Aspects of System Description

Michael Jackson

ABSTRACT This paper discusses some aspects of system description
that are important for software development. Because software develop-
ment aims to solve problems in the world, rather than merely in the com-
puter, these aspects include: the distinction between the hardware/software
machine and the world in which the problem is located; the relationship
between phenomena in the world and formal terms used in descriptions; the
idea of a software model of a problem world domain; and an approach to
the decomposition of problems and its consequences for the larger structure
of software development descriptions.

1 Introduction

The business of software development is, above all, the business of mak-
ing descriptions. A program is a description of a computation — or, per-
haps, of a machine behaviour. A specification is a description of the input—
fottnoteoutput relation of a computation — or, perhaps, of the externally
observable behaviour of a machine. A requirement is a description of some
observable effect or condition that our customer wants the computation —
or the machine — to guarantee. A software design is a description of the
structure of the computation — or, perhaps, of a machine that will execute
the computation.

In spite of its importance, we pay surprisingly little attention to the
practice and technique of description. For the most part, it is treated only
implicitly and indirectly, either because it is thought too trivial to engage
our attention, or because we suppose that all software developers must
already be fully competent practitioners. In the same way, the great uni-
versities in the eighteenth and early nineteenth century ignored the study
of English literature. It was a truth universally acknowledged that any-
one qualified to study Latin and Greek and mathematics in the university
must already know everything worth knowing about the subject of English
literature.

But the discipline of description, like the study of English literature,
is neither trivial nor universally understood. Many aspects of description
technique are important in software development and merit explicit discus-
sion. The following sections discuss particular aspects, setting them in the
context of some simple problems. A concluding section briefly discusses the

2 Michael Jackson

relationship between the view presented here and a narrower view of the
scope of research, teaching, and practice in software development.

2 Symbol Manipulation

It has often seemed attractive to regard software development as a branch
of pure mathematics. The computer is a symbol-processing machine. Each
problem to be solved is formal, drawn from a pure mathematical domain.
The development methods to be used are largely formal, with the addition
of the intuitive leaps that are characteristic of creative mathematical work.
And the criterion of success — correctness with respect to a precise program
specification — is entirely formal.

This view has underpinned some notable advances in programming. It
has led to the evolution of a powerful discipline based on simultaneous de-
velopment of a program and its correctness proof, and a clear demonstra-
tion that, for some programs at least, correctness is an achievable practical
goal. The class of such programs is large. It includes a repertoire of well-
known small examples — such as GCD and searching or sorting an array
— and many substantial applications — such as compiling program texts,
finding maximal strong components in a graph, model-checking, and the
travelling-salesman problem.

These are all problems with a strong algorithmic aspect. Their subject
matter is abstract and purely mathematical, even when the abstraction and
the mathematics have clear practical application. This is what allows the
emphasis in software development to be placed on symbol manipulation.
As Hermann Weyl expressed it [11]:

“We now come to the decisive step of mathematical abstraction:
we forget about what the symbols stand for. ...[The mathe-
matician] need not be idle; there are many operations he may
carry out with these symbols, without ever having to look at
the things they stand for.”

He might have gone further. We can’t look at what the symbols stand for,
because they don’t stand for anything outside the mathematics: they are
themselves the subject matter of the computation. The task of relating the
mathematics to a practical problem is not part of the software developer’s
concern: it is someone else’s business. Although our problem may be called
the Travelling Salesman problem we are not really interested in the real
salesmen and their travels, but only in the abstraction we have made of
them.

1. Aspects of System Description 3

The a The
Machine User

a: The Specification Interface: {keyboard,screen}

FIGURE 1. The Machine and the user

2.1 The Specification Firewall

But even in the most formal problems an element of informality may in-
trude. A useful program must make its results visible outside the computer;
most programs also accept some input. So questions of external represen-
tation and of data formats, at least, must be considered. How, for example,
should we require our program’s user to enter the nodes and arcs of the
graph over which the salesman travels?

These less formal concerns arise outside the core computation itself, in
the world of the software’s users and the software developer’s customers.
In many cases they can relegated to a limbo beyond a cordon sanitaire by
focusing on the program specification. As Dijkstra wrote [3]:

“The choice of functional specifications — and of the notation
to write them down in — may be far from obvious, but their
role is clear: it is to act as a logical ‘firewall’ between two dif-
ferent concerns. The one is the ‘pleasantness problem,’ i.e. the
question of whether an engine meeting the specification is the
engine we would like to have; the other one is the ‘correctness
problem,’ i.e. the question of how to design an engine meeting
the specification. ... the two problems are most effectively tack-
led by ...psychology and experimentation for the pleasantness
problem and symbol manipulation for the correctness problem.”

Figure 1 pictures the situation. The specification interface a is an inter-
face of shared physical phenomena connecting the customer to the machine.
At this interface the customer enters input data, perhaps by keyboard, and
receives output data, perhaps by seeing it displayed on the screen. The
shared phenomena for the input are the keystrokes: these are shared events
controlled by the customer. The shared phenomena for the output are the
characters or graphics visible on the screen: these are shared states, con-
trolled by the machine.

The specification firewall is erected at this interface. It enforces a fruitful
separation of the ‘hard’ formal concerns of the software developer and com-
puter scientist from the ‘soft’ concerns of the ‘systems analyst,” addressing
informal problems in the world outside the computer. The software devel-

4 Michael Jackson

The a The b The

Machine Light Unit Customer

a: The Specification Interface: {RPulse, GPulse}
b: The Requirement Interface: {Stop, Go}

FIGURE 2. The Machine, the world, and the customer

opers are relieved of responsibility for the world outside the computer: they
need no more discuss the external data format for a graph than automobile
engineers need discuss the range of paint colours for their cars’ bodywork or
the choice of upholstery fabric for the seats. The subject matter for serious
attention and reasoning is restricted to the mathematics of the problem
abstraction and of the computation that the machine will execute.

