Some Basic Tenets of Description

Michael Jackson

101 Hamilton Terrace, London NW8 9QY, England
jacksonma@acm.org

Abstract. Description—often referred to as modelling—is fundamental
to software development. The developer should always be ready to say of
each description: what subject it describes; what it says about its subject;
and how it fits with other descriptions in the same development. Some-
times a very informal—even a casual—approach to these questions may
be adopted. But often a more careful and explicit approach is needed.
This short paper lays out some basic tenets of such an approach.

1 Introduction

The practice of software development is concerned, above all, with making and
using descriptions. A program is a description of a machine with a desired be-
haviour: it describes the behaviour that a general-purpose computer will exhibit
when it executes the program. A requirement is a description of desired effects
in the world outside the computer: for example, that the lift will come when we
press the button to summon it; that the book you have reserved will be available
when you go to the library to collect it; or that an email message I send to my
friend’s address will find its way to his mailbox. An object diagram may describe
an invariant property of the problem world: for example, that each employee has
exactly one employee number. Or it may describe an invariant property of the
database: for example, that EmpNo is the primary key of the Employee table.

Some software projects can be carried through in an informal way, with few
explicit descriptions other than the program text and some visualisations of the
program structure and execution. But often a more formal and carefully explicit
approach to description is needed for all or part of a development.

2 The Problem Domain and the Machine

The first and most fundamental principle of description is to identify clearly what
is being described. In software development the primary distinction is between
the Machine and the Problem Domain.

The Machine is the software we build and the computer that executes it.
The Problem Domain is that part of the world in which the Machine is required
to bring about some effect desired by the Customer for whom the system is
developed. For example, in a business system the Problem Domain may be the
products and suppliers, the bank, the warehouse, the sales staff, the customers

of the business, and so on. In a lift control system the Problem Domain is the lift
shaft, the lift car, the motor and winding gear, the buttons and lights, the floors
served by the lift, and the people who use it. In a library administration system
the Problem Domain is the books, periodicals and other items in the library, the
library members, the staff, the library building with its shelves and desks and
doors, the plastic membership cards, and all the other equipment needed to run
the library!.

Essentially, the Machine is what must be built, and the Problem Domain
is what is given. Of course, this distinction is relative to the task in hand: in
any decomposition of a problem into subproblems, each subproblem has its own
Machine and its own Problem Domain?.

The relationships of the Machine, the Problem Domain and the Requirement
are shown in Figure 1.

h /’ \\
The a The b / Customer's
Machine Problem *------- \ Requirement)

Domain Domain N ,

S -

Fig. 1. The Machine Domain and the Problem Domain

The Machine is connected to the Problem Domain by an interface a of shared
phenomena: in the lift system, for example, the Machine can turn the motor
on by causing a MotorOn event, and it can sense whether a particular request
button is depressed by monitoring the state of FloorUpButton[3]. MotorOn is
a shared event, controlled by the Machine, and FloorUpButton[3] is a shared
state, controlled by the Problem Domain.

The Customer’s Requirement is some constraint on the Problem Domain
that the Machine must enforce?: for example, that when the button is pressed
the lift comes soon, and the doors stay open long enough for users to enter and
leave the lift. The Requirement is expressed in terms of some phenomena b of the
Problem Domain, and we may think of the Customer as observing the Problem
Domain at the imaginary interface b to determine whether the Requirement is
satisfied.

! We might instead call the Machine the Solution Domain; but we prefer the term
Machine because it emphasises our focus on solving problems by building software
machines.

2 The decomposition of problems, and the careful identification of subproblem Ma-
chines and Problem Domains, is a central topic of [2].

% The fact that the Requirement constrains the domain and does not merely refer to
it is indicated by the arrowhead.

There are clearly at least two distinct subjects of description here: the Ma-
chine and the Problem Domain. The Machine must certainly be described be-
cause eventually we must write the program text: that is, a description of the
Machine’s internal and external behaviour.

