
Technology: Master or Servant?

Michael Jackson
Software Development Consultant
101 Hamilton Terrace
London NW8 9QY
England
Tel: +44 71 286 1814
Fax: +44 71 266 2645

Abstract
Enthusiasts for technology, especially enthusiasts for so-called Artificial Intelligence, believe that
execution of computer programs will be able to replace human thought, and that this is a prospect
to be welcomed. They are wrong on many  but especially on intellectual  grounds: existing and
foreseeable techniques of software development are fundamentally inadequate for the task. Even
when great improvements have been made, technology will remain a very imperfect servant: we
must certainly not allow it to become our master.

1 Formal and Informal Worlds
The impact of technology has been growing since the industrial revolution began in the early 18th
century. From the beginning it has influenced how we work and how we think by changing the
circumstances of our lives. The world of a pre-industrial weaver in a cottage was quite different from
the world of a worker who tends a steam-driven loom. The world of a car owner living near a
motorway is quite different from the world of a villager in a remote village before the age of
turnpike roads.

Computers and IT have an even greater impact than earlier inventions. Almost everyone is involved,
at least in the developed countries, if only because they must deal with organisations such as
electricity suppliers that rely on IT to administer their dealings with the public. And for some
people, interacting with computers as programmers or users makes a much more intimate
relationship with the technology than flying in an aeroplane or watching a television set.

Just as we recognise  or ought to recognise  that pedestrians on roads must be isolated and
protected from hurtling cars and trucks and buses, so we ought to recognise that human beings
need protection from computer systems. But in the case of computers the protection must be
intellectual and emotional, not physical. People need protection from computer systems because all
human things are organic and informal, while all computer systems are symbolic and formal.
Computers and IT systems are essentially inhuman: at bottom the computer is just a machine for
manipulating symbols; but human beings are not machines and human thought is not symbol
manipulation.

The difference between the formal and the informal is to do with a certain kind of finiteness. Given
a Prolog program, perhaps one that provides assistance in medical diagnosis, we can reasonably ask:
how many pieces of ‘knowledge’ does this program have? The answer can be obtained simply by
counting the ‘facts’ and ‘goals’ embodied in the program text. Similarly we can count the nodes and
arcs in a semantic net, or in a relational database schema, and use these numbers to answer
questions about how much the program ‘knows’.

But we can not ask the same questions of a human being: ‘how many things do you know?’ is a silly
question. It is a silly question because human knowledge can not be formalised in this kind of way.
Try the following experiment. Close your eyes, then open them and look around you for ten
seconds or so. Then close your eyes again. Now answer these questions: how many things did you
see? how many properties of each thing did you observe? how many facts did you learn from what
you saw? These questions are unanswerable because when your eyes were open you had a certain

Proceedings of NordData-91, pages 31-45, Oslo, 16-19 June, 1991

kind of looking and seeing experience  a different experience for each one of you; this experience
is grounded in our senses and in the physical world, and is not reducible to any list of formal
symbols representing facts or objects. Human experience can not be fully described as the ingestion
of formal truth values over a set of symbols; human thought is not symbol processing.

2 What's New About IT
Interaction with formal systems is not a new experience for the human race. For thousands of years
governments have imposed legal and administrative systems on their subjects, and these systems are
in many respects formal. We recognise their formality by saying that ‘the law is an ass’, by joking and
complaining about the stupidity of bureaucrats, by pointing to Catch 22 in the regulations: such
formal systems can never deal adequately with the infinite variety of human experience.

But the follies of legal and administrative systems are mitigated by the fact that they are operated by
human beings. Reasonable lawyers and administrators ‘bend the rules’: they find ways around the
idiocies that must inevitably arise when a fixed set of formal rules is applied to an infinitely rich
domain. Further, the inherent rigidity of the system is softened by the use of natural language in
framing its rules: usually the meaning of some crucial word can be stretched to mean what it needs
to mean if the result is to be reasonable. And in the last resort, if one lawyer or administrator is
unreasonable we can take our case to a higher authority who is likely to be less rigid in applying the
rules.