The ‘soft’ concerns, then, are relatively unimportant; they are relegated
to a secondary place. The customer — who may well be the developer
or another computer scientist with similar concerns and interests — may
be slightly irritated by an inferior choice of input-output format at the
specification interface, but is not expected to regard it as a crucial defect.
The essential criterion, by which the work is to be judged, is the correctness
and efficiency of the computation.

3 The Machine and the World

Not all customers will be so compliant. For most practical software devel-
opment the customer’s vital need is not to solve a mathematical problem,
but to achieve specific observable physical effects in the world. Consider
the very small problem of controlling a traffic light unit. The unit is placed
at the gateway to a factory, and controls incoming traffic by allowing entry
only during 15 seconds of each minute. The unit has a Stop lamp and a Go
lamp. The problem is to ensure that the light shows alternately Stop for
45 seconds and Go for 15 seconds, starting with Stop. We can picture the
problem as it is shown in Figure 2.

In addition to the machine, we now show the problem domain: that is,
the part of the world in which the problem is located. There is no user: in
this problem — as in many others — it is not clear who is the user, or even
whether the notion of a user is useful. But there is certainly a customer:
the person, or the group of people, who pay for the development work and
will look critically at its results.

1. Aspects of System Description 5

after(45s)/
RPulse;GPulse
3: =Stop
< A Go
after(15s)/

GPulse;RPulse

FIGURE 3. A System description

3.1 The Specification Interface

As before, the specification interface a is an interface of phenomena shared
by the machine domain and the problem domain. Here the problem domain
is the lights unit, and the shared phenomena are the signal pulses { RPulse,
GPulse} by which the machine can cause it to switch on and off its Stop
and Go lamps. The lights unit itself is on the other side of the specification
interface.

3.2 The Requirement Interface

The customer is more remote from the machine than the user in a symbol
manipulation problem. The customer’s need is no longer located at the
specification interface: the customer is interested in the regime of Stop and
Go lamps, not in the signal pulses. So a new interface has appeared in the
picture. The requirement interface b is a notional interface at which we
can think of the customer as observing the world outside the machine. The
phenomena of interest at this interface are the states of the Stop and Go
lamps of the lights unit; these are, of course, quite distinct from the signal
pulses at the interface with the machine.

The problem is about something physical and concrete. The externally
visible behaviour of the machine, and the resulting behaviour of the lights
unit, are not matters of pleasantness: they are the core of the problem.

3.8 A System Description

Figure 3 is a description of the system as it might be described using a
currently fashionable [10] diagrammatic notation derived from Statecharts
[5]. In the transition markings the external stimulus, if any, is written before
the slash (‘/’), and the sequence of actions, if any, taken by the machine is
written after it.

The initial state is 1, in which neither lamp is lit. Immediately the ma-
chine emits an RPulse, causing a transition to state 2, in which Stop is lit
but not Go. 45 seconds after entering state 2, the machine emits an RPulse

6 Michael Jackson

followed by a GPulse, causing a transition to state 3, in which Go is lit
but not Stop. 15 seconds later the machine emits a GPulse followed by an
RPulse, causing a transition back to state 2, and so on.

3.4 Purposeful Description

It is always salutary in software development to ask why a particular de-
scription is worth making, and what particular purpose it serves in the
development. In this tiny problem we can recognise three distinct roles
that our system description is intended to play:

The requirement The requirement is a description that captures the ef-
fects our customer wants the machine to produce in the world. When
we talk to the customer, we treat the description as a requirement.
We ignore the actions that cause the pulses, and focus just on the
timing events and the states. “To begin with,” we say, “both lamps
should be off; then, for 45 seconds, the Stop lamp only should be lit;
then, for the next 15 seconds, the Go lamp only should be lit;” and
so on. The requirement that emerges is:

forever {
show only Stop for 45 seconds;
show only Go for 15 seconds;

}

The machine specification The specification describes the behaviour of
the machine in terms of the phenomena at the specification inter-
face. It provides an interface between the problem analyst, who is
concerned with the problem world, and the programmer, who is con-
cerned only with the computer. When we talk to the programmer,
we treat the description as a specification of the machine. We look
only at the transitions with the timing events and the pulses. “First
the machine must cause an RPulse,” we tell the programmer, “then,
after 45 seconds, an RPulse and a GPulse;” and so on. The Stop
and Go states have no significance to the programmer, because they
aren’t visible to the machine; at best they are enlightening comments
suggesting why the pulses are to be caused. The specification that
emerges is:

{ RPulse;
forever {
wait 45 seconds; RPulse; GPulse;
wait 15 seconds; GPulse; RPulse;

}
}

1. Aspects of System Description 7

RPulse
1: =Stopa—=Go < L 2: Stopa— Go

RPulse

GPulse

3: =StopaGo

FIGURE 4. A partial domain description

The domain description The domain description bridges the gap be-
tween the requirement and the specification. The customer wants a
certain regime of Stop and Go lamps, but the machine can directly
cause only RPulses and GPulses. The gap is bridged by the proper-
ties of the problem domain. Here that means the properties of the
lights unit. When we talk to the lights unit designer to check our
understanding of the domain properties, we focus just on the pulses
and the way they affect the states. “In the unit’s initial state both
lamps are off: That’s right, isn’t it? Then an initial RPulse turns the
Stop lamp on; then an RPulse followed by a GPulse turns the Stop
lamp off and lights the Go lamp, doesn’t it?” and so on. The domain
properties description that emerges! is shown in Figure 4.

3.5 Why Separate Descriptions Are Needed

Combining the three descriptions into one is tempting, but in a realistic
problem it is very poor practice for several reasons. First, if the description
were only slightly more complex it could be very hard to tease out the
projection needed for each of the three roles.

