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Abstract. A cyber-physical system comprises an assemblage of given material 
and human domains together with the computing element or elements 
introduced to control them. Requirements for such systems can be understood 
as properties of system behaviours: the central task of system development is to 
design the overall behaviour of the system to satisfy these requirements. This 
overall behaviour can be regarded as a structure of simplified independent 
behaviours, modified and recombined to address their interactions. A widely 
adopted approach to requirements perversely conceals this structure. 
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Introduction 

It is a great pleasure to write a paper for this festschrift in celebration of Martin 
Glinz’s 60th birthday. Much of Martin’s career has been devoted to the discipline of 
requirements engineering, and this short paper is intended as a small contribution to 
that discipline.  

The requirements engineering community is a broad church: there is no agreed 
definition of what counts as a requirement. Instead, requirements take many forms 
according to industry custom, the nature of the system, the available facilities of 
requirements management software, and the backgrounds and tastes of the 
requirement engineers. Some requirements are goals; some express generalised 
aspirations to such desirable but elusive properties as safety, reliability or 
convenience. Some are paragraphs of natural language text; some are formal 
invariants; some are use cases; some are abbreviated accounts of software products or 
functions. And some are mysteriously isolated state transitions—fragments of a large 
state machine that may never be revealed in its entirety. It is this last category—
requirements expressed as transition fragments—that I want to discuss in this short 
paper.  

In a paper [Miller+06] presented at FME’03 in Pisa, Steve Miller, Alan Tribble and 
Mats Heimdahl describe how the requirements for the mode logic of a Flight 
Guidance System, expressed as “shall” statements in natural language, were 
formalised in CTL and checked against a large formal model of the intended system 
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behaviour [Heimdahl05, Miller+06]. The requirements were initially expected to be 
complete, unambiguous and consistent: inevitably, they were not. When errors were 
found, and corrections chosen, the affected informal requirements were modified. 
Virtually all the informal requirements had to be modified in this way. The paper 
gives some detail of one example. This was its original statement:  

“If Heading Select mode is not selected, Heading Select mode shall be selected 
when the HDG switch is pressed on the Flight Control Panel.” 

Before checking, this requirement was regarded as ‘well-validated and non-
controversial’. Checking showed two errors: the event of pressing the HDG switch 
could be pre-empted by a simultaneous event of higher priority; and, in any case, it 
should be ignored unless the side in which it occurs is active. The requirement was 
therefore modified [Heimdahl05] to give this cumbersome but more accurate version:   

“If this side is active and Heading Select mode is not selected, Heading Select 
mode shall be selected when the HDG switch is pressed on the FCP (providing 
no higher priority event occurs at the same time).” 

Another example from the same system, given in the cited papers is:  
“If this side is active and the mode annunciations are on, the mode 
annunciations shall be turned off if the onside FD is off, the offside FD is off, 
and the AP is disengaged.” 

Heimdahl recognises that all is not well. He sees some potential advantages in use 
cases, describing them as ‘more structured’ than “shall” statements, but questioning 
whether they can capture all of a system’s requirements. 

David Harel, in a paper [Harel09] describing the origins of statecharts, also 
criticises requirements expressed in the fragmented style. He recounts how the 
voluminous requirements of a chemical manufacturing plant included the following 
three specifications of a tiny piece of behaviour, buried in three totally different 
locations: 

“If the system sends a signal HOT then send a message to the operator” 
“If the system sends a signal HOT with T>60deg then send a message to the 
operator” 
“When the temperature is maximum, the system should display a message on 
the screen, unless no operator is on the site except when T<60deg.” 

Harel points out the redundancy, inconsistency and logical confusion in these three 
statements, and goes on to explain how, participating in the development of an 
avionics system, he was led to develop the language and semantics of statecharts. He 
recounts an anecdote which compellingly demonstrated the intelligibility of the 
notation to a domain expert, who was able immediately to identify an error in the 
requirements expressed in a statechart.  

