
Many approaches to requirements analysis focus on the anticipated interactions be-
tween users and the system to be built. These interactions may be structured as a
collection of representative scenarios or ‘use cases’. Often the requirements docu-
ment is just an elaborate informal narrative describing in detail the sessions of each
class of user. By drawing attention to the experience of users, these approaches can
be a useful kind of paper prototype.

A major flaw of such approaches is that, for many systems, they focus in the
wrong place. The problem to be solved by the system usually exists not at the inter-
face with the machine, but deeper in the environment [9]. The purpose of a traffic
light system, for example, is not to control the lights but to ensure steady and safe
flow of traffic. Its requirements analysis should therefore start with traffic and the
expected and desired behaviours of drivers, rather than with the question of how the
lights should be sequenced.

This paper addresses a different but related flaw of approaches based on user
interaction: that enumerating and elaborating scenarios tends to conflate different

Separating Concerns in Requirements Analysis:
An Example

Daniel Jackson1 and Michael Jackson2

1 Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA
2 Independent Consultant

London, England

Abstract. Often, a requirements document is structured as a long list of
individual “requirements”, each describing an anticipated function or user
interaction. An alternative approach is to identify a collection of subproblems,
each representing an aspect of the larger problem, and to describe each
subproblem in isolation, deferring their composition to a later stage. This paper
illustrates the approach by applying it to the requirements of the positioning
functions of a proton therapy installation. It explains how a flaw in the design of
the system can be isolated to a single subproblem, which can be formalized and
subjected to automatic analysis.

1 Introduction

concerns. A system must usually satisfy multiple properties, perform multiple func -
tions simultaneously, and satisfy multiple purposes. The eventual design of its user
interface brings these multiple concerns together. But to describe the interface be-

M. Butler et al. (Eds.): REFT 2005, LNCS 4157, pp. 210 – 225, 2006.
© Springer-Verlag Berlin Heidelberg 2006

fore the concerns have been identified and explored puts the cart before the horse.
It can easily result in a development in which the individual concerns are never
properly grasped, and are therefore inadequately addressed or made unnecessarily
complicated.

This problem has special significance for systems that must be highly dependable.
An inability to separate concerns makes it hard to pay more attention to the concerns
that are more critical, and the resulting system may fail to satisfy its most critical re-
quirements because their implementation is interwoven with the implementation of
less critical requirements. In an earlier study, we found that the software control of
the emergency stop feature of a radiotherapy machine was dependent on far less im-
portant features of the system; a signal to stop could be rejected, for example, if the
disk were full so that a log record could not be written [12]. (Fortunately a redundant
hardware interlock was in place.)

An alternative approach identifies the concerns at the outset. Instead of attempt-
ing to describe an interface that integrates the various concerns, each concern is
considered independently, and only later is the composition of the concerns ad-
dressed [9]. This paper illustrates the approach with an example of a problem that
arose in the development of the software for a proton therapy machine. The work is
part of an ongoing collaboration between the Software Design Group at MIT and
the Burr Proton Therapy Center (BPTC) at Massachusetts General Hospital whose
aim is to find ways to improve the dependability of critical software.

The problem was known to the developers of the therapy system, and had been
resolved before the writing of this paper, and it never posed a safety risk. But it is
worth studying because it illustrates the pitfalls of the traditional approach to re-
quirements analysis, some potential benefits of an approach based on problem de-
composition, and is characteristic of problems that arise in many similar systems.

Proton therapy involves exposing a patient’s tumour to a focused beam of protons.
The positioning of the patient and the device issuing the beam is an intricate matter.
At the BPTC, the positioning is carried out in two distinct phases. In the first phase,
the patient and device are put in a “setup position” that is suitable for imaging. An X-
ray image is taken to determine the exact position of the tumour, and a “delta” is ob-
tained that captures the difference between the setup position and the position that
would be required for the beam to be appropriately aligned. In the second phase,
the patient and device are oriented in the “treatment position”; the delta obtained
during setup is applied as a correction to the initial treatment position so that the
proton beam will be aligned correctly.