In computer systems, of course, there is no such escape clause and there is no human agency: the
computer grinds away at its symbol manipulation to produce an inexorable result unaffected by
common sense, compassion, or intelligence. This complete automation of formality is a new
phenomenon made possible by IT. Its ill effects can be spread very far and wide by the ability of the
machines to multiply their work almost without limit. The individual administrator can browbeat
and frustrate only a dozen citizens in each hour, and his colleague may be more decent or sensible:
but the same program can run on a thousand machines, and each machine can perform a thousand
transactions an hour.

Another important new factor is the ability of computer systems to deceive. Nearly thirty years ago
Weizenbaum created his Eliza program. The program carries on a dialogue with a human being in
what appears to be natural language, playing a part determined by the choice of one of its ‘scripts’.
The most famous script is the Rogerian psychotherapist, who engages tirelessly in apparently
soothing exchanges like:

“What is your name?”
“My name is John.”
“Hallo John. What would you like to talk to me about?”
“I would like to talk about my father.”
“Why would you like to talk about your father?”

Behind the apparently human intelligence is a relatively simple text manipulation algorithm that can
play back what the ‘patient’ types into the computer having made a few simple but convincing
syntactic changes from first to second person, and from statement to question.

The sad lesson of Eliza was that most of the ‘patients’ were deceived. They wanted to be deceived;
even after the program had been explained to them, they acted as if they believed that a human
psychotherapist was behind a screen, typing back to them the answers that in fact were concocted by
the program’s simple algorithm. once communication has been reduced to the passing of symbols,
and this reduction has been accepted, then in a carefully defined context it becomes possible for the
programmer to succeed in deceiving the computer user, and for the user to cooperate in the
deception.

This reduction to purely symbolic communication can take place in many fields. The texture, smell,
oiliness, consistency, and shading of real oil paints can be reduced to ‘choosing from a palette of
2**24 colours’. The subtleties of literary criticism can be reduced to the banalities of style checking
programs. A consultation with your doctor can be reduced to an interactive session with an expert
system based on 11,185 facts and 6,934 diagnostic rules.

Of course, this is not to say that paint programs, word processors, and expert systems to aid medical
diagnosis are not often valuable; sometimes they outperform the 'real thing' in some particular task.
But we should always be aware of how little truly lies behind the VDU screen, and of the
dehumanising effect of accustoming ourselves to interact with a computer as if it were a person.

3 System Development: The Past
To create a computer-based system we have to bridge the gap between the infinitely varied informal
human world and the narrow, limited, world of some symbolic formalism. We have to reduce our
description of the world to recursive function definitions, or to a set of Horn clauses, or to a set of
relations in Boyce-Codd Normal Form, or to a set of objects arranged in a classification tree and
communicating by message passing, or to a set of algebraically defined abstract data types.

This reduction is limiting for the reasons I discussed briefly above: the informality of the real world
can not be adequately captured, except for very simple purposes, by such formalisms. Even the
attempt to define a term such as ‘customer’ or ‘employee’ in a data processing system is likely to
prove too difficult. But after we have understood and accepted this limitation arising from the
difference between the formal and the informal, there is still another level of difficulty that must
concern us very directly if we want to understand software and its development.

As human beings looking at the world we adopt many different points of view, simultaneously and at
different times. One decision is likely to have many different dimensions  political, social, personal,
financial, emotional  and we must see it from all these points of view using appropriate language
for each. This simultaneous adoption of many languages and many models is quite beyond our
present technology of software development, and intensifies our inability to do our job properly.

Broadly speaking, we are confined to development techniques in which we are expected to describe
only one thing: usually the system itself; and to use only one language the specification language
favoured by our chosen development method. One method sees the world as a network of
communicating sequential processes; another as a universe of true statements in the predicate
calculus; one as a state machine with operations; another as a structure of entities and relations.

The weakness here is not that these views are totally unsuitable (although, of course, they are all
pure formalisms and therefore limited by that characteristic). On the contrary, each formal view has
its proponents, and each has its entirely convincing examples of appropriate use. Are you dealing
with a queue? Then you will certainly wish to adopt the abstract data type view.