Miller, Heimdahl and Harel all acknowledge in different ways that requirement 
statements written in this style as fragmented transitions suffer from fundamental 
deficiencies. Miller and Heimdahl demonstrate that a collection of such statements 
may misrepresent the actual intended behaviour of the system and may even be self-
contradictory. Heimdahl observes [Heimdahl05] that these deep defects are mitigated 
in practice by what he calls “collateral validation”—that is, by the processes of 
software design, coding and testing. Developers, as they perform these processes, 
come to recognise many of the logical and other errors which abound in the stated 
requirements. Heimdahl rightly warns that a ‘model-driven’ approach in which code 
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is automatically derived from formally stated requirements elides these development 
processes and with them the opportunity to identify and correct the requirement 
errors.  

Harel recognises a deficiency in the essential nature of fragmented transition 
requirements. They capture individual transitions of a large state machine, but do not 
exhibit the machine itself in its entirety. Because a realistic system has many levels of 
detail, and many overlapping modes and states, the representation of the complete 
state machine must be structured. The structuring must allow hierarchical and 
orthogonal relationships among component state machines, and seems to demand 
complex interactions among the events and transitions of the component machines. 
Harel’s development of the statechart notation aimed specifically to address these 
needs.  

Topsy-Turvy Requirements 

Surprisingly, large sets of fragmented transition requirements are the norm in some 
industries. They are supported by requirements management software that is widely 
accepted and used. They are eagerly mined in an effort to trace the implementation 
elements that satisfy each individual requirement and, conversely, the requirement 
elements that justify each element in the implementation. The resulting development 
tasks are on a heroic scale. In a recent workshop on requirements engineering a 
member of an automotive software development group proudly announced that the 
software for one particular car model had 200,000 requirements.  

This is a self-inflicted wound. In a word, we can see that fragmented transition 
requirements are topsy-turvy. They are upside down, reversed, inverted: the top is at 
the bottom and the bottom is at the top. Their creators are like perversely optimistic 
makers of jigsaws who make collections of independently created jigsaw pieces in the 
hope that they can be assembled to give pictures which the creators themselves have 
never seen and have only dimly conceived. We should not be surprised if the resulting 
collections of jigsaw pieces cannot be fitted together to give meaningful pictures. 
They present an unwanted challenge to comprehension—a gratuitous arboricide 
puzzle for the reader to solve [Jackson95]. For instance, in Heimdahl’s first example, 
many questions invite our attention. What if Heading Select mode is already selected 
when the HDG switch is pressed? How and when is Heading Select mode cleared? If 
the press event is pre-empted will it be ignored, or will it take its desired effect as 
soon as it reaches the top of the priority list? What if at that moment the HDG switch 
has been pressed again, or this side is no longer active? Can Heading Select mode be 
selected by any other event? What makes the side active? Can it become inactive 
between the press event and the associated response? Which are the events of higher 
priority? Is the priority ordering static or dynamic? Not even  correct answers to these 
questions would allow us to make sense of this isolated fragment of the jigsaw puzzle.  

The essential point is that the requirements are fragments of larger behaviours—
often of multiple overlapping behaviours. For those who design the requirements, for 
those who read and analyse them, and for the stakeholders whose needs and desires 
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they must embody, it is these larger behaviours that demand design, comprehension 
and assent. The mathematician Poincaré expressed the point succinctly [Poincaré08]:  

“Would a naturalist imagine that he had an adequate knowledge of the 
elephant if he had never studied the animal except through a microscope?” 

The large behaviours of a system, evoked by the interactions of the relevant parts of 
the human and material problem world with each other and with the system software, 
provide the properties, functionalities, constraints and affordances that must satisfy 
the needs of all the stakeholders. We cannot hope to understand them if we express 
the system requirements as a large collection of fragmented transitions.  

Why? 