Patient and beam position are adjusted in a number of ways. The beam follows a
path along a fixed beamline from the cyclotron to the treatment room, and is bent

2 The Proton Therapy System

by electromagnets to align with a snout mounted on a gantry that surrounds the
patient couch and can rotate around one axis. The snout itself moves in and out

Separating Concerns in Requirements Analysis: An Example 211

(towards and away from the patient), and can also rotate. The patient is positioned,
often on a firm cushion, on a robotic couch that has six degrees of freedom (lateral,
longitudinal, vertical, roll, pitch and rotation). When the rotation of the couch is at
0 degrees, adjusting the roll of the couch and the angle of the gantry have the same
effect, although the couch can only move plus or minus 3 degrees, so it tends to be
used for making small adjustments only.

In the initial design of the software, the therapist issued the command “gotoSetup”
to move the patient into the recorded setup position. She then took X-rays, and ad-
justed the position of the gantry and couch until alignment was achieved. A single
command “saveSetup” was then executed, whose effect was two-fold: to obtain the
delta used to offset the treatment position, and to record a new setup position for
subsequent treatment sessions.

The therapists observed that sometimes the gantry angle had deviated over the
course of several treatment sessions quite considerably from its initial position, de-
spite the fact that the therapist had made no adjustments to the gantry itself. This
was not in itself a safety concern, since the unexpected movement of the gantry had
been compensated by a corresponding adjustment of the couch. Eventually, howev-
er, the gantry had moved so far that it was no longer possible to compensate because
of the limited freedom of movement of the couch.

The problem, it turned out, was that the “saveSetup” command would overwrite
the gantry angle setting even when it had not been adjusted. Since the “gotoSetup”
command only moved the gantry to within the recorded position by some tolerance,
the effect of “saveSetup” was to change the gantry angle setting even when the thera-
pist had not intended any change. In some cases, it seems that these small errors
accumulated, resulting eventually in a significant change.

The solution that was implemented was simply to eliminate the ability to adjust
the gantry angle during setup. The code of the “saveSetup” command was changed
accordingly so that it never overwrites the gantry angle setting. This approach is
acceptable because the adjustments that are typically needed are small, and can be
achieved by adjustments to the couch position alone.

The solution suggested by the analysis based on subproblems is different. It dis-
tinguishes those “saveSetup” commands that follow “gotoSetup” commands, and
insists that they make no change to the recorded setup position.

A decomposition into subproblems starts with an attempt to uncover the purpose
behind the functions to be implemented. In this case, a discussion with the develop-
ers revealed two distinct purposes: (1) to save the setup position so that in a sub-
sequent session the need for setup adjustment is eliminated or reduced; and (2) to

2.1 The Problem: Gantry Creep

3 Decomposing into Subproblems

212 D. Jackson and M. Jackson

Machine

Therapist

Equipment

Correct
Saving &
Restoring

save
restore

reqNudge
save

restore

nudge
reposition

position

DatabaseprefPosition

Machine

Therapist

Equipment

Alignment/
Orientation

gotoSetUp
gotoTreatment

reqNudge
confirm

nudge
reposition

position

Database

setUpPosition
treatmentPosition

gotoTreatment

treatmentPosition

Machine

Commander

Physical
Equipment

Optimal
Equipment
Movement

nudge
reposition

nudge
reposition

adjust
position position

Fig. 1. Set/Restore subproblem

Fig. 2. Alignment subproblem

Fig. 3. Positioning subproblem

Separating Concerns in Requirements Analysis: An Example 213

determine, with the help of an X-ray or some other imaging device, an adjustment to
the relative positions of the patient and the beam that will ensure proper alignment
during treatment.

An important clue that these purposes should be regarded as distinct subproblems
is that they have different spans. The first, which we call the Set/Restore subproblem,
has a span that encompasses multiple treatment sessions. The second, which we
call the Alignment subproblem, involves only a single session. The two subproblems
are shown in figs. 1 and 2 in Problem Frame notation [9]. In each figure the striped
rectangle represents the machine to be developed for the corresponding subprob-
lem. The other rectangles represent problem domains interacting with the machine
at interfaces of shared phenomena; the dashed ellipse represents the requirement,
which is a condition on the problem domains, expressed in terms of phenomena
that may or may not be shared with the machine. An arrowhead indicates that the
requirement expresses a constraint on the domain to which it points.

