
Software Manufacture

Michael Jackson
Michael Jackson Systems Limited
London, United Kingdom

1 INTRODUCTION
We can think about software development in many different ways. Certainly, it is a social activity, in
which the developers, the buyers, and the users of the software interact in both conflict and
cooperation. It is also a branch of mathematics, in which the program texts to be produced may be
regarded as mathematical objects demanding an axiomatic basis for the theorems, lemmas, and
proofs required for their correct construction. It is also a branch  or perhaps several branches 
of engineering, in which experienced software developers apply established practical techniques
whose theoretical basis may have been forgotten or, in some cases, never fully worked out.

We can also think of software development as a manufacturing activity, in which the development
department is like a jobbing manufacturer of mechanical products: not like a motor car factory, in
which essentially the same product is produced over and over again in large volumes, because each
software project that the department must carry out is different enough for the developers to think
of their work as the production of a unique new product. It is this view of software development 
the view that it is a manufacturing activity  that I would like to pursue in this article.

2 DESCRIPTIONS
When a software development has been completed, what, exactly, has been produced? There will be
some executable program texts, some operating system commands, perhaps an interpretable
definition of a database structure, perhaps some data files containing modifiable parameters for
execution of the programs; there will be some kind of user manual and guide to the operation of the
software. During the development there may have been a statement of requirements, specifications
of various aspects and parts of the software and its environment, descriptions of its subject matter,
and many other pieces of documentation.

I would like to call all of these ‘descriptions’. A program text in C or Ada or Pascal or Cobol is a
description of the computation to be performed; a data model is a description of the data on which
the programs will operate, and also a description of the subject matter of the system; the user guide
may contain a description of the menus offered by the system to the user and what transitions are
permitted from one menu to another; the requirements statement may contain a description of
database volumes and response times for various functions; the specification may contain a
description of output documents and displays that the system produces.

The term ‘description’ is perhaps surprising. I am applying it to every item produced during the
whole development, whether in text or in pictorial form, whether stored on paper or magnetic
medium or merely displayed on a screen. Certainly, some of these items can sometimes be regarded
as ‘commands’ to a computer or to the development team; some as ‘questions’; some as ‘warnings’;
some as ‘constraints’ or ‘rules’. But I think the general term ‘description’ is useful; partly because I
want to be able to discuss some considerations that apply to everything produced during
development, and partly because it is a valuable discipline to think of everything produced as
describing some aspect or part of the software itself, or of its purpose, its behaviour, or its
environment, or even of the organisation and progress of the project in which it is being produced.

The business of software development, then, is the business of manufacturing descriptions. When we
look back at a completed project we can recount its history by saying what descriptions were
produced, in what order they were produced, and how each one was derived from new information
or from existing descriptions. The manufacturing operations create new descriptions, and this
activity continues until enough descriptions have been produced, of the right quality and content, to
satisfy the customer's requirement. We use the computer itself, as well as we are able, as a tool for

the manufacture of descriptions: some manufacturing operations, such as compiling an object
program from a source program text, are fully automated; some, such as creating a completely new
description from new information, use the computer as no more than a hand tool to help in the task
of entering and editing the description; some operations are carried out partly automatically and
partly by hand.

3 LANGUAGES
The raw materials of descriptions are languages. Just as I am using the term ‘description’ in a broad
sense, so I am using the term ‘language’ in a broad sense too. Some descriptions are made from
programming language; some, such as statements of the software’s purpose, may be made from
natural language; some may be made from a data modelling language, or a finite-state machine
language, or a logic language such as Horn clauses, or any useful mathematical notation. Diagrams,
such as the data structure diagrams used in JSP, or the action diagrams used in SADT, may also be
thought of as being made from linguistic raw material  in these cases, diagrammatic languages.

We can draw an analogy between the raw materials used for parts of mechanical products such as
motor cars and the raw materials, the languages, used for the descriptions produced in software
development. Motor car manufacturers know that they must use the right material for each part: the
windows must be made from glass, not from steel or rubber; the gear wheels in the differential must
be made from steel, not from glass or plastic; the body structure must be made from sheet steel. In
the same way, a software developer must use the right raw material, the right language, for each
description.

The two most important criteria in choosing a language for a description are that it should be
understandable and that it should be processable. A description is understandable if it conveys its
meaning directly and unambiguously to a human reader. It is processable if it can be usefully
processed by a computer in producing other descriptions. For some descriptions, only one of these
criteria applies. For example, an initial description of the purpose of a system must certainly be
understandable, but usually it cannot and need not be processable. By contrast, an intermediate
representation created by the syntax analysis phase of a compiler need not be understandable, but it
must certainly be processable.

In those development activities that are often called ‘requirements analysis’, ‘specification’, and
‘design’, we always want our descriptions to be understandable. Where possible, we would also like
them to be processable, so that we can use them for mechanical derivation  or, at least, checking 
of other descriptions. Unfortunately, because our development tools are still very primitive, the
criteria of understandability and processability are often in conflict. We might caricature the formal
and the informal development approaches by saying that in the formal approaches everything is
processable, but nothing is understandable; while in the informal approaches, everything is
understandable but nothing is processable.