Second, the adequacy of our development must be shown by an argument
relating the three separate descriptions. Our goal is to bring about the
regime of Stop and Go lamps that our customer desires. We must show
that a machine programmed according to our specification will ensure this
regime by virtue of the properties of the lights unit. That is:

specification A domain properties = requirement

'n fact, Figure 4 asserts much more than can be seen from the System Description
given in Figure 3. For example: that it is possible to return to the dark state; that
the first lamp turned on from the initial dark state may be the Go lamp; and that
the RPulses affect only the Stop lamp and the GPulses only the Go lamp. Nothing in
Figure 3 warrants these assertions.

8 Michael Jackson

RPulse
1: =Stopa—=Go < 2: Stopa— Go
RPulse
GPulse
RPulse

3: =StopaGo

FIGURE 5. Lights unit domain properties description

In other words: if the machine meets its specification, and the problem
world is as described in the domain properties, then the requirement will
be satisfied.? The combined description does not allow this argument to be
made explicitly.

Third, the single description combines descriptions of what we desire to
achieve — the optative properties described in the requirement and speci-
fication — with a description of the known and given properties relied on —
the indicative properties described in the domain description. It is always a
bad idea to mix indicative and optative statements in the same description.

Fourth, the combined description is inadequate in an important way.
Being based on a description of the machine behaviour, it can’t accommo-
date a description of what would happen if the machine were to behave
differently — for example, by reversing the order of GPulse and RPulse in
each pair. Figure 5 shows what a separate, full description of the domain
properties might be.

Each lamp is toggled by pulses of the associated type: RPulse for Stop
and GPulse for Go. The designer tells us that the unit can not tolerate
the illumination of both lamps at the same time. We show state 4 as the
unknown state, meaning that nothing is known about subsequent behaviour
of the unit once it has entered state 4. Effectively, the unit is broken.

Fifth, the combined description isn’t really reusable. Because the embod-
ied domain description, in particular, is merged with the requirement and
the specification, it can’t easily be reused in another problem that deals
differently with the same problem domain.

2 A fuller and more rigorous account of the relationship among the three descriptions
is given in [4].

1. Aspects of System Description 9
4 Describing the World

The three descriptions — requirements, domain properties, and machine
specification — are all concerned with event and state phenomena of the
world in which the problem is located. But the first two are different from
the third. The specification phenomena, shared with the machine, can prop-
erly be regarded as formal. Just as the machine has been carefully engi-
neered so that there is no doubt whether a particular keystroke event has or
has not occurred, so it has been carefully engineered to avoid similar doubt
about whether an RPulse or a GPulse event has or has not occurred. The
continuous underlying physical phenomena of magnetic fields and capaci-
tances and voltages have been tamed to conform to sharply-defined discrete
criteria.

But in general the phenomena and properties of the world have not been
tamed in this way, and must be regarded as informal. The formalisation
must be devised and imposed by the software developer. As W. Scherlis
remarked [8] in his response to Dijkstra’s observations [3] cited earlier:

“One of the greatest difficulties in software development is form-
alization — capturing in symbolic representation a worldly com-
putational problem so that the statements obtained by follow-
ing rules of symbolic manipulation are useful statements once
translated back into the language of the world.”

This task of formalization, along with appropriate techniques for its suc-
cessful performance, is an integral, but regrettably much neglected, aspect
of software development. Two important elements of this task are the use of
designations, and the use and proper understanding of formal definitions.

4.1 Designations

Because the world is informal it is very hard to describe precisely. It is
therefore necessary to lay a sound basis for description by saying as pre-
cisely as possible what phenomena are denoted by the formal terms in our
requirements and domain properties descriptions. The appropriate tool is a
set of designations. A designation gives a formal term, such as a predicate,
and gives a — necessarily informal — rule for recognising instances of the
phenomenon.
For example, in a genealogical system we may need this designation:

Mother(z,y) = x is the mother of y

Probably this is a very poor recognition rule: it leaves us in considerable
doubt about what is included. Does it encompass adoptive mothers, surro-
gate mothers, stepmothers, foster mothers? Egg donors? Probably we must
be more exact. Perhaps what we need is:

10 Michael Jackson

Mother(z,y) = x is the human genetic mother of y

Even this more conscientious attempt may be inadequate in a future world
in which genetic engineering has become commonplace.

Adequate precision of the underlying designations is fundamental to the
precision and intelligibility of the requirement and domain descriptions that
rely on them. If it proves too hard to write a satisfactory recognition rule
for phenomena of a chosen class, that chosen class should be rejected, and
firmer ground should be sought elsewhere.

This harsh stipulation is less obstructive than it may seem at first. The
designated terminology is intended for describing a particular part, or do-
main, of the problem world for a particular problem. As so often in software
development, we may be tempted to multiply our difficulties a thousandfold
by trying to treat the general case instead of focusing, as practical engi-
neers, on the particular case in hand. The temptation must be resisted.

For example, in an inventory problem for the OfficeWorld Company,
whose business is supplying office furniture, we may need to designate the
entity class Chair. Perhaps we write this designation:

Chair(z) =~ x is a single unit of furniture whose primary
use is to provide seating for one person

Philosophers have often cited ‘chair’ as an example of the irreducibly un-
certain meaning of words in natural language. In the general case no des-
ignation of ‘chair’ can be adequate. Is a bar stool a chair? A bean bag?
A sofa? A park bench? A motor car seat? A chaise longue? A shooting
stick? These questions are impossibly difficult to answer: there are no right
answers. But we do not have to answer them. The OfficeWorld Company
has quite a small catalogue. It doesn’t supply bar stools or park benches
or bean bags. Our recognition rule is good enough for the case in hand.

