Editor: Suzanne Robertson

PequIrements

The Atlantic Systems Guild

suzanne@systemsguild.com

0740-7459/04/$20.00 © 2004 IEEE

Requirements engineering experience shows that failure to look at all aspects of the prob-
lem space results in missing or incorrect requirements. Michael Jackson provides a sys-
tematic approach for identifying which parts of the world require your attention, along
with some easily applied heuristics for discovering whether you’ve looked far enough.

equirements engineers must look hard

at the world. Peter Neumann’s risks

forum (ftp.sri.com/risks) has a long

list of failures in software-based sys-

tems—some catastrophic, some seri-

ous, and some just inconvenient.
Many are due to faults in the system’s func-
tional requirements.

Here’s one catastrophic exam-
ple. A US soldier in Afghanistan
used a Precision Lightweight GPS
Receiver—a “plugger”—to set co-
ordinates for an air strike. He then
saw that the “battery low” warn-
ing light was on. He changed the
battery, then pressed “Fire.” The
device was designed, on starting or
resuming operation after a battery
change, to initialize the coordinate
variables to its own location. The resulting
strike killed the user and three comrades.!

It’s hard to avoid defects in functional re-
quirements. After a major failure, it’s usually
easy to see where you should have paid more
attention and exercised more care, but it’s not
so obvious while you’re developing the system.
There are so many places to look, especially if
you don’t know what you’re looking for.
There’s no easy answer for this problem.

Keeping it simple
One classic answer is, Keep It Simple. In his
Turing Award lecture, Tony Hoare said,

—Suzanne Robertson

“There are two ways of constructing a soft-
ware design: One way is to make it so simple
that there are obviously no deficiencies, and
the other way is to make it so complicated that
there are no obvious deficiencies.”?

This is a good reason to keep your require-
ments descriptions as simple as possible. You
should be reluctant, for example, to use UML
2.0’s new, improved sequence diagram struc-
tures, which give you—in effect—an extraor-
dinarily complex programming language. Use
it and your requirements will certainly be com-
plicated enough to have no obvious deficien-
cies. But that’s hardly what you want.

Achieving this kind of simplicity isn’t
enough in itself to reduce the faults in your
functional requirements. The difficulty is that
requirements aren’t about the software but
about the problem world, which is always po-
tentially complex, even for a system whose
software is itself quite simple.

The world and the machine

Let’s be specific. For an e-commerce system,
the problem world is the business organiza-
tion, its customers, suppliers, warehouses,
product and fulfillment subcontractors, the
credit-card companies, and so on. For an ele-
vator control system, the problem world is the
lift shafts, the cars, the winding gear, the but-
tons, the floors, the passengers, the doors, and
more. For a welfare agency system, the prob-
lem world is the welfare recipients, their fami-

Published by the IEEE Computer Society I1EEE SOFTWARE 83

lies, activities and entitlements, any
other agencies they deal with, the gov-
ernment department that provides the
funds, the postal service, the agency’s
local offices and staff, and so on.

The problem world interacts with
the machine at the machine-world in-
terface, where they meet. For the e-
commerce system, they meet at the cus-
tomers’ browsers and at the ports
where EDI (electronic data inter-
change) messages are exchanged with
suppliers and credit-card companies.
For the elevator system, this is where
the computer’s ports are connected to
the elevator equipment’s sensors and
actuators. For the welfare agency, it’s
at the ports where EDI messages are
exchanged with banks, at the PCs in lo-
cal offices where staff interact with the
central computers, and at the printers
where letters are printed that will be
posted to welfare recipients.

Requirements engineering must fo-
cus on the problem world from two re-
lated perspectives. Outer requirements
describe the effects the stakeholders
would like to experience in the problem
world. Waiting elevator passengers
want the lift to come when they press a
call button. The e-commerce customers
want to be able to order goods and
have the right ones delivered, and the
company wants to manage its inventory
efficiently and receive payment. The
welfare agency wants to pay out the
correct benefits, and the recipients want
to receive their welfare checks and clear
statements of their entitlements.