Before delving further into either subproblem, we notice that they share a com-
mon feature: the positioning of the equipment by the machine. The physical devices
that perform this positioning cannot be perfectly controlled; a position is set using
a control loop that makes repeated adjustments and measurements. The control
loop’s design involves tradeoffs between the accuracy of the final position and how
quickly it is reached.

Recognizing this, it becomes clear that the positioning of the device in accor-
dance with a desired position is itself a non- trivial, third, subproblem that should
be separated from the two subproblems already identified. We shall call this the
Positioning subproblem (fig. 3). The domains marked Equipment in the subproblems
of figs. 1 and 2 now correspond to the PhysicalEquipment domain and Machine of fig.
3. The machines in figs. 1 and 2, issuing nudge and reposition commands to Equip-
ment, correspond to the Commander domain in fig. 3. The domain marked Physi-
calEquipment in fig. 3 is less abstract, and represents the actual physical plant and
its monitoring and controlling devices. In implementation terms, interactions with
the Equipment domain represent indirect interactions with the PhysicalEquipment
domain mediated by the Machine in the Positioning subproblem.

Let’s now examine each of the three subproblems in more detail.

The Positioning subproblem (fig. 3) has a domain Commander that issues two kinds
of command: nudge, to request a relative adjustment, and reposition, to request an
absolute position. The domain PhysicalEquipment, as mentioned, represents the
physical plant and its devices; it is controlled by adjustment commands represented
by the operation adjust, and is monitored by the reading of a variable position that
is shared with the machine. The requirement is that, after a reposition(x), position is
within some epsilon of x, and, after a nudge(d), position is within some epsilon of d
applied to the previous value of position.

The details of the tolerance and the time taken to achieve the final position need
not concern us here, and are standard issues in the design of a control loop for a
physical device (such as a robot arm). A primary benefit of identifying such a sub-

3.1 Positioning Subproblem

214 D. Jackson and M. Jackson

problem is factoring out parts of the development that are complex and tricky when
faced for the first time, but are conventional and easily handled by a specialist.

The Set/Restore subproblem is also an instance of a wider class. The setup protocol
in our proton therapy setting is essentially the same as the protocol for adjusting the
seat position in a fancy car. The car stores a preferred position for each driver, and
has three principal commands: to adjust the seat position; to save a preference; and
to restore the position to the last position saved for that driver.

In this subproblem, the domain Equipment has a shared variable position that re-
veals the current position of the equipment. Unlike the domain PhysicalEquipment
in the Positioning subproblem, however, its phenomena include the more powerful
commands nudge and reposition rather than just adjust. This subproblem therefore
need not be concerned with how a particular positioning command is handled; it
assumes that the equipment responds appropriately.

The Therapist issues three kinds of command: save(p) to save the current posi-
tion as the preferred saved position for patient p, restore(p) to move to the posi-
tion previously saved for patient p, and reqNudge(d) to request an adjustment by
an amount d. The preferred positions are stored in a database represented by the
Database domain, which offers a relation prefPosition mapping each patient to a
preferred position.

A careful consideration of this subproblem in isolation reveals the creep problem.
Since reposition only achieves an approximation to the desired position, issuing the
command reposition (position) repeatedly can cause arbitrary changes in position;
each request to set the position to the current recorded position may actually result
in a change in position. A naive design in which every save(p) writes the current
value of position to prefPosition[p] will exhibit this anomaly if a sequence of save/
restore pairs is executed.

To avoid the problem, we can make save(p) have no effect if the preceding event
was a restore(p). A full formalization of this subproblem is discussed below, with a
more detailed explanation of this decision.

The Alignment subproblem is the hardest to handle, because it is more complicated,
and because it seems to be unique to this domain. It can nevertheless be described
fairly succinctly. Rather than representing the gantry and couch as distinct compo-
nents with distinct positions, we regard the system as a whole as occupying a coor-
dinate in some abstract space, just as we did with other subproblems.