4.2 Using Definitions

Another factor mitigating the severity of the stipulation that designations
must be precise is that the number of phenomenon classes to be designated
usually turns out to be surprisingly small. Many useful terms do not denote
distinctly observable phenomena at all, but must be defined on the basis
of terms that do and of previously defined terms. For example:

Sibling(a, b) def

a #bA3p,qe Mother(p,a) A Mother(p,b)
A Father(q,a) A Father(q,b)

The difference between definition and designation is crucial. A designa-
tion introduces a fresh class of observations, and thus enlarges the scope
of possible assertions about the world. A definition, by contrast, merely
introduces more convenient terminology without increasing the expressive
power at our disposal.

1. Aspects of System Description 11

In an inventory problem, suppose that we have designated the event
classes® receive and issue:

Receive(e, q,t) = e is an event occurring at time t
in which q units of stock are received
Issue(e, q,t) =~ e is an event occurring at time t
in which q units of stock are issued

Then the definition:

EzxpectedQuantity(qty, tt) def
(X e | ((Receive(e, q,t) V Issue(e,—q,t)) At < tt) : q) = qty

defines the predicate ExpectedQuantity(qty,tt) to mean that at time ¢t the
number gty is equal to a certain sum. This sum is the total number of units
received in receive events, minus the total number issued in issue events,
taken over all events e occurring at any time ¢ that is earlier than time ¢t.
Being a definition, it says nothing at all about the world. By contrast, the
designation and assertion:

InStock(qty, tt) ~ At time tt gty items are in the stock bin
in the warehouse

Y qty,tt e InStock(qty,tt) &
(Ze | ((Receive(e,q,t) V Issue(e,—q,t)) ANt < tt) : q) = qty

say that initially InStock(0,t0) and that subsequently stock changes only
by the quantities issued and received. There is no theft, no evaporation
and no spontaneous creation of stock. The definition of EzpectedQuantity
expressed only a choice of terminology; the designation of InStock, com-
bined with the accompanying assertion, expresses a falsifiable claim about
the physical world.

4.3 Distinguishing Definition From Description

Many notations commonly used for description can also be used for defi-
nition, distinguishing the two uses by certain restrictions and by suitable
syntactic conventions.

For example, it is often convenient to define terms for state components
by giving a finite-state machine. Since mixing definition with description
— like mixing indicative with optative — is very undesirable, the state-
machine description should be empty qua description.* That is, in defining
states it should place no constraint on the described sequence of events.

3For uniformity, it is convenient to designate all formal terms as predicates. For any
set of individuals, such as a class of events, the formal term in the designation denotes
the characteristic predicate of the set.

4A term defined in a non-empty description is undefined whenever the description is
false. It then becomes necessary either to use a three-valued logic or to prove at each of
its occurrences that the term is well-defined.

12 Michael Jackson

ﬂ After-b

272

FIGURE 6. Defining states in a FSM

Suppose, for example, that in some domain the sequence of events is
<a,b,a,b,a,...>

and that we wish to define the state terms After-a and After-b. Figure 6
shows the definition: it avoids assuming that the sequence of events is as
given above. After-a is defined to mean the state identified as state 2 in this
state machine, and After-b is defined similarly. Of course, if the meanings
are intended to include the clause “...and the given sequence of events has
been followed so far,” then a different definition is necessary.

5 Descriptions and Models

An important aspect of description in software development is clarity in
the distinction between a description and a model. Unfortunately, the word
model is much overused and much misused. Its possible meanings® include:

e An analytical model of a domain: that is, a formal description from
which further properties of the domain can be inferred. For example,
a set of differential equations describing a country’s economy, or a
labelled transition diagram describing the behaviour of a vending
machine.

e An iconic model of a domain: that is, a representation that captures
the appearance of the domain. For example, an artist’s drawing of a
proposed building.

e An analogic model of a domain: that is, another domain that can act
as a surrogate for purposes of providing information. For example, a
computer-driven wall display showing the layout of a rail network in

5This distinction among the three kinds of model is due to Ackoff [1].

1. Aspects of System Description 13

a Hotel [
{ Lift S L
Information T h s
Machine A D|sp.|oy)
\ Lobb R Lt .
b oo 1A d Rl
Display
a: {Sensorlf)} b: {LampOn(p),LampOfi(p)}
c: {Rising,Falling,At(f}} d: {Lamp States}

FIGURE 7. Lift position display problem

the form of a graph, and the current train traffic on the network in
the form of a blob for each train moving along the arcs of the graph.

Much difficulty arises from confusion between the first and third of these
meanings. It is a common and necessary device in software development
to introduce an analogic model, in the form of a database or other data
structure, into the solution of an information problem or subproblem. Such
an analogic model domain is to be regarded as an elaboration of a certain
class of local variables of the machine. Descriptions of this model domain are
often confused with descriptions of the domain for which it is a surrogate.

5.1 A Model of a Lift

A small hotel has an old and somewhat primitive lift. Now it is to be fitted
with an information panel in the lobby, to show waiting guests where the
lift is at any time and its current direction of travel, so that they will know
how long they can expect to wait until it arrives.

The panel has a square lamp for each floor, to show that the lift is at the
floor. In addition there are two arrow-shaped lamps to indicate the direction
of travel. The panel display must be driven from a simple interface with
the floor sensors of the lift. A floor sensor is on when the lift is within 6
inches of the rest position at the floor.

Figure 7 is the problem diagram. Here the customer manikin is replaced
by the more impersonal dashed oval, representing the requirement. The
requirement is that the lamp states of the lobby display (the phenomena d)
should correspond in a certain way to the states of the lift (the phenomena
¢). The arrowhead indicates that the requirement constrains the display,
but not the hotel lift itself.

