STRUCTURE-ORIENTED PROGRAMMING

Michael Jackson
Michael Jackson Systems Limited
17 Conduit Street
London W1R 9TD
England

1 Introductory Remarks on Structure and Method

The two programs 'skip' and 'abort' (in Dijkstra's notation) have no
structure: they are atomic, and therefore have no parts to be brought
into a relationship by a program structure. All other programs have
structure. An 'unstructured program', consisting of assignment, goto,
and input/output statements, some labelled, has at least the structure
of a directed graph. A 'structured program' in the conventional sense
has the structure of a hierarchy or, perhaps, of a tree. The question
then is not whether our programs are to have structure: they will have
structure whether we like it or not. The question is rather: what
structure should a program have? And, of course, how should we compose
our program structures?

In the conventional sense 'structured programming' is the composition
of programs by stepwise refinement or top-down design. The structure
of the method corresponds exactly to the structure of the programs it
is used to build. Initially a root node is defined; at each subsequent
step, a terminal node of the tree or hierarchy so far constructed is
visited; if it is not to be a terminal node of the finished program, it
is refined or decomposed as a construct {(sequence, iteration, or selec-
tion) whose parts are its child nodes in the program structure. The
traversal rule for stepwise or top-down design is that a parent must be
visited before any of its children. For the fundamentalist version of
the opposite method - bottom-up design - the traversal rule is that
each child must be visited before its parent. In practice, some bot-
tom-up design is used in a preliminary phase to establish a more reas-
onable and useful set of primitives towards which top-down design can
then proceed.

But even this mitigation of the rigours of top-down and stepwise met-
hods does not make them satisfactory. They are deeply unsatisfactory
for many reasons. First, they assume that the important structure of
the program is that if a hierarchy or tree, when other structures (for
example, networks) may be more suitable either in general or in parti-
cular cases. Second, they force the programmer to make the hardest
decisions first. The initial decision, how to decompose or refine the
root node, is the hardest of all: it concerns the structure of the
whole program, and it affects critically all that follows. If the re-
finement of the root node is wrong, the work that follows is largely
wasted. Third, the .method in itself offers no help or guidance to the
programmer in arriving at a sound program structure. The programmer
must guide himself, usually by intuition or by recognising similarities
between the current problem and other problems previously solved. Four-
th, the method militates against separation of design from implementat-
ion: the programmer is encouraged to see implementation in the chosen
programming language as merely the final steps of refinement, elaborat-
ing nodes far from the root, but never recasting the higher levels of
the structure. Fifth, at every step the programmer is considering the
program itself - that is, considering the problem solution rather than
the problem statement or the domain within which the problem statement
has meaning.

182

Of course, these criticisms are aimed at a simplified - perhaps even

a caricatured - version of stepwise refinement. Those who practise
stepwise refinement never use it in its simplest form, but introduce
other considerations to help them to make sound refinement decisions.
And, increasingly, quite different methods come to replace stepwise
refinement: notably, methods based on correctness proofs and methods
based on transformations. I believe that the transformational approach
holds great promise, chiefly because it offers a context in which the
programmer can deal effectively with the several different - and poss-
ibly conflicting - structures that are relevant to the construction of
a program. In a substantial program, such as a data processing system,
it is necessary to consider at least these structures: the structure of
the problem domain; the structure of the problem within its domain; the
structure of an acceptable problem solution; and the structure of an
efficiently executable program embodying the solution. An effective
method must allow separate consideration of these structures so far as
is possible, and an orderly progress from the first to the last. The
key techniques are the composition of existing structures to give a new
structure and the transformation from one structure into another.

An effective method must also minimise the need for iteration in pro-
gram development. The earliest steps in development should concern
those decisions that can be made most surely and easily: typically,
these will be decisions about how to describe something that already
exists in the problem domain. Each decision made should be explicit,
with as few hidden implications as possible. Each decision should be
subjected as early as possible to the test of a later step that may
show it to be wrong. The more likely a decision is to be wrong, the
less work should be required to undo it. I believe that these prin-
ciples are embodied in the approach described in this paper.

