers are poorly calculated, the company will make less profit than it could, but 
otherwise no great harm is done. But this kind of looseness is exceptional. Some softer CBSs 

SWEngineering.doc 01/02/2009 Page 16 



are definitely safety-critical: for example, a system to maintain criminal records and make 
them available to the appropriate authorities in the appropriate circumstances; or a system to 
manage the prescription and delivery of patients’ drugs in a large hospital. The core of the 
functionality in a softer CBS is no less demanding for the software developer than the core 
functionality in a ‘harder’ system: the system that the hospital pharmacist finds difficult, 
inconvenient and confusing to use is exhibiting exactly the same kind of defect as the 
avionics system that is ill-adapted to the needs of the pilot.  

The characteristic difficulty in the design of any CBS arises because the problem world—
whether a hospital pharmacy or an aeroplane—is not a formal system. This, above all, 
distinguishes a CBS from a program whose function is to compute about a formal abstraction, 
untainted by a real semantics in the non-formal, physical and human world. An innovative 
program to factorise very large integers, for example, is not concerned with the purpose of 
the factorisation, or with what the integers may denote. It is concerned with pure 
mathematics, in the sense explained [Weyl40] by Hermann Weyl: 

“We now come to the decisive step of mathematical abstraction: we forget about 
what the symbols stand for. [The mathematician] need not be idle; there are many 
operations he may carry out with these symbols, without ever having to look at the 
things they stand for.” 

In dealing with the integers, which are a mathematical domain, we can state exact theorems 
to which there are no exceptions. For example: “If the sum of the digits of an integer’s 
decimal expression is evenly divisible by 3, then the integer itself is evenly divisible by 3.” 
There is no approximation here, and no exceptions. By contrast, if we try to state a theorem 
about the behaviour of the lift equipment we will find that it must always be hedged around 
with caveats: the power supply may be interrupted; a sensor may stick on; the drive gears 
may be worn; the hoist cable may break. The same is true, for example, of the problem 
world of a system to administer social benefits: a recipient may change gender; a benefit 
payment sent by post may be delayed or lost; an immigrant recipient may have no birth 
certificate and be unable to state their date of birth; there may be family relationships 
between recipients that do not conform to the assumptions on which the entitlement 
regulations were framed. It is never possible to exhaust the problem world’s capacity to 
produce new counterexamples to the assumptions on which the system design is based.  

Dealing adequately with the problem world of any CBS, then, is not a matter of discovering 
and proving formal theorems. Rather, it is a practical matter of constructing descriptions that 
are formal enough to allow tentative formal reasoning and analysis, and close enough to the 
problem world reality to accommodate all eventualities except those that have a tolerable 
combination of low occurrence probability and limited consequential damage. This practical 
necessity is close—though not identical—to the necessity that bears on engineers in the 
established branches. In both softer and harder CBSs, the development of artifact 
specialisation, with the evolving normal design that each artifact specialisation supports, 
must play the central role in addressing this practical engineering necessity. As a normal 
artifact design evolves, it comes to accommodate more and more of the important 
eventualities in its problem world as lessons are learned from failures.  

11. A CONCLUDING PERSONAL REMARK 

In this paper much has been said about the practice of engineering in the traditional 
branches. The reader should not infer that the author has either the education or the practical 
experience of an engineer. What is asserted here about engineering is drawn, often very 
directly, from the statements of those engineers who have written about their profession for a 

SWEngineering.doc 01/02/2009 Page 17 



non-professional readership. Foremost among them is Walter Vincenti. His deep and 
brilliant book, What Engineers Know and How They Know It, should be required reading for 
all thoughtful software engineers. Its lessons, drawn from aeronautical engineering in the 
period from the earliest years to the arrival of the turbojet revolution in the later 1940s, are 
not exhausted after many readings. I remain very grateful to Tom Maibaum for introducing 
me to this book several years ago.  

Acknowledgements 

Daniel Jackson and Mary Shaw kindly read an earlier draft of this paper and made several 
very helpful suggestions for improvements.  

References 
[Benington56]  H D Benington; Production of Large Computer Programs; in Proc ONR Symposium 

on Advanced Program Methods for Digital Computers, June 1956, pages 15-27. Reprinted with 
additional comment in IEEE Annals of the History of Computing, Volume 5 Number 4, October 
1983, pages 299-310.  

