
SpecSE2.doc 22/11/99 09:44 Page 1

Specialising in Software Engineering

At the end of the millennium, software engineering will be 50 years old. Although
its birth is often associated with the 1968 and 1969 NATO conferences, it is more
properly marked by Wheeler’s invention of the subroutine in 1950 (“The
Preparation of Programs for an Electronic Digital Computer, with Special
Reference to the EDSAC and the use of a Library of Subroutines”; M V Wilkes, D
J Wheeler and S Gill; Addison-Wesley, 1951). The invention made possible an
explicit consideration of program design: if procedures are nodes and calls are
edges, the resulting graph can be considered a representation of the design. And it
gave procedure call the pre-eminent place it still retains today in object-oriented
languages.

It’s significant that this seed invention of our field was a low-level and almost
universally applicable device in a 1983 workshop, Mary Shaw entitled her
contribution “Procedure Calls are the Assembly Language of Software
Interconnection”. With this as the first step, it’s not surprising that software
engineering’s first 50 years have been largely devoted to a search for low-level
universal solutions to our problems: general-purpose languages and general-
purpose methods for programming, design and specification. With few exceptions,
every language and every method claims universal applicability. Advocates of
structured, functional and object-oriented techniques exclude no class of
application area or system; UML Rational’s attempt to become the Microsoft of
object-orientation carries no disclaimer that it is intended for use only on this
or that kind of problem; Java’s proponents see it as a universal programming
language. There is some appeal in this. The computer itself is a general-purpose
machine. Should its software not be developed by similarly general-purpose tools
and techniques?

No, it should not. General-purpose tools and techniques are rarely the most
effective for any specific purpose. That is why the established branches of
engineering are all highly specialised. Bridges are not designed by generalist
engineers who also work on automobiles and television sets and chemical plants.
Automobile engineers don’t design tunnels or electrical power networks. The field
of the generalist engineer is almost by definition limited to highly
speculative development of new products for which there are no reliable
established precedents. In the first half of the nineteenth century a great engineer
like Isambard Kingdom Brunel could work on designing artillery weapons and
prefabricated hospitals, suspension, arch and girder bridges; on laying out the line
for a new railway, and building railway tunnels, embankments and cuttings; and on
designing huge steam ships to cross the Atlantic. Today that versatility would be
impossible. Any one of Brunel’s projects would demand mastery of its own
substantial specialised branch of engineering of a rich body of slowly
accumulated knowledge that can scarcely be mastered in one lifetime.

Specialisation pays off in many ways. One is that as knowledge accumulates over
a long period the most effective designs are identified and become largely
standardised. Specialists, seeking to capture the market with the best possible
product, examine their competitors’ products with a keen eye, hoping to identify
and copy new features and design elements that work well. A hundred and twenty
years ago car designers were unsure whether the driver should sit at the front or
the back, should sit in the middle or to one side, and should steer with a tiller or a
wheel. Those questions, along with a thousand others, have long been settled, and
today no car designer wastes time reconsidering them.

SpecSE2.doc 22/11/99 09:44 Page 2

A second payoff is that sound theoretical principles can be embodied in standard
designs and standard development practices. The specialised engineer works out
few decisions by calculation from first principles; most decisions are made by
recognising a standard situation and consulting standard design tables or rules of
thumb or the results of standardised calculation procedures. It is true that
established engineers are familiar with basic theory in their field in a way that too
many software engineers are not. A software engineer who knows nothing of
formal languages, data structures and process algebras is like an electrical
engineer who does not know Ohm’s law and Kirchoff’s law; and there are too
many such software engineers. Software engineers must be educated in the core
curriculum that David Parnas wrote of (“Software Engineering: An
Unconsummated Marriage”; David Lorge Parnas; Comm ACM 40,9, page 128;
September 1997). Stronger education in theory is necessary. But it is not
sufficient. To be applied regularly and easily, theory must be encapsulated in
commonly understood and practised design procedures, and that can happen only
in the context of a specialised field.