In this space, some coordinates can be classified as oriented: these correspond
to the gantry and couch positions in which the patient is oriented appropriately for
treatment. Some coordinates, likewise, can be regarded as aligned: these are the
coordinates in which the relative positions of the couch and the gantry will ensure
that the beam is appropriately directed at the tumour. By viewing alignment and
orientation as projections of a coordinate, we can define planes (isosurfaces) in the

3.2 Set/Restore Subproblem

3.3 Alignment Subproblem

Separating Concerns in Requirements Analysis: An Example 215

abstract space of coordinates that share a particular alignment or a particular orien-
tation. Correct alignment (or orientation) means that the alignment (or orientation)
projection has a particular value.

The Therapist issues four kinds of command: reqNudge to request a position ad-
justment, gotoSetUp to request the setup position, and gotoTreatment to request
that the equipment move to the treatment position stored in the Database, and
confirm to confirm that the equipment is well aligned in the current position. The
Database holds a setup position and a treatment position for each patient p rep-
resented as shared variables setUpPosition[p] (assumed to be almost aligned) and
treatmentPosition[p] (assumed to be oriented, and also almost aligned).

The procedure to be followed by the Therapist is first to request the setUpPosition
with gotoSetUp; then, if adjustment is necessary to effect it by reqNudge commands;
then to issue a confirm followed by gotoTreatment command.

The requirement is roughly that, following gotoTreatment, the equipment is both
aligned and oriented. It will be established by a combination of assumed properties
of the Therapist, Database and Equipment domains, and of the specification of the
Machine, namely that (1) Therapist will issue the confirm command only when the
equipment is shown to be aligned by the X-ray or other imaging technique; (2) the
value of treatmentPosition[p] in Database is oriented; (3) in the Equipment domain,
the command reposition(x), where x is aligned and oriented, results in a value of
position that is also aligned and oriented.

Decomposing into subproblems allows us to analyze each subproblem independent-
ly. In this section, we illustrate this by formalizing the Set/Restore subproblem in
Alloy [8], and subjecting the formal model to an automatic analysis using the Alloy
Analyzer [2].

An Alloy model begins with a module name, and imports for any modules that
are used. In this case, we import a library module that imposes a total ordering on
the set Event, to be declared later:

module saveRestore
open util/ordering [Event]

The import makes available functions which will be used later: next(e), nexts(s),
prev(e), and prevs(s), which for an element e (or a set s) give respectively the next
element, all subsequent elements, the immediately preceding element, and all pre-
ceding elements; and first() and last(), which give the first and last events in the
ordering.

The set of positions is declared, with a relation near associating each position
with the set of positions that are within some epsilon (the tolerance of the Position-
ing subproblem), along with a fact (a global assumption) that this relation is reflexive
and symmetric:

4 Set/Restore Formalized

sig Position {near: set Position}

216 D. Jackson and M. Jackson

fact {
 Position <: iden in near
 near = ~near
 }

It is significant that near is not transitive; its lack of transitivity is the source of the
gantry creep problem.

A set of patients is likewise declared:

sig Patient {}

The states of the system are declared explicitly as a set also; Alloy has no built-in
state machine idiom. Two relations are declared on states, one for the state of the
Equipment domain that associates each state with a position – the physical position
of the equipment – and one for the state of the Database domain that associates each
state with a function mapping patients to preferred positions:

sig State {
 Equipment_position: Position,
 Database_prefPosition: Patient -> one Position
 }

The Database_prefPosition relation is a total function: it maps each patient to
exactly one position.

The various requests and commands are modelled as event objects. We start with
a set of events declared to be abstract (indicating that it will be exhausted by the sub-
sets that will be subsequently declared), and with relations associating each event
with its pre-state (the state before its occurrence), its post-state (the state after its
occurrence), and the patient to which the event applies:

abstract sig Event {
 pre, post: State,
 patient: Patient
 }

The pre- and post-state relations must be constrained so that for any event e
except the last event in a trace, the pre- state of e’s successor event is the post-state
of e:

fact {
 all e: Event - last () | next (e).pre = e.post
 }

We declare a partition of the event set into subsets corresponding to the three
commands issued by the therapist:

sig Therapist_save, Therapist_restore, Therapist_reqNudge extends Event {}

The Equipment domain has two event sets of its own; the use of the in keyword in
their declarations allows these sets to overlap with the other event sets:

Separating Concerns in Requirements Analysis: An Example 217

sig Equipment_reposition in Event {position: Position}
sig Equipment_nudge in Event {}
fact {no Equipment_reposition & Equipment_nudge}

Our plan is to have them overlap with the Therapist events, so that a reqNudge in
the Therapist domain can be equated to a nudge in the Equipment domain. They will
not overlap with each other, however, so an explicit fact is recorded to this effect.