Why do so many development groups continue to suffer this self-inflicted wound? 
There are several reasons, and not all of them are spurious. One obvious reason is that 
a widespread practice, once deeply entrenched in a community, is very hard to 
dislodge. For researchers, it becomes an accepted baseline from which further 
progress can be attempted without lengthy preliminaries to introduce and justify 
unfamiliar assumptions: a major departure carries the risks and difficulties of a 
paradigm shift or even a scientific revolution. For many development organisations it 
is the established default: it is even claimed [Miller+06] that “The very commonality 
of use of shall statements indicates they are a natural and intuitive way for designers 
to put their first thoughts on paper.” Practitioners are already inured to its use. 
Managers are naturally reluctant to adopt a risky novelty in place of a commonly 
accepted technique for whose use they know they will not be criticised.  

Another, technical, justification can be argued from the desire to reason formally 
about system behaviour. Fragmented transition requirements can be regarded as 
defining operations on the system state. To that extent they fall into the conceptual 
pattern of action systems, with a long and successful record in computer science; the 
same pattern underlies the well-known specification languages VDM, Z and Event-B. 
Fragmentation makes behaviours far more tractable for purposes of finding logical 
inconsistencies and proving theorems—especially when the proofs are to be 
mechanised. If the result is incomprehensible, that is merely an inconvenient but 
unintended by-product. 

Further, comprehensibility of individual behaviours alone would not solve the 
whole problem. The behavioural complexity of a realistic cyber-physical system 
presents a major intellectual challenge that we have been slow to meet. The complete 
system behaviour is an ensemble of many constituent behaviours that must satisfy 
many stakeholder needs and purposes. A varying subset of these behaviours is active 
during system operation, and their interactions are complex. Expressing requirements 
as fragmented transitions seems attractive because it appears to offer an escape route 
from this difficult problem: complexity of system state is substituted for complexity 
of behaviour, and we are free to solve the problem piecemeal. The complex behaviour 
becomes a collection of operations on the system state, and we may now consider 
each operation independently. Unfortunately, this escape route from behavioural 
complexity is often illusory.  
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The Challenge 

The escape route from complexity is illusory because the data structure of the 
system state cannot provide an adequate substitute for the dynamic structures of the 
system behaviour. Dijkstra explained the reason 45 years ago in the famous go to 
letter [Dijkstra68]. First, he gave the well-known and convincing justification of 
structured programming.:  

“My second remark is that our intellectual powers are rather geared to master 
static relations and that our powers to visualize processes evolving in time are 
relatively poorly developed. For that reason we should do (as wise 
programmers aware of our limitations) our utmost best to shorten the 
conceptual gap between the static program and the dynamic process, to make 
the correspondence between the program (spread out in text space) and the 
process (spread out in time) as trivial as possible.” 

For a comprehensible program, progress through the static text must correspond 
closely to progress through the process it evokes. This correspondence demands a 
coordinate system in which textual and executional progress can be related. The 
textual index—with some elaboration to handle iterations and procedure calls—
provides such a coordinate system to describe the progress: reading the program text 
we can follow the evolving process. At this point in his exposition Dijkstra asks, and 
answers, a key question: Why can the program’s local variables not provide such a 
coordinate system? His uncompromising answer is that  

“we can interpret the value of a variable only with respect to the progress of 
the process.”  

This is a subtle but vital point. The program state, understood as an element of the 
cross-product of the values of its explicitly declared variables, cannot provide the map 
on which we can mark “where we have got to” or “what is going on” or “what are we 
trying to do now”. Dijkstra gives the tiniest possible illustration. In a process to count 
in a variable n the number of people who have entered a room, the value n at any 
moment may be either the number who have entered or that number minus one, 
depending on whether the process has yet incremented n to count the most recent 
arrival. Looking at n alone is not enough: we can understand its meaning only by 
reference to the process text that clearly shows the ordering of arrival followed by 
increment n.  