2 Problem Class and Sclution Class

The class of problem I wish to consider is that in which the problem
domain exhibits ordering, either in time or in space, as an essential
characteristic. For example, in compiler design the problem domain is
the set of all possible program texts (including, of course, those con-
taining syntactic and other errors). These program texts are linearly
arranged, and this ordering is essential: trivially, the statement x:=y
is essentially different from y:=x; more significantly, the language
definition may require all identifiers to be declared before they are
used. A very different example is a system for handling a company's)
sales. The domain of the problem is the real world outside the system,
in which customers order, receive, and pay for goods: these events are
ordered in time, and it is of essential significance wheéther a customer
pays for goods before receiving them. Yet another example, where the
ordering is more abstract, is the problem of calculating prime numbers.
Here the domain may be taken to be the natural numbers, and the order-
ing is that induced by the successor function.

It is important to distinguish ordering in the problem domain from
ordering in the finished, executable, program. A compiler in its exe-
cutable form may consist of lexical analysis, syntax analysis, and code
generation phases, executed in that order; evidently, this is not an
ordering in the problem domain, but a result of some decisions about
implementation issues. 1In a similar way, a program to calculate prime
numbers may begin with some representation of the natural numbers in a
certain range and then delete successively the multiples of each number
not yet deleted (the Sieve of Eratosthenes). Here, the ordering by
which the number 10 (a multiple of 2) is deleted before 9 (a multiple
of 3), is a result of an implementation choice, not alone of an ordering

183

in the problem domain.

The solutions we shall seek are those in which problem domain orderings
are represented by sequential processes. I hold that this is a very
natural choice, and preferable to the alternatives for the problem class
we are considering. Suppose, for example, that we are dealing with a
problem domain consisting of students who enter for examinations, sit
the examinations, and receive grades when their papers are marked. Then
we might consider representing this external reality by three sets:
those who have entered, those who have sat, and those who have been
graded. We would need in addition to state rules governing the addition
of members to sets as the system moves from one state to another - for
example, that the set of those who have sat is always a superset of
those who have entered. I am claiming that it is more natural to re-
present the events in the life of each student in a sequential process,
showing in the most direct way that a student must have entered before
he can sit, and must have sat before he can be graded. 1In a similar
fashion, we would choose to represent the behaviour of a customer by a
secuential process showing that the customer orders goods before receiv-
ing them.

Because the problem domain ordering is almost always a partial and not
a total ordering, we will find that our solutions involve large numbers
of processes: there will be one for each student, one for each customer,
and so on. Inevitably, this presents an implementation problem. Few
execution environments are capable of executing large numbers of con-
current sequential processes, and few or none are capable of executing
processes whose lifetimes may be measured in years. One approach to
this kind of problem is to set about constructing a suitable execution
environment: in essence, this is what is done for those programming
languages for which a substantial run-time environment is provided.

Our approach here is different. We aim to construct programs that may
be executed in whatever environment may be available, even if that en-
vironment offers only a single real processor implementing a single
virtual processor. In the implementation stage of development we there-
fore expect to transform our solution from one in which there are large
numbers of long-lived processes to one in which there are few process-
es - perhaps only one - implemented so that they can be suspended and
resumed over a very long period. Some simple problems may require lit-
tle or no solution transformation; others may require substantial trans-
formation and even the construction of special-purpose scheduling pro-
cesses; others still may lie between these extremes.

We choose this transformational approach to implementation because we

do not wish to limit applicability of the method by the availability of
particular execution environments. Nor do we want the execution environ-
ment to exert any strong influence on the early stages of development.

It seems quite wrong, at the outset of a program development, to be
forced to think in terms of a hierarchy of subroutines because the event-
ual implementation will be in Fortran; it is little better to be per-
mitted to think in terms of coroutines because Simula is available as

an implementation language.

3 Design of a Simple Sequential Process

Suppose that we are required to design and build a sequential process
that has one input and one output stream. The input stream contains two
types of record: WEEK records, containing the character W as a record
discriminant and an integer WNO which is the ordinal week number count-
ing from some defined starting date; and DAY records, containing the
character D as discriminant and an integer DAMT which is the amount of

184

rain falling on that day, together with a second integer DNO which is
the ordinal number of the day within the week (Monday = 1, and so on).
The records are arranged in date order, the DAY records following their
associated WEEK records. Where there has been no rainfall in a day or
week the corresponding record is omitted. The output stream is to con-
tain a record for each week in which rain has fallen, giving the total
amount of rainfall in that week, the records being in date order.