Note that the reposition event has a position relation declared for it; this is in
fact the only event in which a position must be made explicit. The commands of the
Therapist domain are interpreted with respect to the current position in the Equip-
ment domain, which is not communicated by the therapist.

It will be convenient to have two functions for describing temporal relationships
between events. The function following takes an event e and a set of events s and
returns either the first event that follows e that belongs to the set s or the empty set
if there is none:

fun following (e: Event, s: set Event): lone Event {
 let succs = s & nexts (e) | succs - nexts (succs)
 }

This defines succs as the intersection of s and the set of all events occurring after
e. The difference between succs and the set of all events occurring after any of its
members is then the singleton set containing its first member or the empty set if it
has no first member. The lone keyword indicates that the function following may
return a singleton or empty set of events; it can be read ‘less than or equal to one’.

The function between takes two events and returns the set of events that occur
between them:

fun between (from, to: Event): set Event {
 nexts (from) & prevs (to)
 }

Now we can define the constraints: the requirements and the domain properties.
There are two distinct requirements. The first says, roughly speaking, that a restore
command returns the equipment to the position prior to the last save. More pre-
cisely, for any patient p and save command s associated with p, and for any restore
command r following s, if there is no other save for p that intervenes between the
two, the position after the restore is ‘nearish’ to the position before the save:

pred Memory_Requirement () {
 all p: Patient, s: Therapist_save & patient.p |
 all r: following (s, Therapist_restore &
 patient.p) |
 no Therapist_save & patient.p & between (s, r) implies
 nearish (r.post.Equipment_position, s.pre.Equipment_position)
 }

The expression Therapist_save & patient.p denotes the set of Therapist_save
events applying to patient p, and so on.

218 D. Jackson and M. Jackson

Two positions are ‘nearish’ if there is some position they are both near to:

pred nearish (p, p’: Position) {some p“: Position | p+p’ in p”.near}

(The need for this notion is explained below). The second requirements says,
roughly speaking, that there is no creep. For any patient p, save command s as-
sociated with p, and restore commands r and r’, also associated with p, that follow
s without an intervening reqNudge command, the positions resulting from r and r’
are nearish:

pred Consistency_Requirement () {
 all p: Patient, s: Therapist_save & patient.p, r: nexts (s), r’: nexts (r) |
 (r + r’ in Therapist_restore & patient.p and
 no between (r, r’) & Therapist_reqNudge & patient.p) implies
 nearish (r.post.Equipment_position, r’.post.Equipment_position)
 }

The two restore commands need not follow immediately, and can have other re-
store commands occurring between them.

The therapist positions each patient afresh, rather than using the position of the
previous patient. We record this assumption as a predicate saying that if an event
is associated with a different patient than its predecessor, it must be a restore com-
mand:

pred Therapist () {
 all e: Event | e.patient != prev(e).patient implies e in Therapist_restore
 }

(Note that if e has no predecessor, then the expression prev(e).patient denotes
the empty set: there are no undefined expressions or special values in Alloy.)

The specification of the machine links together the commands of the therapist
with the reading and updating of the database, and the issuing of commands to the
equipment:

pred Specification () {
	 --	respond	to	a	restore	command	from	the	therapist	by	issuing
	 --	a	reposition	command	to	the	equipment	whose	position	argument
	 --	is	that	position	of	this	patient	in	the	database
 all r: Therapist_restore |
 r in Equipment_reposition and
 r.position = r.pre.Database_prefPosition[r.patient]
	 --	a	reqNudge	command	from	the	therapist	is	matched	to	a	nudge
	 --		command	to	the	equipment	and	a	restore	is	matched	to	a	reposition
 Therapist_reqNudge = Equipment_nudge
 Therapist_restore = Equipment_reposition
	 --	when	a	save	command	is	received	from	the	therapist,	the	position	of
	 --	the	associated	patient	is	updated	in	the	database	with	the	current