A third payoff is that specialised engineers have fairly reliable ideas of what they
can’t do and why they can’t do it. No structural engineer would embark on the
construction of a thousand-story skyscraper or a suspension bridge with a fifty-
mile span. But the equally absurd proposal for SDI the ‘star wars project’
was given serious consideration by many software engineers before David Parnas
and a few others convinced the world of its folly.

A fourth payoff is that specialised engineers have a stronger sense of personal
professional responsibility for selfish reasons if for no others. In a career of
successive projects, each one in the same technical domain as its predecessors and
conducted within the same professional social group, a significant personal failure
can’t be relegated to the limbo of the past. For the specialist, a really serious
failure means the end of a career. To see what professional responsibility means,
software engineers should read how William J LeMessurier, the structural engineer
responsible for the Citicorp Tower in New York City, dealt with a serious flaw in
his design (“The Fifty-Nine Story Crisis”; Joe Morgenstern; The New Yorker, May
29, 1995, pages 45-53).

Many eminent computer scientists rightly berate practising software engineers for
paying too little attention to the theoretical foundations of our work. But they
rarely notice how varied that work is. Building the software for a telephone switch
has very little in common with building a compiler or a car braking system or
email client. What they have in common lies at least as far below the level of
working practice as what is common to designing an aeroplane and designing a
tunnel. Yet the basic stance of software engineers even the name itself of our
discipline has militated against specialisation for 50 years. We have aspired to
take our place as just one more among the established branches of engineering,
failing to recognise that we are really a confederation of loosely related branches.

Our achievements over our history of fifty years give us little reason for
complacency about this approach. Peter Neuman’s Risks Forum reminds us
continually of a failure rate that would not be tolerated in any established branch
of engineering. Of course established engineers have their failures, too. Often they
are notorious and spectacular, like the Tacoma Narrows bridge that tore itself to
pieces in 1940 in a moderately high wind, or the space-frame roof of the Hartford
Coliseum that collapsed under a fall of snow in 1978, or the Titanic, lost in 1912.
But established engineers are compelled to submit to public enquiry into each
major failure, and more importantly they have social and professional
mechanisms in place to digest the lesson and install it in a communal body of

SpecSE2.doc 22/11/99 09:44 Page 3

specialised knowledge where it can prevent repetition of the mistake. We shake
our heads over the Therac-25 and the Ariane 5 disasters. But what software
engineering lessons, exactly, did we learn? And in what repository of knowledge
have we filed them? And what mechanisms guarantee that they will not be
repeated? Learning from mistakes is the single most powerful force for
improvement in engineering. But learning is effective only if engineering is
specialised and highly structured.

I believe that the next 50 years will see an irresistible movement towards
specialisation in software engineering. There are already a few established
specialisations. Compilers are perhaps the most notable case. The first company to
offer software development on a commercial basis set up shop writing compilers
for hardware manufacturers in the 1960s. Compiler writing is now a discipline in
its own right, with its own terminology, its own standard designs, and its own
university courses. This is why the quality of today’s compilers is so high.

Specialisations will also grow up around emerging standard designs. Object-
oriented patterns and frameworks will have their most important impact here, and
so too will the ideas of Domain-Specific Software Architectures. Some
specialisations will form because only specialists can survive in a hostile
environment. The frantic rush to produce compelling Web sites has led to a very
complex environment of new HTML variants, scripting languages, database
connections and much else. It is very hard for anyone but a dedicated specialist to
put up a good site that works reliably.

Of course specialisation is a necessary, not a sufficient, condition for quality.
There are several classes of software product where the field is dominated by a
few, presumably specialised, producers, yet quality is still very poor. But in the
new millennium the trend to specialisation will surely accelerate and intensify. In
the process it will give us at least the probability of software of a better quality
than we have learned to live with in the past 50 years. And I must say: it’s long
overdue.

[Michael Jackson; 1560 words including references; 22/07/99; SpecSE4.doc; IEEE
Software 16,6 pages 119-121, November/December 1999]