We begin by describing the structures of the data streams in a diagram-
matic notation:

INPUT OUTPUT
*

WEEK WEEK

GROUP TOTAL
WEEK WEEK
REC BODY

DAY
REC

The notation is largely self-explanatory. The asterisk (*) means iter-
ation of zero or more occurrences; the parts of a sequence (WEEK GROUP
in the example) appear in order from left to right. The structure we
are imposing on the streams is roughly equivalent to a regular grammar,
and some may prefer a textual notation to the diagrammatic notation used
here.

We may regard the input and output structures as sequential processes,
corresponding respectively to the ordered sets of events in the input

and output subdomains of the problem domain. Our next step is to try

to combine these two processes into a single process structure that will
form the basis of the program. Evidently, the combined process structure
should be:

185

PROGRAM
WEEK
GRP/TOT
WEEK WEEK
REC BODY
DAY
REC

The correctness of this structure, so far as it can be checked at this
stage of the development, depends on its satisfying two criteria:

1 By suitable pruning the program structure can be reduced to either
of the data structures.

2 Where a program component corresponds to a component in each data
structure (as WEEK GRP/TOT corresponds to WEEK GROUP and to WEEK
TOTAL), the number and order of occurrences of the data structure
components is the same (there are the same number of WEEK GROUPs
as of WEEK TOTALs, and they correspond pairwise).

The next step in development is to determine what executable operations
are required for the program to produce its output from its input, and
to embed those operations in the program structure. This step is very
like embedding semantic routines in the structure of a parser. The
essential criterion of correctness here is that the program structure
should provide an obvious and natural location for each executable oper-
ation. For example, we can determine that a variable will be required
to compute the WEEK TOTAL, and that this variable must be initialised
by the operation tot:=0. The operation must be executed once for each
WEEK TOTAL, at the beginning of the program component corresponding to
that week; the appropriate place is clearly available, in the WEEK GRP/
TOT component.

The fourth step is to consider whether there is difficulty in parsing
the input stream, and in this case there is none (on the assumption
that there will be single loock-ahead). In more complex problems, it
may be necessary to use multiple look-ahead or backtracking. In this
brief account of the program development method we will not explore
this aspect, except to say that the work that has been done on compiler
constructions is clearly relevant.

186

Finally, we must convert the program structure, with embedded operations
and specified conditions on the iteration and selection constructs, into
a program text in a suitable language. In this tiny example, there is
no difficulty in transcribing into any procedural language such as
Pascal, Fortran, COBOL, PL/I, Assembler, or even Basic.

Reviewing what we have described so briefly, we may observe that:

- We began by describing the problem domain. Initially we did not
even take account of the reguirement that one of the streams was
to be produced from the other.

- Because the problem domain was already defined, albeit informally,
defining the stream structures was a task of description, not of
invention.

- The program structure was formed by composition of the previously
defined data structures, not by decomposition of the problem itself.

- The composition of the program structure could be considered as
itself a transformation of the skeleton CSP program consisting of
the two data structures as parallel processes.

- Some intermediate criteria of correctness are available, which
will reduce the extent of the iteration necessary in design.

-~ Difficulty in parsing the input stream does not lead us to rewrite
the grammar but rather to preserve the original structure and mod-
ify the mechanism used for recognition. .

4 A More Complex Example

In the small example of the previous section we took the problem domain
to be fully defined by the input and output data streams. We might have
made more of the fact that there is a real world outside the system,
abstractly described in terms of a simple calendar and the incidence of
rain; and that the events of this real world - the arrival of a new day
or week, and the falling of a unit of rain - have been captured in the
program's input stream. But this would have been rather artificial: it
was enough to take the data streams themselves as the problem domain.

We now look at a slightly more elaborate example, in which the problem
domain is not fully described in any data stream, and the solution will
demand more than one sequential process. The problem is taken from
Dijkstra, who attributes it to Hamming: I have made a very slight change
to the way in which the problem is stated. .