3.1 An illustration: Using the wrong language
One formalism on which much work has been done is the entity-relation model and the associated
relational data description technique. If we have this formalism available, with developers skilled in
its use and tools suitable for its manipulation, we are naturally inclined to suppose that it is the only,
or the best, way of describing the subject matter of an information system. Suppose, for example,
that our subject matter concerns construction projects in which each project buys certain items from
certain suppliers for use in the project. Then we might make an entity-relation model in which we
define a relation SPI, as shown in Figure 1. An instance of the relation SPI in which Supplier =
S123, Item = 1456, and Project = P789 means that ‘Supplier S123 is a supplier of Item 1456 to
Project P789’ the instance of the relation states a particular fact about the real world, and the
relational model describes the real world by stating that some set of such particular facts is true.

Figure 1

But there is a difficulty in understanding this description. The difficulty arises from the static,
timeless, nature of the language chosen for the description, and the dynamic, time-ordered, nature
of the reality to be described. Readers may like to experiment for themselves with the
understandability of the description. Show the description, as given in Figure 1, to a number of
people, and ask each of them: what does ‘is a supplier of’ mean? It will be found, first, that many
different answers are given to this question. And, second, that answers will be given mostly in terms
of events happening in some order. For example, one might explain the meaning as ‘the supplier
has been put on the approved list for this item for this project, and has not been removed from the
list’; or as ‘the supplier has supplied this item to this project on at least one occasion’; or as ‘this item
has been ordered by this project from this supplier and the order has been accepted’; or in any one
of a hundred such ways.

The central point is that the most understandable description for the user of the system is a
description in terms of events, but the software developers offer a description in terms of relations
because that fits in with their database technology and with the single language they have decided to
use to describe the real world. This, unfortunately, is a common situation in software development.
Developers who use Prolog offer a rule-based description of the world; developers who use Lisp see
the world in terms of recursively-defined functions; developers who use Smalltalk see the world in
terms of objects responding to messages from other objects. To a small boy with a hammer,
everything in the world looks like a nail.

4 THE NEED FOR MANY DESCRIPTIONS
For any non-trivial software development, we need to produce many different descriptions. We
need to describe the real world which is the subject matter of the system; we need to describe how
the system transforms its inputs to its outputs; we need to describe the modular structure of the
software itself and the properties of each module; we need to describe the allowable sequences of
operations that can be invoked by its users. And within each of these general categories we need to
give more than one description.

In some cases, the need for more than one description is well recognised and understood. For
example, data modellers recognise that different users of a database system will need different user
views of the same data; and specifiers of printed reports recognise that it is necessary to define both
the logical structure of a report (what information is contained in the report and how it is organised)
and the physical structure (the arrangement of this information in lines and pages). But in both of
these cases, the two descriptions are of the same kind: they can both be made from the same
language.

The harder cases are those in which we need, for understandability, to produce descriptions made
from different languages describing different aspects of the same subject matter. For example, to
describe the real world of most information systems, we need to give both static and dynamic
descriptions. So we will need to produce descriptions in the language of entity-relation modelling
and descriptions in the language of time-ordered events. The problem we face is that we do not
have good enough tools and techniques for handling such multilingual sets of descriptions; that is
why we often resort to using only one language where we should be using many more. Within each
general category of description, we behave like manufacturers who have no techniques for
combining different materials and are therefore compelled to make each product from one material

SUPPLIER

ITEM

SPI PROJECT

only. We like to think of ourselves as engineers, but in this respect we are more like potters or stone
masons.

5 MANUFACTURING OPERATIONS AND TOOLS
A notable feature of established manufacturing practice is its repertoire of well understood
operations, and of tools with whose assistance such operations may be performed. Parts can be cast,
forged, extruded, and pressed; they can be turned on lathes, cut, ground, drilled, formed. planed,
and milled; they can be joined by gluing, riveting, and welding. Different operations are required
for different materials: plastics and soft metals can be extruded, but steel must be rolled.

We might seek an analogous repertoire of operations on the descriptions that are the parts of
software manufacture, and an analogous set of tools to help us to carry out those operations. it
seems that an important principle here is to limit our initial ambitions to seeking operations that are
simple but of great general utility and, only later, when simple and generally useful operations have
been identified, to consider how they may be combined to give the large and complex operations of
which program compilation is the most obvious example.

Existing complex tools, such as compilers, tend to present the software developer with a single,
indivisible operation. The source language program text is presented to the compiler which
produces the required object program in what, from the developer’s point of view, is a single
uninterruptible step. This approach gives fast and efficient compilation, which is an important
benefit. But it also gives an inflexibility that limits the usefulness of the tool in some contexts. It is
true that the Ada language and its compilers allow package specifications to be compiled separately
from package implementations, and that some compilers allow the developer to request the
suppression of code generation, so that syntax errors may be quickly found; but we need much
more than this.