The Problem Domain must be described because we must describe the Re-
quirement constraint, and also the domain’s own, given, properties. For example,
the lift domain has the property that if a MotorPositive event occurs followed
by a MotorOn event then the lift starts to rise in the shaft; and if the lift car
keeps rising from floor 2 it will arrive at floor 3; and when it passes a point just
6in below the home position of floor 3 it causes the floor sensor to close and
SensorOn/[3] becomes true.

For a description to be useful we must be completely clear about the exact
meaning of each term it uses*. For each descriptive language, if it is well-defined,
we already understand clearly the meanings of the general symbols and syntactic
constructs used in every description expressed in that language®. But a specific
description also uses specific terms, denoting phenomena of the domain it de-
scribes. It is here, in understanding the meanings of these specific terms, that
clarity is particularly needed. This need, however, is often ignored, because of an
unspoken assumption that all descriptions are about the Machine: we are not in
doubt about the meanings of specific terms in program texts, since a program is,
in effect, a formal object in which the program text itself furnishes the meanings
of the specific terms it uses. By contrast, a term denoting phenomena of an in-
formal domain outside the Machine must be clarified by an explicitly stated rule
for recognising what is, and what is not, an instance of the class of phenomena
denoted.

For example, in the lift system the term ArrivesAtFloor[n] might mean “The
floor sensor at floor n flips from off to on”; or “The distance of the lift car from
the home position at floor n changes from > 6in to < 6in”; or “The lift car
reaches the home position at floor n and the doors open.” Reasoning about any
description in which this term appears is likely to be pointless unless its exact
meaning is explicitly stated and known.

3 Describing the Machine Is Not Enough

It is tempting to believe that a sufficient description of the Problem Domain
can be given implicitly by describing the Machine. Two facts make this belief
slightly plausible.

First, a full Machine description includes a description of its behaviour at
its interface a with the Problem Domain. Since this is an interface of shared
phenomena it seems that it can be equally well described from either side.

There is certainly some truth in this, but not enough: the Problem Domain
properties at the interface are only a part of what must be described. For exam-

* As John von Neumann wrote[4]: “There is no point in using exact methods where
there is no clarity in the concepts and issues to which they are to be applied.”
5 These are the meanings defined by a formal semantics.

ple, SensorOn/[3] is a phenomenon of the interface a, but the exact position of
the lift in the shaft is not: it is a private phenomenon of the Problem Domain. So
in a description limited to phenomena of the Machine it is impossible to express
the causal relationship between the lift position and SensorOn/3]. We will return
to this point in Section 4.

Second, the Machine will often contain a Model of the Problem Domain. This
Model is typically an assemblage of data type instances—objects or relations
or other types—stored in the program’s local storage or held in an object or
relational database on disk. Its specific purpose is to reflect the state of the
Problem Domain, making it always accessible to the Machine.

So it looks plausible to suppose that a description of the Model will capture,
mutatis mutandis, the Problem Domain properties that are of interest. Again,
there is sometimes some truth in this, but not often and not enough: we will
return to this point in Section 6.

4 The Problem Is Not at the Interface

Developers departing reluctantly from the long tradition of their trade—in which
only the Machine has been the subject of explicit description—may be comforted
to believe that at least their voyage can be curtailed at the Machine’s external
interface to the Problem Domain. The Customer’s Requirement can, perhaps,
be expressed entirely in terms of Use Cases, each Use Case[3] embodying some
short bout of interaction between the Machine and an actor, in which the actor
obtains some ‘observable result of value’.

In some problems this view is exactly what is needed. For example, in the
design of software to control a vending machine, the Requirement is essentially
expressible in terms of Use Cases. The Use Cases may be Buy, in which the
actor is a user of the machine, Replenish, in which the actor is an employee
of the vending company, and Service, in which the actor is a service engineer.
If the vending machine behaves as required in each bout of interaction taken
individually, then the whole Requirement is satisfied. Sequences of Use Cases
need not be considered.

This approach can work well when the only Problem Domain events of signif-
icance are those that occur in the Use Cases. Nothing of interest happens except
in a Use Case: essentially, the behaviour of the actors when they are not inter-
acting with the machine does not affect the required treatment of the Use Cases.
Each Use Case then approaches the Machine, so to speak, with a clean slate. Of
course, an unbroken succession of purchasers may eventually empty the vending
machine’s stocks, and all subsequent users before the next Replenish instance
will be disappointed. But this does not significantly complicate the treatment of
the Buy Use Cases. Any relevant state is immediately available to the Machine
in the vending machine interface.