A sequence of integers, S, is in increasing order. The members of S are
defined by the axioms:

Axiom 1: 1 is a member of S.
Axiom 2: If n is a member of S, then so are 2*n, 3*n, and 5*n.
Axiom 3: S has no members other than by virtue of Axioms 1 and 2.

We have not stated the problem: only the problem domain, which is the
sequence S. The problem may be simply to genexate S, or it may be to
determine how many members of S are less than 1000, or, generally, to
answer any guestion that may be asked about S. Nonetheless, we can
proceed on the basis that we must certainly construct at least a seguen-
tial process whose ordered events correspond to the members of S.

If we have only Axiom 1 and, mutatis mutandis, Axiom 3, this require-
ment would be satisfied by the process:

187

PS seq
1;
PS end

Taking account of Axiom 2, we require three processes pi (i = 1,2,3)
which take as input the successive members of S and produce as output
those numbers multiplied by i:

Pi itr while true
read n;
write i*n;

Pi end

These processes must be connected to PS, which must be elaborated to
write and read the communicating data streams, and to ensure the speci-
fied ordering of the members of S and the absence of duplicates. The
resulting configuration is:

PS

S2N, s2

S3N P2 S3

S5N S5

P3

P5

in which data streams are represented by circles and processes by rec-
tangles. The streams S2, S3, S5 are identical copies of S. The rules

governing the form of data stream (message passing) communication used
here are:

- a stream has one writer and one reader process;
- a stream is unboundedly buffered;

- a stream is strictly sequential: the jth read operation by the reader
process obtains the record written by the jth write operation executed
by the writer process;

~ write operations do not cause process blocking;

- the jth read operation on a stream causes blocking of the reader pro-
cess if the writer process has not yet executed the jth writer opera-
tion.

188

A usable structure for the elaborated PS is shown below. It is some-—
what optimised, but that is not our immediate concern here.

PS

REC1 PSBODY =

*
S2ERC1 S3REC1 SSREC1 RECn/
RECSiN

PS2N PS3N PS5N :
\ S2REC S3RE S5RE
REC | rec REC B SRECH cn

s2n° ‘ s3n° H s5N° |_°
REC REC REC

The components PSiNREC are selections, each consisting either of a
SiNREC or of nothing (-). 1In text form:

PS5 seq
write 1 to S2; write 1 to S53; write 1 to §5;
read S2N; read S3N; read S5N;
PSBODY itr while true
n:=min (S2NREC, S3NREC, S5NREC);:
PS2NREC sel (n=S2NREC)
read S2N;
PS2ZNREC end
PS3NREC sel (n=S3NREC)
read S3N;
PS3NREC end
PSS5NREC sel (n=S5NREC)
read SS5N;
PSSNREC end
write n to S2; write n to S3; write n to S5;
PSBODY end
PS end =

189

(We have, of course, omitted the substance of the design steps and,
with it, the arguments that convince us of the correctness of our solu-
tion.)

The resulting confiquration of four concurrent sequential processes may
be executed in an environment providing implementation of the communica-
tion primitives and necessary four processors. However, we are more
interested in seeing that suitable transformations can reduce our solu-
tion to a single sequential process capable of execution in a more gen-
eral environment.

The essence of such a reduction lies in determining a scheduling of the
four processes that will not preclude execution (for instance, by intro-
ducing deadlock or starvation) and can be bound somehow into the imple-
nented program text. There are several possibilities, but here we
consider only one.

In the unreduced solution, we may imagine each process Pi (i=1, 2, 3)
running ‘fast’' or 'slow'. Running fast means producing its outputs on
the stream SiN at the earliest possible moment by consuming each input
record of Si as soon as it becomes available. Running slow means pro-
ducing its outputs on the stream SiN as late as possible ~ that is, when
PS is blocked at a read operation on SiN. We will choose to run the
processes Pi as slow as possible. This choice has the advantage that
the buffering requirement will be for the streams 52, s3, and S5 rather
than for S2N, S3N, and S5N: since S2, S3, and S5 are identical, we may
hope to achieve some useful economy of space.