Separating Concerns in Requirements Analysis: An Example 219

	 --	equipment	position,	unless	the	previous	command	was	a	restore
	 --	for	this	patient
 all s: Therapist_save | let p = s.patient |
 s.post.Database_prefPosition = s.pre.Database_prefPosition ++
 if some prev (s) & Therapist_restore & patient.p
 then none -> none else p -> s.pre.Equipment_position
	 --	for	any	event	except	a	save,	the	database	is	not	written
 all e: Event - Therapist_save |
 e.pre.Database_prefPosition = e.post.Database_prefPosition
 }

The assumptions about the equipment are that a reposition moves the equipment
to a position near to the position requested, and that only reposition and nudge
events result in a change in position:

pred Equipment () {
 all r: Equipment_reposition | r.post.Equipment_position in r.position.near
 all e: Event | e.post.Equipment_position = e.pre.Equipment_position
 or e in Equipment_reposition + Equipment_nudge
 }

Finally, we can declare as assertions the key correctness properties, namely that
the combination of the specification and domain properties implies each of the re-
quirements:

assert CorrectnessM {
 Specification () and Equipment () and Therapist ()
 implies Memory_Requirement ()
 }
assert CorrectnessC {
 Specification () and Equipment () and Therapist ()
 implies Consistency_Requirement ()
 }

The Alloy language is undecidable, so an assertion cannot be checked automati-
cally in an unbounded space. So Alloy’s checking commands specify a scope indicat-
ing how many elements each set may have. For example, for an initial analysis, we
might execute the command

check CorrectnessM for 3

which checks the assertion CorrectnessM for all scenarios involving up to 3 events,
states, positions and patients. Because there are so many scenarios even within small
scopes, they are often sufficient to detect interesting flaws.

For example, if the definition of nearish is replaced by

pred nearish (p, p’: Position) {p in p’.near}

so that two points are nearish only when they are near , the Alloy Analyzer finds
a counterexample for this command in about 5 seconds (on a 1.67GHz Powerbook

220 D. Jackson and M. Jackson

G4 laptop), as shown in fig. 4. The large ovals linked by next show the chain of events
for a particular patient. The first event is a restore; its pre-state, not shown in this
particular visualization, associates position P0 with the patient in the database, so
P0 is the argument to the reposition command. On receiving this command, the
equipment is free to set the position to any that is near P0; it chooses P2. (The near
relation amongst positions is shown in the upper right.) Now a save command oc-
curs, which has no effect, since it is preceded by a restore. Then a second restore is
performed. The database has not changed, but this time, the equipment chooses a
different position near P0, namely P1. So although creep can’t happen, since different
restore commands can approximate the commanded position differently, the actual
error margin is twice the tolerance of the equipment.

Replacing the definition of nearish by its original definition results in no counter-
example. To gain further confidence, we can increase the scope. Checking the com-
mand for all scenarios involving 7 events, 7 states, 7 positions and 3 patients

Fig. 4. A counterexample

check CorrectnessM for 7 but 3 Patient

gives no counterexamples, in a search that takes under 4 minutes.

 Separating Concerns in Requirements Analysis: An Example 221

Separating concerns. By separating the problem into three subproblems, we were
able to see more clearly what the essential difficulties were. The creep problem, for
example, is a direct consequence of the interface presented by the Positioning sub-
problem to the Set/Restore subproblem, and can be solved by ensuring that saves
that do not follow nudges have no effect. In the original requirements document, the
description of the setup procedure involves reading both setup and treatment posi-
tions from a database, and using both to compute the final treatment position. Ex-
amination of the Alignment subproblem reveals that this need only depend on the
treatment position given in the database and the alignment information obtained
from any reasonable setup position. The conflation occurs only because the imple-
mented database incorporates the databases of both subproblems, and because the
setup position used to obtain alignment is the same setup position that is saved and
restored.

Formal analysis. The decomposition into subproblems simplifies the formal anal-
ysis, not only in allowing smaller models, but also by making them more tractable
and the results easier to interpret. Simply writing things down more formally reveals
misunderstandings; mechanical analysis inevitably reveals additional, more subtle
problems. Our experience formalizing the Set/Restore subproblem was typical in
this respect.

