
GC6VC07.doc 18/08/06 Page 1

What Can We Expect from Program Verification?
Michael Jackson, The Open University

{jacksonma@acm.org}
Draft of 15 August 2006

Naturam expellas furca tamen usque recurret
You may drive out nature with a pitchfork, but she will always find a way back

Horace, Epistles I x 24

This note briefly discusses the relationship between program correctness and satisfaction of
system requirements. The concept of program correctness assumes the existence of a formal
program specification. In software-intensive systems such a specification may be hard to obtain
and will unavoidably involve formalisation of the natural, non-formal problem world which can
be checked by verification tools. Problem structure in such systems exhibits characteristic
patterns that are not commonly found elsewhere—both patterns of individual components and
patterns of their composition. These patterns affect the structure of the system development steps
and documentation, including software and specification texts, and suggest potentially useful
forms of verification and verification output. The inevitably imperfect formalisation of the non-
formal problem world poses major difficulties, but here too appropriate verification tools can
contribute to system reliability.

Introduction

In 2003 a Grand Challenge was proposed under the title The Verifying Compiler [Hoa03].
The following year a broader proposal, Dependable Systems Evolution, was made [Woo04]
to develop a verifying compiler, along with a repository of realistic examples of programs
and program documentation that had been, or were intended to be, verified. Examples
mentioned included the system to control the Dutch Waterkering storm-surge barrier, the
Mondex smart card system for financial transactions, and selected web services. Verification
was understood in the sense of mathematical proof that a program satisfies its formal
specification, an ideal whose history extends back at least to Alan Turing. Techniques could
include both checking a given program against specifications embedded in the text or
supplied in a separate document, and correctness by construction, in which a systematic and
formal development procedure guarantees correctness of the developed program or in some
way facilitates its verification. The richness of the possible repertoire of techniques is
illustrated by the recent research roadmap [LeaAbr06] produced by one Grand Challenge
project subcommittee. Reflecting this richness, the name verifying compiler has recently
been dropped in favour of the more general phrase tools for program verification.

Software Specifications

For the Grand Challenge, correctness of a software product is conformity to a formal
specification. What is the subject matter and scope of a specification? One view is that a
specification forms a ‘logical firewall’: it separates the ‘correctness concern’—whether the
program satisfies its formal specification—from the ‘pleasantness concern’—whether a
program satisfying that specification is one we would like to have. In a more earthy
formulation, the separation is between ‘building the program right’ and ‘building the right
program.’

IEEE Computer October 2006 pages 65-71

GC6VC07.doc 18/08/06 Page 2

The motive for this separation is self-evident. The computer has been carefully
engineered so that in executing a program it constitutes a domain within which correct
formal reasoning is fully reliable1. Whenever the problem subject matter is not entirely
trivial, an additional aspect beyond purely programming concerns is unavoidably introduced
because the developer must draw on knowledge of the subject matter. If this subject matter is
abstract and mathematical—for example, a set of points in 3-space whose convex hull is to
be computed—the required knowledge is knowledge of the relevant mathematical axioms
and theorems: it is then no less formal than the program itself and leaves the applicability of
formal reasoning intact. By contrast, the question whether we are building the right
program—for example, whether we need the convex hull or the smallest containing cube—
threatens to compromise formality by introducing informal concerns that lie outside the
world of mathematics. Even the choice of an input format for the set of points whose convex
hull is to be computed introduces an informal element: human considerations arise for which
there is no indisputably correct, provable, answer. It seems desirable, therefore, to restrict the
specifications against which programs are to be developed and verified: their subject matter
must be abstract and formal, and must lie strictly within the perimeter of the computer.