Our scheduling choice can be implemented by converting each of the pro-
cesses Pi into a procedure invoked by PS. This transformation consists
simply of saving the state of Pi at each operation read Si, and return-
ing to the invoking PS; the write Si operations in PS are implemented as
invocations of Pi. This is the transformation that is sometimes known
as 'program inversion'; it is broadly equivalent to casting each Pi in
the form of a semi-coroutine. The effect is that execution of PS is
suspended at each write Si operation; Pi is then activated, and suspend-
ed at its next read Si operation, whereupon execution of PS is resumed.

Having bound the mutual scheduling of PS and the Pi in this way, we

can easily implement the streams Si as a single array, with suitable
assignments to indices Il1, I2, I3, and I5 as implementations of the

write and read operations. The correctness of this implementation relies
on our having already bound the process scheduling.

The transformations mentioned above have converted a network structure

of four processes into a tree structure of a process PS5 and three pro-
cedures invoked by PS. This conversion from process network to procedure
tree or hierarchy is typical. We may view the procedure mechanism -

with own variables for the saved state - as being primarily a schedul-
ing device: a process (in our example, each of the Pi) is transformed

to a procedure so that another procedure or a process may control its
scheduling. The resulting procedure hierarchy implements choices about
control of scheduling, not about levels of abstraction of any other con-
sideration belonging to the problem domain:

Ps

P2 P3' PS5

190

5 A Small Control Example

The problem domain for the problem of the preceding section was a math-
ematical construct, the sequence S. In this section we look at a prob-~
lem whose domain is very much in the 'real world'.

The problem is to control an elevator in a building. The elevator is
suspended from a motor-driven winch, the motor being capable of respond-
ing to the commands START, STOP, UP, and DOWN; START and STOP have their
obvious meanings, and UP and DOWN set the direction of travel of the
elevator for the next START command. At each floor there are buttons

to summon the elevator for upwards and downwards travel (only the former
at the ground floor, and only the latter at the top floor); inside the
elevator there is a button for each floor to direct the elevator to
travel to that floor. At each floor there is a sensor switch that as-
sumes the 'closed' position when the elevator is within 10cm of its

rest position at the floor, and is otherwise in its 'open' position.

We begin our development by considering what events in the problem do-
main we wish to describe and to model. We might, for example, wish to
model the event 'passenger P enters the elevator', or the event eleva-
tor arrives at floor F'. Our purpose is to construct, as the basis for
our system, a work-purpose is to construct, as the basis for our system,
a working model of the problem domain that is rich enough to support
the outputs that will be reguired. This working model will be driven
by inputs from the problem domain to the system, these inputs being
regarded as conveying information that something has happened in the
'real world' that must be replicated in the model if the model is to
remain true to reality.

In this problem, we are heavily constrained by the available input
mechanisms, assuming that we cannot add to those already described.

We might, for example, wish to provide a very clever control system
that cancels a command to travel to a floor if the passenger issuing
the command leaves the elevator prematurely. But such a system would
require inputs that refer to particular passengers; and that in turn
would require the use of passenger badges and badge readers to supple-
ment or replace the simple buttons already available. So we must limit
ourselves to those events that can be detected and signalled by the in-
put mechanisms we have. After some consideration we arrive at the very
short list: ARRIVE(F); LEAVE(F); PRESS(B); meaning respectively that
the elevator arrives at floor F, the elevator leaves floor F, and button
B is pressed.

191

The time ordering of these events can be shown in our usual diagram-
matic notation:

BUTTON LIEE
LEAVE (1) LIFTBODY
*
PRESS -
*
FLOOR (F)
- ARRIVE (F LEAVE(F)

There is, of course, a constraint on the LIFT that is not shown in the
diagram: the value of F in FLOOR(F) must always be Gzl, where G is the
value of F in the most recent LEAVE(F) event, and F must remain within
the range given by the numbering of the floors of the building.

The tree structures BUTTON and LIFT represent both the behaviour of the
real world buttons and elevator and the behaviour of the processes that
will model them within the system. We will connect the model processes
to the real world objects that they model in the obvious ways: the LIFT
process will be decorated with suitable operations repeatedly examining
the state of the floor sensors; the BUTTON processes, we will assume,
receive input messages (electrical pulses) when the modelled buttons are
pressed.