This simple information problem presents a standard concern of prob-
lems of this class[6]. The information necessary to maintain the required

14 Michael Jackson

a Hotel L
o / Lift \\~~C\ ______
Modelling S~ 07 v
Machine A\ MOS::l :
\ Llﬂ A”’f’ \‘~ _____ -7
© Model
g Lift L. f
: / Model RO e -
Display ~., Display ~ ™
Machine \ A Model ~
b Lpbby A/’d S~ -- -
Display
a: {Sensor(f}} b: {LampOn(p),LampOft(p)}
c: {Rising,Falling, At(f}} d: {Lamp States}

e: {LiftModel ConstructorOps} f: {LiftModel States}
g: {LiftModel AccessOps}

FIGURE 8. Lift position display problem decomposition

correspondence is not available to the machine at the specification interface
a at the moment when it is needed. The requirement phenomena include
the current lift position and its current direction of travel; the specification
phenomena include only the floor sensor states. To satisfy the requirement
as well as possible, the machine must store information about the past his-
tory of the lift, and must interpret the current state and events in the light
of this history.

The local phenomena of the machine in which this history is stored —
perhaps in the form of program variables, or a data structure or small
database — constitute an analogic model domain. If these local phenomena
are not totally trivial it is desirable to decompose the original problem into
two subproblems: one to build and maintain the model, and one to use
the model in producing the lobby display. This problem decomposition is
shown in Figure 8.

As the decomposed problem diagram shows clearly, the lift model and
the hotel lift itself are disjoint domains, with no phenomena in common. In
designing the lift model, the developer must devise model state phenomena
f to correspond to the lift domain requirement phenomena ¢. These model
phenomena might be called MRising and MFualling, corresponding to the
lift states Rising and Falling, and MAt(f), corresponding to At(f).

The modelling subproblem is then to ensure that MRising holds in the

1. Aspects of System Description 15

model if and only if the lift is rising, that MA#(f) holds in the model if and
only if the lift is at floor f, and so on. The model constructor operations —
the phenomena e — will be invoked by the modelling machine when sensor
state changes occur at its interface a with the hotel lift domain.

The display subproblem is much simpler: the display machine must en-
sure that the Up lamp is lit if and only if MRising holds; the floor lamp f
is lit if and only if MA¢(f) holds; and so on.

5.2 The Modelling Relationship

The desired relationship between a model domain and the domain it mod-
els is, in principle, simple. There should be a one-to-one correspondence
between phenomena of the two domains and their values. For example, the
lift has state phenomena At(f) for f = 0...8 and the model has state phe-
nomena MAt(f) for f =0...8.% For any f, MAt(f) should hold if and only
if At(f) holds.

Because of this relationship it seems clear that a description that is true
of one domain must be equally true of the other, with a suitable change of
interpretation. For example, the description:

“in any trace of values of P(z), 0 < z < 8 for each element of the
trace, and adjacent values of z differ by at most 1.”

is true of the lift domain if we take P(z) to mean At(f), and must be true
also of the model domain if we take P(z) to mean MAt(f).

It therefore seems very attractive and economical to write only one de-
scription. In a further economy, even the work of writing the two interpre-
tations can be eliminated by using the same names for phenomena in the
lift and the corresponding phenomena in the model. Unfortunately, this is
usually a false economy. Although almost universally attempted, both by
practitioners and by researchers, it can work well only for an ideal model
in which the desired relationship to the model domain is known to hold;
practical models are almost never ideal.

5.3 Practical Models

The lift domain phenomenon At(f) means that the lift is closer to floor f
than to any other floor. However, it is not possible to maintain a precise
correspondence between At(f) and the model phenomenon MAt(f), because
the specification state phenomena Sensor(f) do not convey enough infor-
mation. The best that can be done is, perhaps, to specify the modelling
machine so that MAt(f) is true if and only if Sensor(f) is the sensor that

5Floor 0 is the lobby. In Europe floor 1 is the first above the ground floor; in the US
the floors would be numbered 1...9.

16 Michael Jackson

is on or was most recently on. So the correspondence between At(f) and
MAt(f) is very imperfect. When the lift travels from floor 1 to floor 2,
MA¢t(1) remains true even when the lift is six inches from the floor 2 home
position and the state Sensor(2) is just about to become true.

The Rising and Falling phenomena are even harder to deal with. Once
again, the modelling machine has access only to the Sensor(f) phenomena,
and must maintain the model phenomena MRising and MFalling from the
information they provide. Initially the lift may be considered to be Rising,
because from the Lobby it can go only upwards; subsequently, when it
reaches floor 8 (or floor 0 again) it must reverse direction. But it may also
reverse direction at an intermediate floor, provided that it makes a service
visit there and does not simply pass it without stopping.

Investigation of the lift domain shows that on a service visit the floor
sensor is on for at least 4.8 seconds, allowing time for the doors to open and
close. Passing a floor takes no more than 1 second. The model phenomena
MRising and MFalling will be maintained as follows:

e Initially: M Rising A ~M Falling

e Whenever MAt(n+1) becomes true when MAt(n) was previously
true, for (n =0...6): M Rising A =M Falling

e Whenever MAt(8) becomes true when MA¢t(7) was previously true:
M Falling A =M Rising

e Whenever MAt(n-1) becomes true when MAt(n) was previously true
for (n =2...8): MFalling A ~M Rising

e Whenever MAt(0) becomes true when MAt(1) was previously true:
M Rising A —M Falling

e Whenever MAt(n) has been true for 2 seconds continuously, for (n =
1...7): =M Falling A =M Rising”

These practical choices represent unavoidable departures from exact cor-
respondence between the model and the lift domain. For example, during
the first two seconds of a service visit either MRising or MFalling is true,
although neither Rising nor Falling is true. Also, when the lift has reversed
direction at an intermediate floor but has not yet reached another floor,
either Rising or Falling is true, but neither MRising nor MFalling is true.
Speaking anthropomorphically, we might say that the modelling machine
is waiting to discover whether the next floor arrival will invite the inference
of upwards or downwards travel.