In a software-intensive system neither the problem nor its subject matter is formal. The
problem world—that is, the particular natural, physical, environment2 in which the software
will run—is a collection of specific physical phenomena and things, including human beings
and their engineered and other constructed artifacts. The problem’s subject matter is not the
abstract axioms and theories that we may adopt to understand and formalise the environment
properties and to state and solve the problem: rather, it is the buzzing blooming confusion
that is the specific real environment itself. To maintain the possibility of formally verified
correct software in such a system, therefore, it seems necessary to take two distinct
preparatory steps. First, the system requirement—that is, the effects that the software must
bring about in the environment—must be formalised, along with relevant environment
properties. Second, the formalised requirement and environment properties must be used to
derive a formal specification of the desired computer behaviour at its interface with the
environment. Satisfaction of the resulting formal specification is then the criterion of
program correctness. The whole task of deriving the specification concerns only the
environment and lies outside the firewall: it is the responsibility of engineers. The task inside
the firewall concerns only the software and the formal specification, and is the responsibility
of computer scientists. The fully formal nature of programming and program verification
remains intact inside the firewall.

From Requirements to Specifications

One obstacle to applying this tidy separation of responsibilities to software-intensive systems
is the nature of their requirements. Often a vague and general requirement may be easily
stated: “Close the storm-surge barrier only when dangerous tides and weather are expected
in 11 hours’ time (the barrier takes 11 hours to open or close),” or “provide convenient
telephone service for subscribers to make and receive calls.” But, unlike the requirement
“compute the convex hull,” these requirements may be impossible to formalise in detail. In
Simon’s terminology, the requirements demand to be satisficed rather than formally
satisfied. Evolution of real systems is often iterative: successive putative solutions to a partly
undefined problem are proposed, examined, and tried out. This iterative process may
continue indefinitely through a succession of operational versions3. A formalised

1 For brevity and simplicity, we leave aside here the possibility of computer hardware failures.
2 The terms problem world and environment are used interchangeably in this note.
3 In established engineering branches this iteration takes place over many years. In the case of motor cars, over
120 years so far.

GC6VC07.doc 18/08/06 Page 3

requirement is always very incomplete: its current form at any time is implicitly defined
positively by some of the approved properties, and negatively by some of the deprecated
properties of the current solution. This partial, tentative and implicit nature of the system
requirements is unavoidably inherited by software specifications derived from them.

Even if an adequate system requirement could be formally stated, restricting the software
specification to the behaviour of the computer at its interface with the environment presents
another obstacle. Such a restricted specification would be unmanageably complex and
humanly unintelligible. Consider, for example, the problem of developing a control program
for traffic lights at a road intersection. For the simplest crossroads it may be enough to
designate the two pairs of lights as E-W and N-S: the road layout and the general traffic rule
to be followed are obvious. The restricted formal program specification is immediately
intelligible: E-W and N-S green phases of stipulated durations alternate; green never shows
in both directions; every alternate phase is red in both directions for a stipulated time; and
there is a stipulated protocol for switching each light between red and green. All this can be
lucidly expressed in terms of the computer-environment interface4. But suppose instead that
the intersection is complex, with many roads meeting in an elaborate layout having several
closely adjacent nodes, with pedestrian crossings and pedestrian signals and request buttons,
and vehicle sensors embedded in the roads. Now the specification of the necessary control
program behaviour cannot be grasped without careful descriptions of the layout of roads
(including road widths and the possibility of filtering on turns), of the positions and
properties of lights and crossings and sensors, of pedestrian and vehicle traffic density and
traversal times, and of the required scheme of safe and efficient pedestrian and vehicle flow
through the intersection5.

As Figure 1 shows, the system requirement of “Orderly Safe Traffic” is not located at the
computer interfaces A1, A2 and A3 with the light units, crossing buttons, and road sensors,
but at B1 and B2, deep in the environment with the pedestrians and the vehicles and drivers.
Understanding and justification of the desired program behaviour at A1, A2 and A3 must
penetrate similarly deeply. It relies on properties of parts of the world that are connected
only indirectly to the computer, exactly as the justification of a program to compute the
convex hull of a set of points relies on mathematical properties of Euclidean space. This
depth in the environment is typical of realistic software-intensive systems. So too are the
profusion in the environment of seemingly arbitrary complexities and anomalies, and a
paucity of the reliable, tersely expressible, regularities that characterise abstract
mathematical worlds.