We have now specified our working model of the problem domain and can
proceed to specify some of the desired functions of the system - that
is, some of its desired outputs. Suppose, for example, that the eleva-
tor is equipped with a set of lights, one for each floor, intended to
show the current position of the elevator. These lights can be turned
on and off by ON(F) and OFF(F) commands, and are initially off. The
desired outputs can be specified in terms of the events within the
model process LIFT. Initially, the command ON(1l) is output; when the
elevator performs the action LEAVE(1l), the command OFF(1) is output;
when it performs the actions ARRIVE(F) and LEAVE(F) the commands ON(F)
and OFF(F) respectively are output. Another example of a simple out-
Put requirement is an enquiry facility for anxious passengers waiting
at the ground floor: by pressing a special button they can obtain a
display showing which floor the elevator is at, or, if it is not at any
floor, which floor it has most recently passed. To provide this output
we add a process to the specification whose input is the stream of press
Ooperations on the special button; on receiving such an input message,
the process inspects the state of the LIFT process and informs the
anxious passenger of the current value of F.

The relationship between the model and the outputs is direct: outputs
are obtained by operations embedded in the model or by inspection of the
model state. In either case, the required output is specified in terms
of the model itself. The adequacy of the model is measured by its

192

capacity to provide the basis for the functional specification, and
the functional specifications are translated directly into elaborations
of the system whose unelaborated form is the pure model.

The most interesting outputs, of course, are the motor control commands
START, STOP, UP, and DOWN. For a clearer exposition of the model's
relationship to the system functions we will specify these outputs in
two stages. In the first stage we will specify that the elevator is to
travel continually from the ground to the top floor and back again,
irrespective of whether any buttons have been pressed. In the second
stage we will take account of the buttons.

For the first stage, we require to show a structure for the elevator
such as: N

LIFT2
*
JOURNEY ’
GROUP
UPWARDS DOWNWARDS
UPMOST DOWNMOST
UPBODY FLOOR DOWNBODY || FLOOR
*
up DOWN
FLOOR FLOOR

193

This is different from the previous structure given for LIFT, and we
will embody it in a new process rather than elaborating the original
structure. The new process will be connected to the original LIFT pro-
cess by a data stream containing messages indicating that the elevator
has performed a LEAVE(F) action, to allow the output of motor control
commands to be properly synchronised with the behaviour of the real
elevator. Our system, ignoring the small functions previously speci-
fied, is now:

REAL @ MODEL MOTOR
BUTTON 'u BUTTON COMMANDS

REAL 5/L\ MODEL MODEL
LIFT v LIFT LIFT2

The REAL BUTTON and MODEL BUTTON processes are in..1-1 correspondence;
there are as many of each as there are buttons (for example, 16 if the
building has 6 floors). There is one REAL LIFT and one MODEL LIFT and
one MODEL LIFT2 process. The connection between REAL LIFT and MODEL
LIFT, shown in the diagram by the diamond marked L, is that MODEL LIFT
inspects the state of REAL LIFT as given by the states of the floor sen-
sors. All other process connections are by message streams, shown as
before by circles. The MOTOR COMMANDS output is considered to be a
message stream in which the UP, DOWN, START and STOP commands are trans-
mitted sequentially to the motor.

For the second stage, in which the travel of the elevator is conditional
on the pressing of buttons, we will need a more elaborate model of the
buttons, to show whether a button has been PRESSed since the elevator
last visited the associated floor. We will introduce MODEL BUTTON2 pro-
cesses, whose input is a merging of the real world PRESS events sequence
and of a stream of messages from MODEL LIFT2 indicating that the elevator
has stopped at the floor. Additionally, we will specify that the MODEL
LIFT2 process inspects the state of the MODEL BUTTON2 processes to deter-
mine whether or not to stop at a particular floor and whether or not to
complete a full UPWARDS or DOWNWARDS part of a JOURNEY GROUP. The pro-
cess connections are now:

REAL 53 MODEL | - MODEL
BUTTON o/ BUTTON UTTON2

REAL MODEL VAR MODEL
L LL
LIFT LIFT \/ LIFT2
MOTOR

COMMANDS

194

The double bars on the MODEL BUTTON2 side of the connections between

the MODEL LIFT2 and the MODEL BUTTON2 processes indicate that MODEL
BUTTON2 and MODEL LIFT2 are in many-to-1 correspondence. Associated
with this elaboration of the process connections are more elaborate
process structures for MODEL BUTTON2 and MODEL LIFT2. The elaboration
of the latter will depend on the algorithm chosen for controlling travel
of the elevator: the choice of this algorithm is a matter for experts

in traffic control, not for experts in computer system development,
although its expression is certainly a task for the system developer.
The structure of the MODEL BUTTON2 processes is inevitably:

MODEL
BUTTON2
- *
REQUEST
GROUP
EXTRA EXTRA
VISIT PRESS PRESS VISIT
SET SET
* *
VISIT PRESS

This structure accommodates all possible mergings of the BB and LB
message streams for the button. We make no assumptions about synchron-
isation between the MODEL LIFT2 and MODEL BUTTON2 processes. The state
of the MODEL BUTTON2 processes .must include a variable OUTSTANDING~
REQUEST whose value is initially false, set to true on the lone PRESS
and reset to false on the lone VISIT event. It is this variable that
MODEL LIFT2 inspects to determine the movements required of the elevator.

There is considerable indeterminacy in our specification. The sources
of indeterminacy are the lack of specification of process scheduling,
the connections by state inspection, and the merging of the BB and LB
message streams. It is typical of both control and data processing
systems that this indeterminacy is acceptable provided merely that it

is bounded: we assume a reasonable scheduling of the processes, and a
reasonable speed of transmission of messages in message streams. A full
account of the development method would include a discussion of a step -
the System Timing step - in which bounds on the acceptable indeterminacy
are explicitly considered and formulated before the implementation of
the system is designed.

A wide range of possible implementations is available. We concentrate
attention on questions of process scheduling and the sharing of one or
more processes of the specification. For each processor we design a
procedure hierarchy, as in the preceding section. If for our present
problem we assume an implementation on one processor we must design one
procedure hierarchy to schedule and embody all the specification pro-

195

cesses. Relevant transformations in the present problem include both
‘program inversion', briefly discussed in the preceding section, and
the separation of a process' state from its program text to allow a
single copy of the executable text to service many process instances.
Separated state vectors become records in main or backing storage, ar-
ranged in structures such as arrays, trees, lists, queues or stacks
designed to speed access to the process' state vector when the process
is to be activated. Implementation of message streams may regquire ex-
plicit buffering mechanisms in some cases, although it is often an ob-
jective of implementation design to avoid buffering so far as possible.

An appropriate procedure hierarchy for a single-processor implementation
is shown below. Symbols have been added to show the presence of the set
of separated state vectors for the button processes and the buffering

of (no more than one record of) the LL message stream. The inputs and
outputs of the whole system have also been shown.

° SCHEDULER LL
PROCESS BUFFER
<

MODEL MODEL
LIFT2 BUTTON
0TO B
MOTOR
MODEL
COMMENDS BUTTON2

196

The SCHEDULER process is new, introduced only at the implementation
stage. Whereas in the problem of the preceding section it was possible
to use one of the specification processes (PS) as the scheduler, this

is not possible in the present problem and a separate explicit scheduler
is introduced. The structure of the SCHEDULER process expresses purely
implementation decisions, concerned with the scheduling of the processes
of the specification. 1In effect, it is the cyclic control algorithm
with which development might - quite wrongly - have begun. The other
processes in the diagram are transformations. of the specification pro-
cesses, these transformations being relatively simple and capable of
mechanisation.

6 Data Processing and Other Systems

What distinguishes a system from a program? How is the task of system
development different from that of program development? Paradoxically,
I think that an enumeration of differences leads chiefly to a recogni-
tion of essential similarity (I do not quite dare to say 'identity').

First, the system development task usually includes the formulation of
a specification, while the programming task usually begins from a given
specification. Some would say that the programming task cannot begin
until a perfectly exact and complete specification is available. This
is an undeniable difference, although perhaps it is not very clear-cut.
I would regard a specification as having two major parts:

1 A specification of the problem domain. For the class of problem I
am considering, this specification will often best be expressed as
a set of sequential processes, in some acceptable notation, des-
cribing the events of interest in the domain and their ordering.

2 A specification of the required program or system outputs. This
specification has meaning only in the context of an agreed domain
specification. It is typical of data processing systems that out-
put specifications are changed and amplified over the whole life
of the system.