Consider, for example, the handling of string variables in Pascal. If we want to maintain
compatibility with the standard Pascal that can be compiled by any standard compiler, we must
declare string variables as packed arrays and provide our own procedures for the necessary
operations of string concatenation, insertion, deletion, substring searching, conversion between
integers and strings, and so on. But we might also want to take advantage of a particular compiler’s
extensions to the standard language in which, perhaps, we can write

type
 string12 = string[12];
 string24 = string[24];
var
 s1, s2 : string12;
 s3 : string24;
begin
 s3 := concat('ABC',s2,'XYZ');
 ...
end...

and a variety of other similarly convenient statements. Because we can not intervene in the internal
operations of the compiler, we are forced to tackle this problem entirely outside the compiler, using
a preprocessor of some kind, in which a large part of the preprocessing consists of the same syntactic
analysis that the compiler will perform on the preprocessor’s output text. The lack of flexibility in
configuring the manufacturing operations is a severe disadvantage, even in the handling of this
small and simple problem.

6 COMPOSING DESCRIPTIONS
Traditionally, software development has often been regarded as an activity of decomposing
descriptions. For example, if we wish to create a program that will print the first thousand prime
numbers, we might start by writing the description:

begin
 build table of 1000 primes; print table of 1000 primes;
end;

and follow this by expanding the statements ‘build table’ and ‘print table’. This is traditional
functional decomposition or stepwise refinement. It induces a hierarchical structure, in which earlier
descriptions are at a higher level of the hierarchy than later descriptions. Altematively, the same
hierarchical structure may be obtained by a bottom-up rather than a top-down approach, in which
the earlier descriptions are at a lower level of the hierarchy and the later descriptions are at a higher
level.

Whether we proceed top-down or bottom-up, or by some mixture of these, we are presupposing a
hierarchical structure in which the form of composition is what we might call ‘whole and part’
composition. The whole of the description of ‘build table’ forms a part of the description of the
program, and the two descriptions are composed by embedding one within the other, or by
procedure call or macro expansion or some similar technique.

But there are other forms of composition which support a more general and powerful approach to
software manufacture. Notably, descriptions may be composed in parallel rather than in hierarchical
structure. Parallel composition of control structures is provided in many programming languages in
the form of concurrent processes and process communication by such mechanisms as message
passing, coroutine calls or the Ada rendezvous. Parallel composition of data structures is found in
the JSP technique of designing a program structure by composing the structures of its input and
output data streams, and in the database technique of composing a global view from many
individual user views of the data. Undoubtedly, many other forms of parallel composition of
descriptions await discovery and development into standardised techniques available to all software
developers and supported by appropriate tools.

7 COMPOSITION AND ABSTRACTION
An abstraction of a description is constructed by simply omitting some parts or aspects of the
description. For example, if we have a program text in a procedural language, we can form an
abstraction by omitting all the declarations, operations, and expressions except those that refer to a
chosen variable. The result will be a description of how the program behaves with respect to that
variable, from which we can, for example, determine whether the program can ever attempt to use
the value of the variable without having previously initialised it. If the chosen variable is a sequential
data stream together with its records, then the abstraction will be a description of the structure of
the data stream as imposed or assumed by the program

Abstraction, in this sense, is the complement of composition. By making enough abstractions of a
description, we can obtain a set of descriptions from which the original description may be
considered to have been manufactured by composition. Abstraction is the analysis that is
complementary to the composition synthesis.

Sometimes we will need to use abstraction in this way because the task of composition is simply too
difficult to do in a completely systematic and rigorous way. For example, the composition of data
stream structures to give a program structure may sometimes demand a degree of invention and
creativity; but once the program structure has been described, it is a straightforward and easy task to
form one abstraction for each data stream, and so to check that the program structure does indeed
constitute a correct composition of the data stream structures. A more extreme example, in which
the composition is too difficult to do at all, is seen in the task of satisfying response time
requirements in an interactive or real time program. Having constructed what we hope will be a
suitable program text, we may form an abstraction for each critical input-output pair and decorate
each abstraction with the execution time of each instruction it contains, in order to analyse the time
that will elapse between the input and the corresponding output. Obviously, abstraction, like all
manufacturing operations, needs support by appropriate tools.

8 SUMMARY
We can regard software development as a manufacturing activity in which we can learn something
useful from established manufacturing technique in other fields. In particular, we can see that we
need to use many different materials to form many different descriptions of one software product,
and many different manufacturing operations on these descriptions. But, of course, this is only one

view of the software development activity. Just as we need many different descriptions of the
software product, so we need many different descriptions of the software development activity itself;
and we need the ability to compose those descriptions into a many-faceted approach to our work.

Computing: The Next Generation
Peter Salenieks ed
pages 203-212
Ellis Horwood Ltd, 1988