4 We are assuming that the relationship between the states of the computer’s output ports and those of the
traffic lights is trivially obvious. It may not be.
5 It may be pointed out that the restricted specification can be made intelligible by the use of appropriate
abstractions. But these abstractions will be effective only if they constitute—as suggested in later paragraphs of
this section—the very formalisations of the non-formal environment properties and requirement that the
restriction is intended to exclude.

Vehicles
& Drivers

Road
Sensors

Light
Units

 Lights
 Controller

Orderly
Safe

Traffic

B2
Road

Layout

A2

A1 Pedest-
rians

Crossing
Buttons

A3

B1

Figure 1: Requirements for a traffic system are deep into the environment

GC6VC07.doc 18/08/06 Page 4

Fortunately, restricting the specification to the computer interface is not only
impracticable: it is also unnecessary. Although a physical and human environment is a non-
formal domain, the engineering task of developing the system must rely to a considerable
extent—somewhat as in the established branches of engineering—on formalised descriptions
of the physical world and on reasoning about those descriptions. It is possible to bring these
formalisations and the associated reasoning within the purview of the program specification,
and hence to a considerable extent within the scope of some formal verification tools and
techniques.

One approach to this goal is the Four Variable Model [ParMad95]. The computer is
considered to be connected to the environment by sensors and actuators through which it
monitors and controls certain environment variables M and C. The given environment
properties, and the system requirement, are stated in relations NAT and REQ over those
variables; the properties of sensors and actuators are stated in relations IN and OUT which
relate the environment variables to computer interface variables I and O; the goal of
development is to derive the relation SOF, which relates I and O.

Another approach, described in [HayJacJon03], formalises the problem world properties
in terms of rely and guarantee conditions. Properties of each part of the world can be
guaranteed provided that certain conditions—typically, some property of the behaviour of
another part—can be relied on. Such an approach can be extended as far as the program
itself: its specification is that it must guarantee to satisfy the overall system requirements
while relying on certain properties and behaviours of the environment.

A third approach, described in [MarSchBud91], introduces problem world properties into
the program text itself by adding reality variables whose values represent problem world
states. For program statements whose execution involves direct interaction with the problem
world, axioms are written characterising the states of these variables before, during and after
statement execution. In effect, the environment is introduced into the program as a set of
specification or ghost variables.

Approaches of this kind can bring a variety of relevant formalisations within the scope of
verification. In addition to program texts and program specifications there can be formal
descriptions of designs, of development steps, of given properties of the environment, of
system requirements, and of relationships that should hold among them. All this is already
envisioned—for example, in the proposal for the repository of documentation [Woo04] and
in the discussion of research directions in [LeaAbr06]. The goal of verifying program
correctness with respect to a program specification has already been considerably broadened,
at least by broadening the range of verification inputs to include formalisations of the
problem and its environment.

Software-Intensive Systems

Broadening the range of verification inputs provides more grist to the mill of formal tools
and techniques. Since the added material is itself formal, resulting specifically from
formalisation of its non-formal subject matter, it can be treated in the same way as formal
program texts and specifications, using all the formal and mechanised reasoning tools that
can be brought to bear. Effectively, the tools can be used to check the derivation of the
program specification from the system requirements.

If this were the only effect of extending the Grand Challenge scope to software-intensive
systems, it would not merit extended consideration. But the effects are more substantial, and
provide challenges and opportunities that should not escape attention. These challenges and
opportunities arise from the characteristics of software-intensive systems that distinguish

GC6VC07.doc 18/08/06 Page 5

them from systems concerned either with abstract mathematical worlds or with the carefully
formalised world of program execution—as in the case of cache management, operating
systems, compilers, and file systems. Of course the distinction is not rigorous. A compiler
designer must consider how helpful and understandable particular diagnostic messages
would be to the human user, and a file system must take explicit account of the possibility of
disk error and failure. But the differences remain large, and demand to be explicitly
addressed.

Three distinctive characteristics of software-intensive systems impinge most heavily on
verification. First, effective understanding and analysis of the systems, and of the problems
that they solve, depend on particular forms of problem decomposition and patterns of the
resulting components. Second, combination, or composition, of the components in a realistic
system is heterogeneous. It presents the need for many particular forms of composition,
which justify specific support in a verification tool set. More abstract forms of some of these
combinations may be already well known both in theory and practice. Third, the non-formal
nature of the underlying reality in the environment has an important effect on the role of
formal reasoning about it, and suggests opportunities to help with the consequent difficulties.