In systems of this kind it is not necessary to look further into the Problem
Domain than its interface with the Machine and the interactions that take place
there in the Use Cases. But many—perhaps most—systems are not of this kind.

It is then necessary to take explicit account, and make explicit descriptions, of
the properties and behaviour of the Problem Domain remote from the Machine
interface.

5 Requirements Are Not Given Properties

It is essential to distinguish clearly between the properties of the Problem Do-
main that are given, and those which the Machine must enforce.

The given Domain Properties are those that the Problem Domain possesses
regardless of the effect of the Machine. The fact that the lift can not go from
floor 2 to floor 4 without passing floor 3 does not depend on the Machine’s
behaviour. It is built into the fabric of the Domain. The same is true of the causal
chain by which motor events cause the lift to rise in the shaft. In the library it
is true of the fact that the same copy of a book can not be simultaneously on
loan to two different borrowers.

Requirements, by contrast, are not given but desired properties. They are
additional constraints that must be enforced by appropriate Machine behaviour
at the Problem Domain interface.

It is seriously confusing to make just one description of the Problem Domain,
combining Domain Properties with Requirements. It’s hard to be sure from a
combined description whether a particular property is a goal of the development
or an assumption that may be relied on in pursuing the goals®.

When the Problem Domain is structured into two or more component do-
mains, as it will be in any realistic system, not every domain will need both
Domain Properties and Requirements descriptions. Essentially, Requirements
descriptions are needed only for those domains that the Machine must control
in some way. For example, in a system to display current prices and volumes
for a stock exchange the Problem Domain may be structured as two component
domains: the Stock Exchange and the Display. No Requirements description is
needed—or possible—for the Stock Exchange, because the Machine only moni-
tors that domain and does not attempt to control it. But the Display needs both
a Requirements description, stipulating what must be displayed, and a Domain
Properties description, stating how the Machine can bring about the required
display by operations at its interface.

6 The Model Is Not the Reality

The notion of a Model of the Problem Domain (mentioned earlier in Section 3)
is well known, both in theory and practice. Here the word ‘Model’ means a
part of the Machine’s local storage or database that it keeps in a more or less
synchronised correspondence with a part of the Problem Domain. The Model
can then act as a surrogate for the Problem Domain, providing information to

5 The convention of using the word ‘shall’ to indicate a Requirement is an attempt to
mitigate this difficulty. The cure is complete separation.

the Machine that can not be conveniently obtained from the Problem Domain
itself when it is needed. For example, the library system maintains and uses a
database model of the books and members, and the lift system maintains and
uses a local object model of the motor state, the lift position, and the outstanding
service requests.

A Model in this sense is not a description of anything. It is a distinct domain
in itself, a designed component of the Machine Domain, that must be kept in a
certain correspondence with its Subject Domain. Phenomena of the Model, such
as data structure instances and field values, must correspond to phenomena of
the Subject Domain. For example, part of the required correspondence may be
that if the library book b is a copy of title ¢, then the title field of the CopyRecord
for b must contain a pointer to the TitleRecord for t.

Maintaining this correspondence should be viewed as a subproblem in its
own right, distinct from the subproblem in which the Model is used to produce
information. The correspondence subproblem can be represented as in Figure 2.

Subject
a/ Domain |.__ b =TT~ -
Maintenance T~y Model~
Machine _-'. Subject Domain
\ ‘—"—— AN P
c Model d See__-- -
Domain

Fig. 2. Maintaining Model-Subject Correspondence

The Model Domain, which is a part of the Machine in the original whole problem,
here becomes a component of the Problem Domain.

As the diagram shows, there are four distinct sets of phenomena to be con-
sidered in this problem:

— The phenomena between which the correspondence must be maintained:
e the phenomena b in the Subject Domain; and
e the phenomena d in the Model Domain.
— The phenomena which the Machine shares with each domain:
e the phenomena a of the Subject Domain; and
e the phenomena c of the Model Domain.