Span. The span of a subproblem is the set of phenomena it involves. In this case,
the span of a subproblem might involve one or many patients, and one or many
treatment sessions. Identifying the span is a crucial first step in understand a prob-
lem, and the presence of requirements with different spans suggests a decomposi-
tion into subproblems.

Abstraction. A subproblem is easier to understand and analyze when the phe-
nomena have been abstracted appropriately. In the original requirements docu-
ment, for example, the discussion of positioning involves the many components of
the gantry and patient couch position. This level of detail is not relevant to these
subproblems.

Distinct phenomena. A scenario-based analysis encourages the developer to con-
flate phenomena, for example to assume that the saving of a preferred setup position
and the confirmation of alignment are the same event. They happen to be performed
by the same person at the same time, often for the same position, but there is no
fundamental reason that they need to be equated. Arguably, a cleaner design would
offer two separate commands, allowing the therapist to save a preferred position
without confirming alignment, for example. In short, it is better to start with the as-
sumption that phenomena are distinct and merge them than to start with a smaller
set and try to split phenomena later.

5 Discussion

Composing the Positioning subproblem. Analysis of a problem into distinct sub-
problems must be followed by recombination of the analysed subproblems to give a
solution to the original problem. Recombining the Positioning subproblem with the
other two is straightforward and entirely conventional. The span of the Positioning

222 D. Jackson and M. Jackson

subproblem is receipt and execution of a single nudge or reposition command: the
Machine in the Positioning subproblem has no need to save state from one command
to the next, because the only significant state is held in the Physical Equipment. This
Machine can therefore be easily implemented as a module that interfaces with the
equipment on one side and offers the nudge and reposition commands on the other.
This module is made available to the Set/Restore and Alignment subproblems.

Composing the Set/Restore and Alignment subproblems. Recombining the Set/Re-
store and Alignment subproblems demands more care. The composition task is to
combine the subproblems by identifying phenomena that are common to both, and
to ensure that the composition preserves the properties of each. The Therapist has,
in principle, the full repertoire of both subproblems available, but each subproblem
imposes its own restrictions on the acceptable command sequences. As has already
been mentioned, it is appropriate to identify the Database field prefPosition in the
Set/Restore subproblem with the setUpPosition field in the Alignment subproblem.
The reqNudge commands in the two subproblems are evidently identical. The con-
firm command in the Alignment subproblem can be identified as a save command in
the Set/Restore subproblem: responsibility for avoiding the creep problem belongs
to the Set/Restore subproblem, where save will have no effect unless there has been
a reqNudge since the most recent save. The databases are composed simply by merg-
ing their schemas. The two subproblem machines can be combined, in an object-
oriented setting, by introducing a control layer that delegates commands issued by
the Therapist to lower-level objects implementing the two machines.

Without hindsight? We have, of course, had the benefit of hindsight. The gantry
creep problem had already been identified in the existing system, and we took that
as our starting point. Would we have identified the problem if we had been doing
an original design without the benefit of hindsight? We believe that we would. By
our criteria the Set/Restore subproblem is clearly distinct from the Alignment sub-
problem, because the two have different spans: many sessions versus one session.
Once these subproblems have been separated there is no reason to confuse the save
action in the Set/Restore subproblem with the confirm action in the Alignment sub-
problem.

The confirm action need not, in principle, cause a database update, because the
confirmed position will be used immediately to compute the delta and the treatment
position. Only a later recognition that it, too, could involve saving a position in the
database suggests the possibility that the two saved positions might be represented
by the same database field in the patient’s record. Such a design choice, in our ap-
proach, would be a conscious decision in an explicit composition task, and would
demand careful examination of the circumstances in which the two actions could
share a part of their implementation.

Dijkstra coined the term ‘separation of concerns’. In an early note [4], he advocated
the idea of focusing on one aspect of a problem at a time. Since then, the notion of

6 Related Work

Separating Concerns in Requirements Analysis: An Example 223

The insight that the requirements of a system to be built should be viewed as a col-
lection of fairly independent subproblems is now also widely understood, although
in practice the identification of subproblems is not made explicit in the require-
ments document, but arises only during design, when the subproblems emerge as
design challenges. The idea that the requirements themselves should be structured
around subproblems is the premise of the Problem Frames approach [9], which
characterizes problems into archetypal classes, in the hope that most subproblems
encountered will be instances of subproblems that have already been faced, and for
which simple and effective solutions are well known.