We discuss these characteristics and mention their possible impacts on verification in the
immediately following sections.

Decomposition and Subproblem Components

Software-intensive systems exhibit complexity that must be mastered by decomposition. One
source of this complexity is the absence of regularity in the problem environment and hence
in the requirements. For example, in the traffic lights system for a complex intersection,
mentioned earlier, only very weak generalisations can hold over the whole set of light units,
because each occupies a unique position in the layout with unique relationships to nearby
lights and crossings.

A second source of complexity is that a software-intensive system is typically richly
structured, in the sense that its functionality combines many large subfunctions of different
kinds working together in many different ways. This richness and heterogeneity increase
with increasing demands for multiple features and for interoperability of systems. Specifying
and implementing each subfunction can be considered as a subproblem within the overall
problem of developing the system, and, in a loose analogy with the structure of an
engineering product such as a motor car, the implemented subfunctions, together with their
relevant parts of the environment, can be considered to be components.

Consider a control system intended to provide safe lift service between floors in a hotel.
The developer must identify the environment properties on which the solution to the lift
service subproblem will rely—for example, the causal chains that connect the motor’s
polarity and on-off switches to the movement of the lift car in the shaft, and connect the car’s
position in the shaft to the states of the floor sensors: it is impossible to provide lift service
without relying on these properties. But there is also a safety subproblem, requiring a
recognition that these properties, however carefully chosen and formalised, are not fully
reliable. The power may fail; the switch contact may fail; the motor may burn out; the cable
may snap; a floor sensor may stick; there is no bound to the possibilities of failure. The
safety subproblem requires a separate component, for which the important environment
properties are those that allow detection and diagnosis of faults in the equipment. Running
concurrently with lift service, safety monitors equipment functioning and executes
appropriate action when it detects a fault. Another subproblem in the system might provide
the display in the hotel lobby that shows impatient guests where the lift cars are, and how
many floors each must visit before it reaches the lobby. Another might provide the facility

GC6VC07.doc 18/08/06 Page 6

for the hotel manager to change the lift scheduling priorities to reflect changing patterns of
usage. Yet another might provide manual control regimes to be used by the lift engineers
during maintenance of the equipment. In a realistic system there would be many such
subproblems, each with its own requirement, its own relevant subset of the environment, and
its own software specification.

Problem decomposition can have many aims, according to the particular system and its
context. One important aim is to achieve simplicity in each subproblem, perhaps by applying
a repertoire of design heuristics. One such heuristic restricts the subproblem requirement to a
single level of desirability. In the lift example the separation of lift service from safety
avoids a requirement of the form “provide service, but if that’s not possible, ensure safety.”
The separation defers the combination of service and safety to another development task, but
for the combining task the complexities of the separated subproblems are hidden. Another
heuristic demands a consistent formalisation of the environment. Again in the lift example
the environment properties necessary for lift service are different from those for fault
detection and diagnosis. A third heuristic may prohibit the presence of irreconcilable
periodicities within the same subproblem. In a library management system, for example, this
would lead to separating the management of subscriptions from the management of book
borrowing. Given suitable formalisations of requirements and environment properties,
heuristics like these could be checked by verification tools, and the results presented to the
developer’s judgment.

A second aim of problem decomposition is to ensure that as many subproblems as
possible fall into known classes having known solutions. Mastering heterogeneity and
complexity, in software-intensive system problems as elsewhere in engineering, depends
heavily on accumulated specialised knowledge. In an illuminating book [Vin93] about
engineering, W G Vincenti distinguishes normal from radical design. In normal design

“... the engineer knows at the outset how the device in question works, what are its
customary features, and that, if properly designed along such lines, it has a good
likelihood of accomplishing the desired task.”

In radical design, by contrast,

“...how the device should be arranged or even how it works is largely unknown. The
designer has never seen such a device before and has no presumption of success.
The problem is to design something that will function well enough to warrant
further development.”