Second, the problem domain for a program is usually either a mathemati-
cal abstraction or a predefined set of input and output data streams.
The problem domain for a system is usually some part of the real world:
the company's customers, suppliers, employees, goods, factories, ware-
houses; the airline's planes, flights, passengers, seats; the chemical
plant's vessels, pipes, valves, fluids, gases; the motor car's engine,
brakes, carburettor, gearbox. Such a real world domain must usually be
described de novo. There is no mathematical library that may be con-
sulted for an axiomatic description of the domain. It is also often
permissible for the developer to ask for changes in the problem domain:
the company's customers may be asked to act differently when the new
sales order processing system is installed.

Third, systems usually involve long-running processes. The process
describing the behaviour of a company employee must in general take
many years to run to completion: useful data prQcessing systems are
always real-time systems in this sense. Implementation of systems con-
taining long-running processes demands a special class of transforma-
tions. The state of each process must be held as a data object capable
of retaining its value when the execution machine is switched off.
Usually these process states are implemented as records in a set of
'master files' or in a 'database'. Activation and suspension of a pro-
cess requires that the process state be retrieved and passed as a para-
meter to the executable process text, and stored in its updated form in
the 'database' when the process is suspended.

197

Fifth, systems usually have so many processes communicating in a net-
work of such complexity that it is necessary to construct special-
purpose scheduling processes. From this point of view, the difference
between a 'batch processing' system and an 'on-line' system is primarily
a difference between their scheduling schemes. The task of devising
scheduling processes is often mistakenly referred to as 'system design',
when it would more properly be seen as an aspect of system implementa-
tion. Worse, it is then performed at an early stage of development,
when the processes to be scheduled are not yet known. This error is
commonly made in the development of many kinds of system, and may be
attributed to a misunderstanding of the different roles of procedures
and processes.

7 Some Concluding Remarks

The approach sketched out above is more fully described in books listed
in the references. Some of the important points mentioned are these:

- Program development is based on processes rather than on procedures.

- The structure of a sequential process reflects the structures of its
input and output streams.

- Process communication is by writing and reading sequential message
streams.

- The specification of the problem domain is captured before the prob-
lem itself - the 'function' of the program - is considered explicitly
or in detail.

- A central aspect of implementation is process scheduling. Often this
will require transformation from a process network structure to a
procedure hierarchy structure.

- Development of systems is a larger task than program development,
but is now radically different. .

- What is sometimes seen as the 'high-level' structure of a system
is in fact a result of scheduling choices, and should emerge from
the implementation, not from the early design stages.

The idea of defining a process within the system to correspond to an
object in the real world - to an employee or a customer, for example -
clearly has something in common with the ideas of data abstraction.

The process state corresponds to the data values hidden by the abstract
data type. A major difference is that abstract data type objects, as
usually defined, fit into a procedure hierarchy rather than into a pro-
cess network. We have regarded procedure hierarchies as a result of
the implementation of process scheduling choices.

198

References

The items in the following list are not cited in the text of the paper,
but are relevant to its themes.

(1)

(2)

(3)
(4)

(5)

(6)

(7)
(8)
(9)

Some Transformations for Developing Recursive Programs; R M Burstall
and J Darlington; Proc International Conference on Reliable Soft-~
ware 1975,

Hierarchical Program Structures; O-J Dahl and C A R Hoare; in Struc-
tured Programming; O-J Dahl, E W Dijkstra, and C A R Hoare; Academic
Press 1972.

A Discipline of Programming; E W Dijkstra; Prentice-Hall 1976.

Message Passing Between Sequential Processes: the Reply Primitive
and the Administrator Concept; W M Gentleman; Software Practice and
Experience, May 1981.

The Design of Data Type Specifications; J V Guttag, E Horowitz, and
J D Musser; in Current Trends in Programming Methodology IV; ed
R T Yeh; Prentice-Hall 1978.

Communicating Sequential Processes; C A R Hoare; Comm ACM August
1978.

Principles of Program Design; M A Jackson; Academic Press 1975.
System Development; M A Jackson; Prentice-Hall 1982.

Coroutines and Networks of Parallel Processes; G Kahn and D McQueen;
INRIA Research Report No 202 November 1976.