Formal methods attempt to uncover the essence of the requirements problem,
and to express it precisely and unambiguously in a formal notation. They do not
tend, however, to give effective guidance or heuristics for decomposing problems
into subproblems, although the presence of conjunction in declarative specification
languages makes them well suited to such a decomposition [1, 7, 10].

Viewpoints [5] are a bit like subproblems, but they arise from the interests of dif-
ferent stakeholders, rather than from structure inherent to the problem itself.

Aspect-oriented programming [11] and subject-oriented programming [6] aim
to achieve better separation of concerns by new implementation constructs. Work
on ‘early aspects’ seems to focus not so much on separation of concerns in the early
phases of development as on the early identification of features that can be imple-
mented using the technology of aspect-oriented programming.

Failure to recognize that a problem is composed of multiple subproblems is likely
to result in complicated and obscure implementation. An extreme programming
approach [3] may well exacerbate the difficulties, by encouraging the coding of a
complex composite machine before simpler submachines have been identified. The
effort invested in an early decomposition into subproblems is likely to pay off, and an
extreme programming approach in which individual submachines are implemented
and evaluated prior to consideration of their composition might work well.

Dr. Jay Flanz, director of the Burr Proton Therapy Center, generously explained to
us the details of the gantry creep problem; Dr. Hanne Kooy, radiation physicist, and
Doug Miller and Nghia Ho Van, developers of the Therapy Control System were
also very helpful. Robert Seater is developing a problem-frame- based analysis of the
system, and shared his ideas and insights with us. This research was funded in part
by grant 0325283 (Safety Mechanisms for Medical Software) from the ITR program
of the National Science Foundation.

Acknowledgments

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors, and do not necessarily reflect the views of the Na-
tional Science Foundation, or the Burr Proton Therapy Center.

‘separating concerns’ has become standard, although often only lip service is paid
to it.

224 D. Jackson and M. Jackson

References

1. M. Ainsworth, A.H. Cruickshank, L.J. Groves and P.J.L. Wallis. Formal Specification via
Viewpoints. Proc. 13th New Zealand Computer Conference, New Zealand Computer
Society, Auckland, New Zealand, 1993.

2. The Alloy Language and Analyzer, http://alloy.mit.edu.
3. Kent Beck. Extreme Programming Explained. Boston, Addison Wesley, 1999.
4. Edsger Dijkstra. On the role of scientific thought. EWD 447, 30th August 1974, Neuen,

The Netherlands. Appears in: Edsger W. Dijkstra, Selected Writings on Computing: A
Personal Perspective, Springer-Verlag, 1982. ISBN 0–387–90652–5, pp. 60–66. Available
at http: www.cs.utexas.edu/users/EWD/.

5. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein and M. Goedicke. Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development. International
Journal on Software Engineering and Knowledge Engineering, 2(1):31–57, World
Scientific Publishing Company, March 1992.

6. William Harrison and Harold Ossher. Subject-Oriented Programming – A Critique of Pure
Objects. Proc. 1993 Conference on Object- Oriented Programming Systems, Languages
and Applications, September 1993.

7. Daniel Jackson. Structuring Z Specifications with Views. ACM Transactions on Software
Engineering and Methodology, Vol. 4, No. 4, October 1995, pp. 365–389.

8. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge, MA, March 2006.

9. Michael Jackson. Problem Frames: Analyzing and Structuring Software Development
Problems. Boston, Addison Wesley Professional, 2000.

10. Daniel Jackson and Michael Jackson. Problem Decomposition for Reuse. Software
Engineering Journal, Vol. 11, No. 1, January 1996, pp. 19–30.

11. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier and John Irwin. Aspect- Oriented Programming. Proc. European
Conference on Object- Oriented Programming, 1997.

12. Andrew Rae, Daniel Jackson, Prasad Ramanan, Jay Flanz and Didier Leyman. Critical
Feature Analysis of a Radiotherapy Machine. Reliability Engineering and System Safety,
Elsevier Science, 2004.

Separating Concerns in Requirements Analysis: An Example 225

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