TA compromise between the limits of 1.0 and 4.8 seconds, affording an early but
reasonably reliable presumption that the lift has stopped to service the floor.

1. Aspects of System Description 17

5.4 Describing the Model and Modelled Domains

Other factors that may prevent exact correspondence in a practical model
include errors and delays in the interface between the modelling machine
and the modelled domain, and the approximation of continuous by dis-
crete phenomena. A further factor is the need to model the imperfection
of the model itself. For example, NULL values are often used in relational
databases to model the absence of information: a NULL value in a date-
of-birth column indicates only that the date of birth is unknown. In the
presence of such discrepancies it may still be possible to economise by using
the same basic description for both domains and noting the discrepancies
explicitly.

Another factor militating against a single description is that a model do-
main itself usually has additional phenomena that correspond to nothing
in the modelled domain. The source of these phenomena is the underlying
implementation of the model. A relational database, for example, usually
has delete operations to conserve space, indexes to speed access to partic-
ular elements of the model, and ordering of tuples within relational tables
to speed select and join operations. These discrepancies between the model
and modelled domains can sometimes be regarded as no more than the dif-
ference between abstract and concrete views of the model. Introduction of
the additional model phenomena is a refinement: the resulting implemen-
tation satisfies the model’s abstract specification. This view applies easily
to the introduction of tuple ordering and of indexing. It is less clear that
it can apply to record deletion.

The use of only one description for the two domains fails most notably
when the modelled domain has phenomena that do not and can not appear
in the model. For example, the lift domain has the moving and stationary
states of the lift car, and the opening and closing of the lift doors during
a service visit to a floor. These phenomena can not appear in the model
because there is not enough evidence of them in the shared phenomena of
the specification interface. They are completely hidden from the modelling
machine, and can enter into the model only in a most attenuated form —
the choices based on assumptions about them. But they must still appear
in any careful description of the significant domain properties.

In sum, therefore, it is essential to recognise that a modelled domain and
its model are two distinct subjects for description. Confusion of the two re-
sults in importing distracting irrelevancies and restrictions into the problem
domain description. For example, in UML [10] descriptions of a business
domain must be based on irrelevant programming concepts, such as at-
tributes, visibility, interfaces and operations, taken from object-oriented
languages such as C++ and Smalltalk. At the same time, UML notations
provide no way of describing the syntax of a lexical problem domain, other
than by describing a program to parse it.

This vital distinction between the model and the modelled domain is

18 Michael Jackson

difficult to bear in mind if the verb model is used where the verb describe
would do as well or better. The claim “We are modelling the lift domain”
invites the interpretation “We are describing the lift domain,” when often
it means in fact “We are not bothering to describe the lift domain: instead
we are describing a domain that purports to be an analogical model of it.”

6 Problem Decomposition and Description
Structures

Realistic problems must be decomposed into simpler subproblems. Almost
always, the subproblems are related by having problem domains in com-
mon: that is, they are not about disjoint parts of the world. The common
problem domains must, in general, be differently viewed and differently
described in the different subproblems. This section gives two small illus-
trations of this effect of problem decomposition.

6.1 An Auditing Subproblem

A small sluice, with a rising and falling gate, is used in a simple irriga-
tion system. A control computer is to be programmed to raise and lower
the sluice gate: the gate is to be open for ten minutes in each hour, and
otherwise shut.

The gate is opened and closed by rotating vertical screws. The screws
are driven by a small motor, which can be controlled by Clockwise, Anti-
clockwise, On, and Off pulses. There are sensors at the top and bottom of
the gate travel; at the top the gate is fully open, at the bottom it is fully
shut. The connection to the computer consists of four pulse lines for motor
control and two status lines for the gate sensors.

The requirement phenomena are the gate states Open and Shut. The
specification phenomena are the motor control pulses, and the states of
the Top and Bottom sensors. A mechanism of this kind moves slowly and
has little inertia, so a specification of the machine behaviour to satisfy the
requirement is simple and easily developed. Essentially, the gate can be
opened by setting the motor to run in the appropriate sense and stopping
it when the Top sensor goes on; it can be closed similarly, stopping the
motor when the Bottom sensor goes on.

The domain properties on which the machine must rely include:

e The behaviour of the motor unit in changing its state in response to
externally caused motor control pulses;

e the behaviour of the mechanical parts of the sluice that govern how
the gate moves vertically, rising and falling according to whether the
motor is stopped or rotating clockwise or anticlockwise;

1. Aspects of System Description 19

¢ the relationship between the gate’s vertical position and its Open and
Shut states; and

e the relationship between the gate’s vertical position and the states of
the Top and Bottom sensors.

To develop a specification of the control machine it is necessary to inves-
tigate and describe these domain properties explicitly.

6.2 Fruitful Contradiction

Being physical devices, the sluice gate and its motor, on whose properties
the control machine is relying, are not so reliable as we might wish. Power
cables can be cut; motor windings burn out; insulation can be worn away
or eaten by rodents; screws rust and corrode; pinions become loose on
their shafts; branches and other debris can become jammed in the gate,
preventing it from closing. The behaviour of the control computer should
take account of these possibilities — at least to the extent of stopping the
motor when something has clearly gone wrong.

Possible evidences of failure, detectable at the specification interface,
include:

e the Top and Bottom sensors are on simultaneously;

e the motor has been set to raise the gate for more than m seconds but
the Bottom sensor is still on;

e the motor has been set to lower the gate for more than n seconds but
the Top sensor is still on;

e the motor has been set to raise the gate for more than p seconds but
the Top sensor is not yet on;

e the motor has been set to lower the gate for more than ¢ seconds but
the Bottom sensor is not yet on.