Inner requirements specify how the
machine should behave at the machine-
world interface to ensure that the
whole system satisfies the outer re-
quirements. Software design and pro-
gramming make the machine behave
this way, but choosing, designing, and
specifying the behavior is the vital sec-
ond part of requirements engineering.

We distinguish inner from outer re-
quirements because the stakeholders’
requirements are scarcely ever located
at the machine-world interface. Al-
most always, some inherent problem
world properties—some causal chains,
some intermediate behaviors—sepa-

84 IEEE SOFTWARE

www.computer.org/software

rate inner from outer requirements.
The elevator controller can send the
car to a floor only because the motor
and the winding gear respond a certain
way to machine outputs, and the sen-
sors react a certain way to a car trav-
eling in the lift shaft. The e-commerce
customer can receive the ordered
goods only because the fulfillment sub-
contractor responds in a certain way
to EDI messages coming from the e-
commerce system. The welfare recipi-
ents can receive their checks only be-
cause the banking and postal systems
operate in a certain way.

Adopting or rejecting a
systematic method

A systematic way to address inner
and outer requirements and their rela-
tionship is to separate the output of
your requirements engineering work
into three distinct but related parts. In
the first part, you capture the outer re-
quirements; in the second, you capture
the problem world properties that let
the machine guarantee the require-
ments; in the third, you specify the in-
ner requirements—that is, the machine
behavior that’s needed at the interface.
Then you can show—perhaps even by
formal reasoning—that if the machine
has the specified behavior and the
problem world has the properties you
describe, the whole system will satisfy
the requirements. You don’t necessarily
have to do this for the whole system;
you can do it for just one critical part.

However, you’re probably not going
to do it at all, for reasons good or bad.
Perhaps you’re doing what Walter Vin-
centi® calls normal rather than radical
engineering. The system might be criti-
cal, but the inner and outer requirements
and the problem world properties are all
familiar, as is the structure and content
of the software you must build. Perhaps
your project is small and has low value
and low risk; if you can’t build it quickly
and cheaply it’s not worth building at all.
Perhaps you’ve been convinced by an ad-
vocate of agile methods that careful doc-
umentation and reasoning are merely
“ceremonial’—what Walter Bagehot
would have called the “dignified” rather

than the “efficient” parts of system de-
velopment.* Or perhaps you’re just
ready for a small improvement in your
approach to development, not a funda-
mental change.

Without being fully systematic, you
can still improve matters significantly
by reviewing your requirements in an
informal way. The idea is to try to find
some of the functional requirements’
faults before they emerge as failures in
system operation. Here are a few
heuristics—rules of thumb to help you
find what you’re looking for—that can
help you see possibilities in the prob-
lem world that you might have missed.

Abandoned interaction

Start from a use case, or even from a
piece of code, describing the machine’s
behavior in a compact episode of inter-
action with another party—a user, an
operator, or another system. What hap-
pens if the other party abandons the in-
teraction? In one e-commerce system,
customers register by entering an email
address on the first page, repeated for
confirmation; they then enter additional
personal information on the second
page. A would-be customer who takes a
coffee break while completing the sec-
ond page gets an unpleasant surprise:
the system times out, leaving an incom-
plete record keyed to the email address.
Any further attempt to register is re-
jected because an incomplete registra-
tion already exists at the given email ad-
dress. The abandoned registration can
be neither bypassed nor completed.

Use case sequence

Start from any set of use cases with
an actor or some other entity in com-
mon. What sequences of those use cases
might be executed? What’s the effect in
the problem world of each particular se-
quence? Here, you’re looking at the re-
quirements with a larger granularity—
not just single use cases but some
individual participant’s history of use
cases. The plugger failure is an egregious
example. Looking at each use case indi-
vidually, it’s easy to miss the lethal effect

of the sequence SetCoordinates-
ChangeBattery-Fire.