For example, in the lift system the phenomena b may be the existence or ab-
sence of an outstanding request for the lift from floor[f/, and the phenomena
d may be the results of a boolean method Floors.Requesting(f). The required
correspondence is that Floors. Requesting(f) returns true exactly when there is
an outstanding request”.

" As the arrowhead indicates, the correspondence must be achieved by constraining
the Model, not the Subject Domain.

To achieve the correspondence the Machine monitors phenomena a—for ex-
ample, each pressing of a request button—and causes phenomena c—for ex-
ample, by invoking a Floors. ButtonPressed(f) method. It must also, of course,
monitor the lift behaviour as detectable at a, and execute appropriate operations
at ¢ in response.

To solve the maintenance subproblem—that is, to devise a Machine that can
achieve and maintain the required correspondence—we must, in principle, de-
scribe the properties of the Subject and Model Domains. The Subject Domain
description will show how the creation and extinction of outstanding requests
b are imperfectly inferred from the shared phenomena a®. The Model Domain
description will capture the design of the object model, showing how the re-
sults returned by invocations of Floors. Requesting(f) are fully determined by the
preceding invocations of Floors. ButtonPressed(f) and of other methods.

Clearly, these two descriptions are not identical. If we mean to deal metic-
ulously with the maintenance subproblem, and to identify clearly the respects
in which the Model fails to correspond to the Subject reality, we must not be
content with just one description, vaguely characterised as our ‘model of the lift’.
One description can be true to the Subject Domain, or to the Model Domain,
but not to both®.

It is worth mentioning one respect in which the divergence of the Model
from the Subject Domain is particularly liable to cause serious difficulty and
even major system failure. The Model and the Subject Domains have, in general,
different life spans: the life span of the Model begins when the Machine is started
(or, it may be, restarted), but the life span of the Subject Domain, in almost
every case, begins earlier. The Model is easily initialised because it is essentially
a local variable of the Machine, but the Subject Domain can not be treated so
imperiously. A horrible example of a failure to understand this point is the design
of a GPS military device for calculating target co-ordinates. After a battery
change the device is programmed to reinitialise the target co-ordinates to its own
location. In one incident three soldiers were killed and 20 injured by friendly fire
as a result of this defect'C.

7 Summary

The purpose of this short paper has been to present a few basic tenets of an
explicit and careful approach to description (or ‘modelling’). They might be
summarised as: “Distinguish the machine from the problem domain”, “Don’t

8 The inference is imperfect because the shared phenomena are not sufficient, for
example, to indicate whether a requesting user has, in fact, had enough time to
enter the lift.

® One description could serve for both if the Model were, very exceptionally, a per-
fect surrogate for the Subject Domain. It would then be necessary to provide two
mappings from terms in the common description to phenomena in the two domains.

10 Steve Ferg drew my attention to this incident, reported in the Washington Post of
24 March 2002.

restrict description to the machine”, and “State explicitly what is described”.
These aspects of descriptive technique are far from new (indeed, they have been
presented elsewhere[l,5,2]). But they are surprisingly often ignored, and the
claim of this paper is that they merit more attention than they commonly receive.

8 Acknowledgements

This paper has benefited greatly from many conversations with Roel Wieringa,
and has been improved by his comments and suggestions in response to an earlier
draft. It has also been improved by some suggestions of the editor of SoSym.

References

1. Michael Jackson; Requirements and Specifications: a Lexicon of Practice, Principles
and Prejudices; Addison-Wesley, 1995

2. Michael Jackson; Problem Frames: Analysing and Structuring Software Develop-
ment Problems; Addison-Wesley, 2000

3. Philippe Kruchten; The Rational Unified Process: An Introduction; Addison-
Wesley, 1999

4. John von Neumann and Oskar Morgenstern; Theory of Games and Economic Be-
haviour; Princeton University Press, 1944

5. Pamela Zave and Michael Jackson; Four Dark Corners of Requirements Engineer-
ing; ACM Transactions on Software Methodology 6,1, July 1997, 1-30