Detecting these possible failures should be treated as a separate sub-
problem, of a class that we may call Auditing problems. The machine in
this auditing subproblem runs concurrently with the machine in the basic
control problem. The two subproblem machines are connected: the control
machine, on detecting a failure, causes a signal in response to which the
control machine turns the motor off and keeps it off thereafter.

The particular interest of this problem is that in a certain sense the
domain property description of the auditing subproblem contradicts the
description on which the solution of the control subproblem must rely. The
indicative domain description for the control subproblem asserts that when
the motor is set in such-and-such a state the gate will reach its Open state

20 Michael Jackson

within p seconds; but the description for the auditing problem contradicts
this assertion by explicitly showing the possibility of failure.

At a syntactic level, this conflict can be resolved by merging the two
descriptions to give a single consistent description that accommodates both
the correct and the failing behaviour of the gate mechanism. This merged
description might then be used for the control subproblem, the auditing
subproblem being embedded in the control subproblem as a collection of
local behaviour variants. But this merging is not a wise strategy. It is
better to solve the control subproblem in the context of explicit appropriate
assumptions about the domain properties, leaving the complications of the
possible failures for a separate concern and a separate subproblem.

6.3 An Identities Concern

In the lift display problem it was necessary to pay careful attention to the
gap between the requirement phenomena (the At(f), Rising and Falling
states) and the specification phenomena (the Sensor(f) states) of the lift
domain. But we were not at all careful about another phenomenological
concern in the problem. We resorted — naturally enough — to the standard
mathematical practice of indexing multiple phenomena: we wrote f for the
identifier of a floor, and used that identifier freely in our informal discussion
and — by implication — in our descriptions.

This was too casual. The use of ‘abstract indexes’ in this way is some-
times an abstraction too far: it throws out an important baby along with
the bathwater. Essentially, it distracts the developer from recognising an
important class of development concern: an Identities concern [6]. The po-
tential importance of this concern can be seen from an anecdote in Peter
Neumann’s book about computer risks [7]:

“A British Midland Boeing 737-400 crashed at Kegworth in the
United Kingdom, killing 47 and injuring 74 seriously. The right
engine had been erroneously shut off in response to smoke and
excessive vibration that was in reality due to a fan-blade failure
in the left engine. The screen-based ‘glass cockpit’ and the pro-
cedures for crew training were questioned. Cross-wiring, which
was suspected — but not definitively confirmed — was subse-
quently detected in the warning systems of 30 similar aircraft.”

‘Cross-wiring’ is the hardware manifestation of an archetypal failure in

treating an identities concern.

6.4 Patient Monitoring

In the well-known Patient Monitoring problem [9] the machine is required
to monitor temperature and other vital factors of intensive-care patients

1. Aspects of System Description 21

according to parameters specified by medical staff. The physical interface
between the machine and the problem world of the intensive-care patients is
essentially restricted to the shared register values of the analog-digital sen-
sor devices attached to the patients. A significant concern in this problem
is therefore to associate these shared registers correctly with the individual
patients, and to describe how this association is realised in the problem
domain. The complete chain of associations is this:

e cach patient has a name, used by the medical staff in specifying the
parameters of monitoring for the patient;

e cach patient is physically attached to one or more analog-digital de-
vices;

e cach device is plugged into a port of the machine through which its
internal register is shared by the machine;

e each port of the machine has a unique name.

To perform the monitoring as required, the machine must have access to a
data structure representing these chains of associations. This data structure
is a very specialised restricted identities model of the problem world of
patients, devices and medical staff. It is, of course, quite distinct from any
model of the patients that may be needed for managing the frequency
of their monitoring and for detecting patterns in the values of their vital
factors. The two models may be merged in an eventual joint implementation
of the machines of the constituent subproblems, but they must be kept
distinct in the earlier stages of the development process.

There is a further concern. Since neither the population of patients, nor
the set of monitoring devices deemed necessary for each one, is constant,
there must be an editing process in which the identities model data struc-
ture is created and changed. Concurrent access to this data structure by
the monitoring and modifying processes therefore raises concerns of mutual
exclusion and process scheduling. An excessively abstract view of the prob-
lem context will miss the existence of the data structure, and with it these
important concerns and their impact on the Patient Monitoring system.

7 The Scope of Software Development

The description concerns raised in this paper are primarily concerns about
describing the problem world rather than designing the software to be ex-
ecuted by the machine. It’s natural to ask again whether these description
concerns are really the business of software developers at all. Perhaps the
specification firewall does, after all, divide the business of software devel-
opment from the business of the application domain expert.

22 Michael Jackson

Barry Boehm paints a vivid picture of software developers anxious to
remain behind the firewall and not to encroach on application domain ter-
ritory [2]:

“I observed the social consequences of this approach in several
aerospace system-architecture-definition meetings (“Integrating
Software Engineering and System Engineering,” Journal of IN-
COSE, pages 61-67, January 1994). While the hardware and
systems engineers sat around the table discussing their previ-
ous system architectures, the software engineers sat on the side,
waiting for someone to give them a precise specification they
could turn into code.”

It’s clearly true that software developers can not and should not try
to be experts in all application domains. For example, in a problem to
control road traffic at a very complex intersection it must be the traffic
engineer’s responsibility to determine and analyse the patterns of incoming
traffic, to design the traffic flows through the intersection, and to balance
the conflicting needs of the different pedestrian and vehicle users. Software
developers are not traffic engineers. But this is far from the whole answer.