[Benz86]  http://www.conceptcarz.com/vehicle/z10986/Benz-Motorwagen-Replica.aspx (accessed 
23 October 2008). 

[Buxton70]  J N Buxton and B Randell eds; Software Engineering Techniques; Report on a 
conference sponsored by the NATO SCIENCE COMMITTEE, Rome, Italy, 27th to 31st October 
1969; NATO, April 1970. 

[Caminer97]  David Tresman Caminer OBE; LEO and its Applications: The Beginning of Business 
Computing; Computer Journal Volume 40 Number 10, pages 585-597, 1997. 

[Constant80]  Edward W Constant; The Origins of the Turbojet Revolution; The Johns Hopkins 
University Press, Baltimore 1980. 

[Everett83]  Robert R Everett, Charles A Zraket, Herbert D Benington; SAGE—A Data Processing 
System for Air Defense; IEEE Annals of the History of Computing, Volume 5 Number 4, pages 
330-339, Oct-Dec, 1983. 

[Ferguson92]  Eugene S Ferguson; Engineering and the Mind’s Eye; MIT Press, 1992. 
[Holloway99]  C Michael Holloway; From Bridges and Rockets, Lessons for Software Systems; 

Proceedings of the 17th International System Safety Conference, Orlando, Florida, pages 598-607, 
August 1999. 

[Humphrey00]  W S Humphrey; The Personal Software Process: Status and Trends; IEEE Software 
Volume 17 Number 6, November/December 2000, page72. 

[Jackson82]  M A Jackson; Software Development as an Engineering Problem; in Angewandte 
Informatik 2/82, pages 96-103; Vieweg & Sohn, February 1982.  

[Jackson00]  Michael Jackson; Problem Frames: Analysing and Structuring Software Development 
Problems; Addison-Wesley, 2001.  

[Kraft77]  Philip Kraft; Programmers and Managers: The Routinization of Computer Programming 
in the United States; Springer-Verlag, 1977, pages 57-58.  

[Leveson93]  Nancy G Leveson and Clark S Turner; An Investigation of the Therac-25 Accidents; 
IEEE Computer Volume 26 Number 7, pages 18-41, July 1993. 

[Levy92]  Matthys Levy and Mario Salvadori; Why Buildings Fall Down: How Structures Fail; W W 
Norton and Co, 1992.  

[Lions96]  ARIANE 5 Flight 501 Failure; Report by the Inquiry Board; The Chairman of the Board: 
Prof. J L Lions; Paris 19 July 1996; available at: 
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html (accessed 23 October 2008). 

[MacKenzie94]  Donald MacKenzie; Computer-Related Accidental Death: An Empirical 
Exploration; Science and Public Policy Volume 21 Number 4, pages 233-248, 1994. 

SWEngineering.doc 01/02/2009 Page 18 



[Naur69]  Peter Naur and Brian Randell eds; Software Engineering: Report on a conference 
sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October 1968; 
NATO, January 1969. 

[Parnas78]  D L Parnas; Some Software Engineering Principles; in Structured Analysis and Design, 
Infotech, 1978. 

[Petroski94]  Henry Petroski; Design Paradigms: Case Histories of Error and Judgment in 
Engineering; Cambridge University Press, 1994. 

[RAE54]  Royal Aircraft Establishment; Report on Comet Accident Investigation; Ministry of 
Supply, 1954. 

[Rogers83]  G F C Rogers; The Nature of Engineering: A Philosophy of Technology; Palgrave 
Macmillan, 1983; (ISBN: 0333347412). 

[Shaw90]  Mary Shaw;. Prospects for an Engineering Discipline of Software; IEEE Software, 
November 1990, pages 15-24.  

[Vincenti93]  Walter G Vincenti; What Engineers Know and How They Know It: Analytical Studies 
from Aeronautical History; The Johns Hopkins University Press, Baltimore, paperback edition, 
1993.  

[Weyl40]  Herman Weyl; The Mathematical Way of Thinking; address given at the Bicentennial 
Conference at the University of Pennsylvania, 1940. 

SWEngineering.doc 01/02/2009 Page 19 