The canons of normal design, established by long experience for each known device type,
minimise the likelihood of unwelcome surprises, contributing hugely to dependability.

Adapting Vincenti’s view to software-intensive systems, we may regard the subproblem
solutions—each with its software component, its requirement, and its relevant subset of the
problem world—as devices. With increasing experience it should be possible to develop a
repertoire of known device types [Jac00]. The basic verification of each component
individually would not be very different in principle from the verification of any program
against a specification that contains a formalisation of the environment. But it might have
additional aspects.

Normal design of a component is expected to conform to a standard pattern of the
software itself, its problem world, and their interactions. Such patterns can be explicitly
named and described, just as object-oriented design patterns have been, and a component’s
conformity to its pattern might be checked as a part of the verification process. For example,
a pattern might stipulate that one particular part of the subproblem’s environment must be

GC6VC07.doc 18/08/06 Page 7

passive, in the sense that it never initiates events or state changes but only responds to
external stimuli. Such a property could be checked against the pattern by analysis of the
environment formalisation.

Further, each pattern is associated with a number of concerns that must be addressed to
avoid failures of known kinds. For example, the initialisation concern, well known for
program variables, is important in several classes of software-intensive system component:
when the software execution begins, the relevant parts of the environment must be in, or be
brought into, a compatible state. If the software is specified so that any possible state of the
environment is compatible, the initialisation concern has been fully discharged. But if a
stronger assumption is made about the environment state—for example, an assumption by
the lift service module that the lift is initially at a floor with the motor off—then even if the
environment formalisation asserts a compatible initial state it is still appropriate to bring the
matter to the developer’s attention. The initial environment state is that which holds when
the subproblem software begins execution: it is easy to make assumptions about it that are
not justified in the reality of the problem world.

Composition of Components

Vincenti points out that radical design is called into play not only for novel devices, but also
more generally for systems, which are large heterogeneous assemblages of devices and other
components and participants. Of course, devices, even of known types, can also be regarded
as small systems. But for a device of a known type, normal design specifically includes the
composition of its parts. In a system, by contrast, even if all the component devices are of
known types, the novelty of their composition imposes uncertainties: in addition to simple
combinatorial explosion there are uncertainties arising from novel and unanticipated forms
of interaction.

Few software-intensive system problems fit comfortably into a large regular structure
characterised by an architectural style such as procedure hierarchy, pipe-and-filter, or layers
of abstraction. An interesting illustration—the user control of a digital oscilloscope—is
discussed in [ShaGar96], where the authors describe the difficulties of fitting the software
design into any one of several regular architectural styles. One reason is the heterogeneity of
the system components, and the inherent complexity of their interactions. Component
interactions cannot be understood solely in terms of the interactions of their software parts
within the program execution: components interact not only at their software interfaces, but
also indirectly by their interactions with the same or different aspects of common parts of the
problem world.

The lift service and safety subproblems, for example, are related in a non-trivial way.
They rely on different formalisations of the environment. They are concerned with
overlapping but distinct subsets of the world: only lift service is concerned with the request
buttons; only safety is concerned with the emergency brake. They have different control
relationships to certain phenomena of the environment: lift service controls the motor
polarity, while safety only observes it. Their requirements may come into conflict: in the
presence of a fault, safety requires the motor to be shut down, while service may require it to
run. Their requirements are related also by precedence: safety must take precedence over
service. Their software implementations are ordered by criticality: correct execution of the
safety module must be maximally reliable and must not depend in any way on the service
module. Some of these relationships demand verification of the paths between the software
modules, others of the composition of their effects in the environment.

Some component compositions may be of types well known to computer science, such as
the interleaving between the writer and readers of a shared environment part, or switching

GC6VC07.doc 18/08/06 Page 8

between subproblems handling different system modes, such as taxiing, take-off, climbing
and cruising. In a switching composition the control of an environment domain is handed
over from one subproblem to another. The relinquishing subproblem must leave the domain
in a state permitting handover, and the receiving subproblem must either receive it in a
suitable initial state or be able to put it into such a state. In an interleaving composition it is
not enough to establish atomicity and mutual exclusion in the software. It is necessary also
to examine the effects in the environment. The interleaving of the subproblem in which the
hotel manager edits the lift scheduling priorities with the lift service subproblem that is
governed by those priorities demands more than mutually exclusive access to the priorities
data structure. It is also necessary to determine whether editing is always permitted and
when and how lift service is to change over from the older to the newer priorities.