There are several reasons why a large part of our responsibility must
lie outside the computer, beyond the specification firewall. Here we will
mention only two of them. First, the specification firewall usually cuts the
development project along a line that makes the programming task unin-
telligibly arbitrary when viewed purely from the machine side: effectively,
pure specifications are meaningless. And second, having created the tech-
nology that spawns huge discrete complexity in the problem domain, we
have a moral obligation to contribute to mastering that complexity.

7.1 Meaningless Specifications

In the problem of controlling traffic at a complex road intersection the pure
specification is an I/O relation. Its domain is the set of possible traces of
clock ticks and input signals at the computer’s ports; its range is a set
of corresponding traces of output signals. These trace sets may be char-
acterised more or less elegantly, but, however described, they are strictly
confined to these signals. The specification alphabet will be something like
this —
{clocktick, outsignal_X1FF, ..., insignal X207, ... }

— where the event classes in the alphabet are events occurring in the hard-
ware I/0O interface of the computer. Nothing is said about lights or push
buttons, about the layout of the intersection, or about vehicles and pedes-
trians. These are all private phenomena of the problem domain, hidden
from the machine because they are not shared at the specification inter-
face.

1. Aspects of System Description 23

It’s clear that such a specification is unintelligible. A small improvement,
can be achieved by naming the signals at the specification interface to
indicate the corresponding lights and buttons —

{clocktick, outsignal_red27, ..., insignal_button8, ... }

— but the improvement is very small. Further improvement would need
additional descriptions, showing the layout of the intersection and the po-
sitions of the lights. Then the domain properties of vehicles and pedestrians,
existing and desired traffic flows, and everything else necessary to justify
and clarify the otherwise impenetrable machine behaviour specification.

In short, the machine behaviour specification makes sense only in the
larger context of the problem; and the problem is not located at the spec-
ification interface. If we restrict our work to developing software to meet
given formal specifications, most of what we do will make no sense to us.
We will be deprived of the intuitive understanding of the customer’s prob-
lem that is essential both as a stimulus to creativity in program design and
as a sanity check on the program we write.

7.2 Discrete Complexity

Computers frequently introduce an unprecedented behavioural complexity
into problem worlds with which they interact. This behavioural complexity
arises naturally from the complexity of the software itself, and from its
interplay with the causal, human, and lexical properties of the problem
domains.

In older systems behavioural complexity was kept under control by three
factors. First, the software itself — whether in the form of a computer
program or an administrators’ procedure manual — was usually smaller
and simpler than today’s software by more than one order of magnitude.
Second, there was neither the possibility nor the ambition of integrating
distinct systems, and so bringing about an exponential increase in their
combined behavioural complexity. Third, almost every system, whether a
‘data-processing’ or a ‘control’ system, relied explicitly on human coop-
eration and intervention. When inconvenient and absurd results emerged,
some human operator had the opportunity, the skill, and the authority to
intervene and overrule the computer.

In many application areas we have gradually lost all of these safeguards.
The ambitions of software developers increase to keep pace with the avail-
able resources of computational power and space. Systems are becoming
more integrated, or, at least, more interdependent. And it is increasingly
common to find levels of automation — as in flight control systems —
that preclude human intervention to correct errors in software design or
specification.

A large part of the responsibility for dealing with the resulting increased
behavioural complexity must lie with computer scientists and software de-

24 Michael Jackson

velopers, if only because no other discipline has tools to master it. We can
not discharge this responsibility by mastering complexity only in software:
we must play a major role in mastering the resulting complexity in the
problem world outside the computer.

8 Acknowledgements

Many of the ideas presented here have been the subject of joint work over a
period of several years with Pamela Zave. They have also been discussed at
length on many occasions with Daniel Jackson. This paper has been much
improved by his comments.

9 REFERENCES

[1] R L Ackoff, Scientific Method: Optimizing Applied Research Decisions,
Chichester, England, Wiley, 1962.

[2] Barry W Boehm, Unifying Software Engineering and Systems Engi-
neering; IEEE Computer Volume 33 Number 3, pages 114-116, March
2000.

[3] Edsger W Dijkstra, On the Cruelty of Really Teaching Computer Sci-
ence; Communications of the ACM Volume 32 Number 12, page 1414,
December 1989.

[4] Carl A Gunter, Elsa L Gunter, Michael Jackson, and Pamela Zave; A
Reference Model for Requirements and Specifications; Proceedings of
ICRE 2000, Chicago Ill, USA; reprinted in IEEE Software Volume 17
Number 3, pages 37-43, May/June 2000.

[5] David Harel, Statecharts: A visual formalism for complex systems;
Science of Computer Programming 8, pages 231-274, 1987.

[6] Michael Jackson, Problem Frames: Analysing and Structuring Software
Development Problems, Harlow, England, Addison-Wesley, 2000.

[7] Peter G Neumann, Computer-Related Risks, Reading, Massachusetts,
Addison-Wesley, 1995, pages 44-45.

[8] W L Scherlis, responding to E W Dijkstra “On the Cruelty of Really
Teaching Computing Science;” Communications of the ACM Volume
32 Number 12, page 1407, December 1989.

[9] W P Stevens G J Myers, and L L Constantine, Structured Design; IBM
Systems Journal Volume 13 Number 2, pages 115-139, 1974. Reprinted
in Tutorial on Sofware Design Techniques; Peter Freeman and Anthony

1. Aspects of System Description 25

I Wasserman eds, pages 328-352, IEEE Computer Society Press, 4th
edition 1983.

[10] James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Mod-
eling Language Reference Manual, Reading, Massachusetts, Addison-
Wesley Longman 1999.

[11] Hermann Weyl, The Mathematical Way of Thinking; address given at
the Bicentennial Conference at the University of Pennsylvania, 1940.

Chapter 7 of Programming Methodology, Annabelle Mclver and Carroll Morgan eds, Springer 2003, pages 137-159.