Attribute-change event

Start from any object attribute in-
tended to model some problem world
state or property—for example, a
name, address, or birthday. What might
happen in the problem world to change
the attribute’s value? The requirements
for one insurance system assumed that
birthdays, becoming known when a
birth certificate is presented to the in-
surance company, could not then be
changed. But some immigrants from
countries with lax or chaotic adminis-
trations arrive with dubious birth cer-
tificates and subsequently want and
need to provide correct information.
The system provided no means for the
necessary changes. (It didn’t provide for
gender change, either.)

Events without a use case

Start from any human—or other—
actor participating in one or more use
cases. What other significant events
can the actor participate in for which
the requirements provide no interac-
tion with the machine, either through a
use case or otherwise? Human actors,
in particular, could die, emigrate, be-
come bankrupt, go to prison, or even
just lose things. In one insurance sys-
tem, policyholders could obtain re-
placement documents if necessary—for
example, because the existing docu-
ment was old and had worn out. The
ReplacePolicy use case required the
policyholder to enter the document
identification from the document they
wanted to replace. Unfortunately, the
most common reason for wanting a re-
placement document was that the orig-
inal had been lost. The policyholder
would be unable to supply the required
information. There was no need for a
LosePolicyDocument use case. But
the event of losing the policy shouldn’t
have been ignored.

Following the chain

Start from any system output—for
example, a printed document or an EDI
message sent to another system. What

chain of events can flow from this in the
problem world? What events are ex-
pected but might fail to happen? What
if there’s a delay? One sales system, in a
country where Internet usage is still
low, relied heavily on postal communi-
cation for some of its interactions with
customers. If a customer fell behind
with installment payments, the system
sent a demand letter asking for immedi-
ate payment and enclosing a bar-coded
payment slip. The system requirements
didn’t account for the effects of postal
delay. Some customers who had fallen
behind spontaneously sent additional
payments while the demand letter was
in the post. Because the payment made
wasn’t accompanied by the bar-coded
slip, the system couldn’t apply it to the
outstanding demand. The result was of-
ten a cycle of crossing communications
that was difficult to break.

one of these faults is subtle or com-

plex. They’re all obvious and simple

once your attention has been directed
to them. That means, above all, once
your attention has been directed to the
relevant behavior and properties of the
problem world. These faults aren’t visi-
ble in the machine-world interface. The
heuristics won’t find all the faults in your
requirements, but they should find some.
You can extend the set by adding your
own. It’s a game, really. Have fun! @

References

1. V. Loeb, “‘Friendly Fire’ Deaths Traced to
Dead Battery: Taliban Targeted, but US Forces
Killed,” Washington Post, 24 Mar. 2002, p. 21.

2. C.A.R Hoare, “The Emperor’s Old Clothes,”
Essays in Computing Science, C.B. Jones, ed.,
Prentice-Hall, 1989.

3. W.G. Vincenti, What Engineers Know and
How They Know It: Analytical Studies from
Aeronautical History, Johns Hopkins Univ.
Press, 1993.

4. W. Bagehot, The English Constitution, P.
Smith, ed., Cambridge Univ. Press, 2001.

Michael Jackson has worked in software development
and development methods since 1961. His most recent work
focuses on analyzing and structuring software development
problems and solutions. He has described this work in his books
Software Requirements & Specifications (Addison-Wesley, 1995)
and Problem Frames (Addison-Wesley, 2001). Contact him af
jacksonma@acm.org.

Software

ﬂwy/ 10
nencn UJ

Writers
For detailed information on submitfing
articles, write for our Editorial Guidelines
(software@computer.org) or access
www.computer.org/software/author.him.

Letters to the Editor
Send letters fo

Editor, IEFE Software
10662 Los Vagueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or daytime
phone number with your letter.

On the Web
Access www.computer.org/software for
information about IEEE Software.

Subscribe
Visit www.computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions fo address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE
and Computer Society membership to
member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received a
domaged copy, contact help@computer.org.

Reprints of Articles
For price information or fo order reprints,
send email to software@computer.org or
fax +1714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact the Intellectual Property Rights
Office at copyrights@ieee.org.

November/December 2004 1EEE SOFTWARE 85