A sequential program corresponds to one comparatively simple process. The 
behaviour of a realistic cyber-physical system is hugely more complex. There are 
many interfaces between parts of the complete system—the software and the problem 
world—at which behaviours must satisfy operational constraints. For example: a drive 
motor must not be reversed unless it has been at rest for a minimum time. There are 
human participants whose interactions with the system must be easily understood and 
convenient. For example: the user of a passenger lift, the operator of a radiation 
therapy system, or the driver of a car. There are larger-scale behaviours of the system 
that must satisfy requirements for efficiency and avoidance of starvation. For 
example: the travel of a lift in its shaft, alternately up and down, must minimise 
wasted movement while ensuring that every user request is answered by the arrival of 
the lift at the requested floor. The larger-scale behaviours must afford the desired 
smaller-scale interaction behaviours of users. Different versions of behaviours are 
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appropriate to different circumstances. For example: passenger lift service under 
firefighter control differs from normal lift service. Behaviour in the presence of a fault 
or failure may be entirely different from normal behaviour or merely a minor 
variation on it. For example: a slightly degraded lift service can be provided by 
skipping a floor at which the doors fail to open; but a major failure may require 
service to be abandoned altogether.  

This challenge presented by this multiplicity of relevant behaviours is threefold. 
First, each behaviour must be represented in a way that makes it comprehensible to all 
those who must comprehend it and accept that it satisfies their purposes and needs. 
Some behaviours must be accepted by domain experts; some by requirement 
engineers; some by program designers; some by safety experts of a regulatory 
authority; some by operators; and some by representative lay users. There is no reason 
to suppose that a single formalism will be suited to all of these.  

Second, defining the relationships among the behaviours and assembling them into 
the overall system behaviour is itself a major design task. Which behaviours are 
disjoint in time? Which overlap? Which are nested one within another? Which 
interact at common parts of the problem world, much as processes may interact by 
shared variables? When two behaviours place conflicting demands on the world, 
which it to take precedence? In what circumstances can a particular behaviour be pre-
emptively terminated? When two behaviours are consecutive, can the second follow 
the first immediately, or is an additional intermediate behaviour necessary to ensure 
the right initial conditions for the second? How is the simplified ‘main-line’ version 
of a behaviour to be combined and reconciled with the variations to deal with 
exceptional conditions that may arise? In effect, this recognition of the importance of 
behaviours leads to a view of the requirements phase that we might call ‘designing 
with behaviours’. Behaviours must often be designed rather than merely elicited from 
stakeholders who—we might mistakenly have imagined—hold them fully-formed in 
their minds ready to be handed over to the system developers. The resulting 
behaviours, whether designed or elicited, must be reconciled and combined like the 
components of a large program.  

Third, it must be recognised that the resulting structure of behaviours will demand 
substantial transformation before software design can even begin. Some behaviour 
descriptions will include problem world events that are distant from the software 
machine and may find no representation there. Some behaviours may be 
implementable as software processes, but some may not. For these latter behaviours it 
may be necessary to fragment their descriptive texts in the software, adding the text 
pointer to the set of local variables. Some problem world events may be relevant to 
more than one behaviour, stimulating a response in each one: in the software design it 
will be necessary to combine these responses into one software-controlled action. In 
general, any aspiration to seamless development of a realistic cyber-physical system, 
in which the same structure is carried through all development phases from 
requirements to software architecture and design, must be regarded with deep 
suspicion.  
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Envoi 

A fragmented transition requirement is obviously topsy-turvy because it presents a 
tiny piece of a complete behaviour that has not been explicitly recognised. But the 
damage is more than this. Topsy-turvy requirements make it hard to see a core aspect 
of the large development task with any clarity. This aspect is concerned with 
designing the multitude of behaviours, making them comprehensible to those who 
must assent to the designs, and reconciling and combining them into the complex 
overall behaviour of a realistic system. Reorienting the topsy-turvy behaviours is only 
the necessary beginning.  
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