Are you dealing with a chocolate vending machine? Then you will certainly need sequential
processes to describe it. Are you dealing with suppliers who supply parts to projects? Then a
relational data model is what you need. Do you have to determine whether Mary loves John and
whether Lucy and Mary are sisters? Then you will not succeed without logic programming. But
unfortunately real problems tend to be about queues of suppliers who supply vending machines to
be used by young lovers: you will need all the formalisms, but today's development methods are
likely to force you to choose only one.

It is exactly as if you were setting out to build a motor car, and were forced to choose your material
at the outset. If you make the car of rubber, the tyres and carpets, and perhaps the seats too, will be
successful, but what about the engine? Make it from cast iron or aluminium and your engine block
will be good but you will have difficulty with the windows. There is no way out.

4 System Development: The Future
To overcome these difficulties we need to be able to describe the domains of our systems, the
problems our systems solve, and our systems themselves, in many different languages and
formalisms: we need to be able to adopt different formalisms for different purposes, different parts,
and different aspects of a development.

To some extent, there has already been some movement in this direction. Its most primitive form is
the ability to mix programming languages, starting with the facility for calling Fortran subroutines
from COBOL programs and progressing to efforts to combine the virtues of Lisp and Prolog, or of

Smalltalk and CSP, or of Smalltalk and C. But we need something that cuts much deeper, something
that addresses the problem more generally.

We need to be able to understand and carry out our software developments as projects in which we
construct, manipulate, and compose many many different descriptions of many many different
things. These descriptions must not be constrained to be expressed in a single formalism any more
than the parts of which a motor car is built are constrained to be made from a single material. The
key to this possibility is, above all, in the word ‘compose’. We have to build software by putting
together or composing descriptions whose variety reflects the variety of the real world they deal
with, and we must therefore devote much more effort to understanding how such compositions can
be achieved.

The oldest form of composition in software is hierarchical composition, especially of procedures.
The invention of the subroutine in 1949 gave birth to a whole culture of procedural abstraction,
program structure hierarchies, and top-down and stepwise refinement methods in requirements,
analysis, specification, design, and programming. Such hierarchical composition can be very
powerful in some cases, but it is very limited: although it may help us to build or to understand one
large description, it can do nothing to help us when more than one description is needed. Anyone
who has struggled to describe a data processing domain in terms of IMS structures will know that
hierarchical structure alone is not enough: in IMS you must also have pointers, which are the IMS
expedient for introducing parallel composition in addition to hierarchical.

Parallel composition is the essence of adopting different views of the same thing simultaneously.
When a printer prepares colour separations of a picture, the separations are different views that will
be composed by superimposition when the picture is printed: the printed picture is the green view
superimposed on the red view superimposed on the blue view. To do this successfully in software we
need to understand much more than we do now about the relationships between descriptions and
what they describe, between languages and what they can say, between the subject matter of software
and the software itself.

Getting this understanding and putting it to work in system development is a central task facing us
today. So far little or nothing has been achieved, but the scene is being set for the problem to
become more widely recognised as relevant and important. Two elements in this scene setting are
the technology of CASE tools and repositories, and the problems of reuse.

Until now, CASE technology has concentrated on mechanising the methods of the past. There is
ported by CASE tools, but there ought to be. The value of mechanising an activity should not lie
merely in making it faster or cheaper: it should lie in introducing new and better ways of doing new
and better things. The progress of engineering in many fields has been distinguished by the
introduction of new materials and new processes that were not possible without sophisticated tools.
You can not cut helical gear wheels by hand, or make plastic extrusions, or form sintered metal
parts, or  closest to our own concerns  fabricate VLSI chips: all of these products and techniques
came into being because people thought seriously about the new possibilities that mechanisation
offered. In the context of CASE tools, the motivation will be supplied by repository technology.
There are many vendors of repository products, but very little idea of what might be put into them.
The CAIS and PCTE projects considered relationships that might exist in development databases
among objects stored there, but gave only the most perfunctory consideration to the question of
what those objects might be.

CASE tools and repositories make it possible to develop software by creating and using very large
numbers of simple descriptions, just as washing machines and motor cars are ultimately constructed
of very large numbers of simple parts. This is exactly what is needed if we are to escape from the
straitjacket of the single description, single language, assumptions of our past.