Just as established forms of software verification deal with the structural innovations of
modern programming languages, such as encapsulation, inheritance, exceptions and
concurrency, so in the same way it is desirable to deal with structural patterns evolved
specifically for software-intensive systems. If a developed discipline of such composition
patterns is achieved, verification tools could recognise and exploit them as readily as they
would now recognise and exploit inheritance or exception handling in a Java program.

Reasoning about the Environment

The formalisations of environment properties and system requirements are necessarily
imperfect. First, because formal terms will be unavoidably fuzzy in their definition and
interpretation. Second, because values of continuous phenomena must be approximated.
Third, because there are no frame conditions: the natural world allows no bound to the
phenomena or properties that may prove relevant to the truth or falsity of an assertion.
Fourth, because physical properties are not in general compositional: effects that can be
properly ignored for each property individually may play a critical role in their composition.

Pure logical reasoning on the basis of these formalisations is unaffected, but the results of
such reasoning, reinterpreted in the environment, are not fully reliable. In reasoning about a
physical world, logic can show only the presence of errors, never their absence. Formal
verification tools cannot examine the reality of the problem world to check the truth of their
conclusions, but they may be able to indicate particular potential inadequacies. For example,
if a part of the environment is formalised as having two distinct state components, each with
its own protocol for external control, the verification tool may, by the rule of ∧–introduction,
deduce that any interleaving of the two protocols by interleaved execution of their
corresponding software components will produce correspondingly interleaved state changes.
This reasoning might be applied to a machine tool with a longitudinal and a transverse
motion. But in reality some particular interleaving may cause the whole domain to reach an
unanticipated and impermissible combined state—for example, one in which the power
supply is overloaded because both motors are being started simultaneously under full load.
In such a case it could be useful for the verification tool to point out that it has relied on a
specific assumption of compositionality in computing the effects of program execution. It
might even be possible to identify and enumerate the combined states that, according to
some heuristic rule, are most likely to be problematic. The developer would respond by
checking that the state components are indeed orthogonal, that none of the enumerated
combined states is impermissible, and that the assumption of compositionality holds well
enough in reality.

If a program’s specification and supporting documents include descriptions of formalised
development steps in reasoning about the problem world, the power of verification could be
deployed to check the reasoning in those steps. One example is what is called problem

GC6VC07.doc 18/08/06 Page 9

reduction in [RapHalJac06] and requirement progression in [SeaJac06]. When a problem
requirement is deep in the world, in the sense that it is separated from the computer by more
than one problem world domain, a step towards developing a software specification can
often be made by reasoning about the outermost domain to obtain a restated requirement
expressed only in terms of domains closer to the computer. Such a reasoning step could be
checked for logical correctness by a verification tool. Analogy with a program refinement
step, or even the establishment of a lemma needed for a proof, is attractive.

Closing Comments

Development of verification tools and techniques has long been influenced by the need to
handle new programming language features and constructs. In the other direction, the desire
for verification has influenced language development towards greater clarity and simplicity
in programming. The subcommittee report mentioned earlier [LeaAbr06] is entitled
Roadmap for Enhanced Languages and Methods to Aid Verification. The history of types in
programming languages illustrates this symbiosis very well.

A similar symbiosis could exist in a wider context. Although verification (as opposed to
testing) is necessarily concerned with the formal, it can address itself to formalisations of
requirements and problem worlds no less than to formalisations of programs. The potential
availability of relevant help from verification tools could give impetus to further
development of languages for capturing concepts of problem structure and analysis, and to
refining and improving those concepts. The concepts of problem structure and analysis
mentioned here have been explored in earlier work and discussed, for example, in
[JacZav95, Jac00, HallRap03]. Interaction between such work and existing and future work
on formal verification could be fruitful.

Much of what is suggested here is based on very informal considerations, some implying
judgments about the relative likelihood of different error classes in system development.
This informality is not alien to the spirit of the Grand Challenge. Intuition about human
capacities is important, as it is for interactive theorem provers, and should not be ignored
when applying verification to software-intensive systems.

The software verification goal is self-evidently attractive. Proponents of the Grand
Challenge have written: “We envision a world in which computer programs are always the
most reliable component of any system or device that contains them.” Verification tools and
techniques can contribute to ensuring that the programmer builds the program right: they
could also contribute to building the right program.

Acknowledgements

I am very grateful to Anthony Hall, Jon Hall, Daniel Jackson, Butler Lampson, Gary
Leavens, Fred Schneider and Michel Sintzoff. They have helped me to clarify my thoughts
and to improve this note by their generous comments on an earlier version. Responsibility
for the remaining deficiencies is, of course, entirely mine.

References
[HalRap03] Jon G Hall and Lucia Rapanotti; A Reference Model for Requirements

Engineering; in Proceedings of the 11th Joint International Conference of Requirements
Engineering (RE’03), 2003.

[HayJacJon03] Ian J Hayes, Michael A Jackson and Cliff B Jones; Determining the
specification of a control system from that of its environment; in Keijiro Araki, Stefani

GC6VC07.doc 18/08/06 Page 10

Gnesi and Dino Mandrioli eds, Formal Methods: Proceedings of FME2003, pages 154-
169, Springer Verlag, Lecture Notes in Computer Science 2805, 2003.

[Hoa03] Tony Hoare; The Verifying Compiler: A Grand Challenge for Computing
Research; Journal of the ACM Volume 50 Number 1, pages 63-69.

[Jac00] Michael Jackson; Problem Analysis and Structure; in Engineering Theories of
Software Construction, Tony Hoare, Manfred Broy and Ralf Steinbruggen eds;
Proceedings of NATO Summer School, Marktoberdorf; IOS Press, Amsterdam,
Netherlands, August 2000.

[JacZav95] Michael Jackson and Pamela Zave; Deriving Specifications from Requirements:
An Example; in Proceedings of the 17th International Conference On Software
Engineering, pages 15-24, ACM and IEEE CS Press, 1995.

[LeaAbr06] Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler,
Alessandro Coglio, Kathi Fisler, Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-
Jones, Murali Sitaraman, Douglas R. Smith, and Aaron Stump; Roadmap for Enhanced
Languages and Methods to Aid Verification; Iowa State University TR #06-21, July 2006.

[MarSchBud91] Keith Marzullo, Fred B Schneider and Navin Budhiraja; Derivation of
Sequential, Real-Time Process-Control Programs. In Foundations of Real-Time
Computing: Formal Specifications and Methods, A M van Tilborg and G Koob, eds,
Kluwer Academic Publishers, 1991, pages 39-54.

[ParMad95] David Lorge Parnas and Jan Madey; Functional Documents for Computer
Systems; Science of Computer Programming Volume 25 Number 1, pages 41-61, October
1995.

[RapHalJac06] Lucia Rapanotti, Jon Hall, Michael Jackson; Problem Transformations in
Solving the Package Router Control problem; Open University Technical Report No
2006/07, 5th July 2006.

[SeaJac06] Robert Seater and Daniel Jackson; Requirement Progression in Problem Frames
Applied to a Proton Therapy System; Proceedings of the 14th International Requirements
Engineering Conference (RE06), Minneapolis USA, 2006.

[ShaGar96] Mary Shaw and David Garlan; Software Architecture: Perspectives on an
Emerging Discipline; Prentice-Hall 1996, pages 39-42.

[Vin93] Walter G Vincenti; What Engineers Know and How They Know It: Analytical
Studies from Aeronautical History; The Johns Hopkins University Press, Baltimore,
paperback edition, 1993.

[Woo04] Jim Woodcock; GC6: Dependable Systems Evolution; in Tony Hoare and Robin
Milner eds; Grand Challenges in Computing Research; BCS 2004, pp25-28.