A similar impetus may come from the desire to reuse the products of software development.
Certainly mathematical subroutine libraries are widely used; certainly every developer in Smalltalk
uses the existing classes for collections and windows and menus. But there are still thousands of
programmers programming linear search and sequential file update and depth-first search and
multi-level reporting and totalling. Worse still, existing COBOL systems embody the detail of
business procedures that are only dimly understood and can be neither discarded nor reused in a

new system. The pressure is constantly growing as the old systems become more and more fragile
and less and less able to support the needs of the business. Eventually we will be forced to make
serious efforts to understand how software combines the many different descriptions it embodies,
and how those descriptions can be extracted from old COBOL code or reused in the development of
new software.

5 The Limitations of Technology
Even when software development technique has advanced far beyond what it is today our systems
will still suffer in principle from today's disadvantages and limitations. They will still be symbol
manipulation systems, whose manipulations are not grounded in any experience of the physical and
the human worlds; they will still be constrained by their formalisms, even if they can embody several
formalisms at once.

I believe that our most important responsibility in this area is to ensure that we do not allow
ourselves, or other workers in software, to claim too much for our systems, or to present them as if
they were something they are not. Everyone is annoyed  although some are also amused  by the
absurdities of computer-produced personalised letters. “We are so pleased, Mr Jackson, that you
and your family at 101 Hamilton Terrace have been personally selected to receive this exclusive free
copy of Great Books of the World, and we are sure that you will be delighted by this opportunity.”
Well, no, actually. We were not personally selected: our name and address were extracted from a list
by some randomising algorithm, or, worse, by some mechanised rules for choosing the most
suggestible victims. There is no-one who is ‘so pleased’: probably no-one except us yet knows that it
has happened. This opportunity is anything but exclusive. And we certainly do not want to receive
letters from laser printers purporting to be typed by hand.

I believe that we would do well to legislate against this kind of masquerade. I am not sure what form
the laws might take, but one element might be a requirement that letters produced by computer
must carry a clear statement of the number of letters produced in the same run. An exclusive
opportunity of a personal selection is less deceptive when the letter states clearly that is one of 6000
similar letters.

Some years ago there was considerable debate in Britain on the role and prospects for Artificial
Intelligence. One influential view was that there were essentially three approaches to Artificial
Intelligence.

The first approach was to take well-defined tasks that could usefully be automated: spot-welding car
bodies, or using large amounts of geological information to estimate where oil might most likely be
found. In this approach, no claim is made that the computer is ‘thinking’: the criterion of success is
simply how well the task is performed. It seems to me that the proponents of this approach had a
very sound understanding of the role of computers and of computer-based systems.

The second approach was to take some activity, hitherto recognised as human, and to simulate
human activity as accurately as possible. Preferably, the activity should be generally accepted to be a
form of 'thinking', so that success would lend weight to the view that machines can think. Efforts at
machine translation and real-time speech recognition fall into this category: so too, perhaps, do the
far more successful efforts at playing chess. The proponents of this approach are to be treated with
suspicion: their hidden agenda is to convince us that computers can think, and  the other side of
the same coin  that we are only machines made of meat.

The third approach, the most radical, is to formulate a definite theory of some part or aspect of
human activity, and to embody that theory in a machine realised as a computer program. If the
machine can perform the activity convincingly, then that success is considered to lend weight to the
theory. For this school it might be appropriate to claim with hindsight that the activity of
psychotherapy can be appropriately described by a listing of the Eliza program. It would be
appropriate also, presumably, to claim similarly that analysis of the Airbus will reveal how an eagle
flies.

This third school is no danger to humanity. Their ideas are too patently ill-founded for us to worry
that they might be accepted. The first school are simply practical people solving problems in the

established engineering tradition. It is the second school that is most dangerous, that influences the
attitudes of many people building administrative and data processing systems, and threatens to
make technology our master. We can resist them by insisting always on recognising the inevitable
limitations of our techniques, and on remembering the difference between organisms and machines,
between the informal and the formal, and between people and software.

� �

