
Problem Complexity

Michael Jackson
Independent Consultant

101 Hamilton Terrace, London NW8 9QY, England
and with AT&T Research

180 Park Avenue, Florham Park NJ 07932-0971, U S A
jacksonma@attmail.com

Abstract

An approach to problem analysis is described, based on
the notion of a problem frame. Problem frames are
intended to capture classes of recognisable and soluble
problems. Because problems are located in the
environment, not in the machine to be built, problem
frames are characterised by environment properties and
structures. Useful frames are necessarily very narrow:
realistic problems are regarded as parallel
superimpositions of subproblems. Problem complexity
arises from the interactions of these subproblems and of
their solutions.

1. Introduction

Software engineering traditionally focuses on solutions
rather than on problems: development is faster when
problem analysis is treated implicitly by folding it into the
solution design. Also, problems are inconveniently
informal and heterogeneous while solutions can be
attractively formal and homogeneous.

The disadvantages of this focus on solutions are
obvious. But shifting the focus to problems demands some
kind of discipline of problem analysis. Some aspects of a
problem analysis discipline are presented in this paper,
with some discussion of the sources of problem
complexity.

1.1 Complexity

The complexity considered here is informal and
subjective. It manifests itself in the difficulty that a
problem presents to human understanding, and
consequently to the achievement of a satisfactory solution.

Our chief tools for mastering complexity are structuring,
abstraction and formalisation. We structure a complex
whole by separating it into parts that can be analysed and
considered independently. For example, by separating the

input phase of a compiler into a lexer (having m states)
and a parser (having n states) we reduce the complexity of
the input phase from m×n to m+n states. This separation,
of course, depends on the availability, or development, of
lexing and parsing as useful and intelligible abstractions
for the problem in hand. The separation would be
frustrated if, perversely, the language were designed so
that lexical conventions were local and depended on the
syntactic context.

If the lexing/parsing separation works well it can serve
both as a problem structure and as a solution structure. We
understand lexing and parsing as subproblems, and we
also understand them as distinct parts of the implemented
compiler. Some form of composition of the separated parts
is always necessary. Sometimes it may be a composition
mediated by a simple mechanism such as procedure call,
or by a more subtle mechanism such as the shared events
of CSP[4]. Sometimes it may be necessary to integrate the
solutions of the separated problem parts into a single
solution part in which the two solutions are closely
intertwined. The technical difficulty of composing the
solutions is often an unrecognised force constraining the
choice of problem structure: it often seems gratuitously
burdensome to choose a structure in problem analysis that
can not be carried forward to the solution.

Formalisation is an essential tool in mastering
complexity simply because it permits more reliable
reasoning. We can not reason reliably in informally
understood terms, so we must formalise those parts of the
informal world that we wish to reason about. This activity
of formalisation is of special importance in software
engineering, because software engineering problems are
often — if not always — located in an informal context
furnished by relevant parts of the physical world.

1.2 Focusing on the Problem

The recognition that the problem is located in the
environment rather than in the machine to be built is

Proceedings Third IEEE International Conference on Engineering of Complex Systems, Como, Italy, September 8-12, 1997, pages 239-248

crucial to focusing on the problem rather than the solution.
The machine is the solution, not the problem. Seeking the
problem in the machine has been a capital error of many
methods that have claimed to address problem analysis. In
Structured Analysis[1], for example, the initial Context
Diagram shows the system (the machine) connected by
data flows to the terminals (relevant parts of the world).
Clearly, the next step should be description and analysis of
the terminals; but instead it is a top-down decomposition
of the system. This is structuring the solution, not
analysing the problem.

Focusing on the problem and deferring consideration of
putative solutions is in itself a contribution to mastering
complexity in software engineering. Much of the
complexity we confront results from the need for explicit
composition of solutions: the solution is often more
complex than the problem because the solution
environment does not permit the same abstractions and
separations as the problem space. Premature attention to
composing the solution is likely to confuse problem
analysis.

1.3 Capturing the Phenomena

To capture a problem in the physical world we must
identify the phenomena we are interested in and propose to
denote in our descriptions. For each class of phenomenon
we must give a designation[6]: that is, a recognition rule
(necessarily informal) by which instances of the
phenomenon can be recognised in the world, and an
associated formal term by which we will denote them.

This activity of designating phenomena of interest
formalises an informal reality, and is therefore also an
activity of approximation. The phenomena to be
designated must not be chosen arbitrarily. In most real
problems the obvious criterion of relevance to the problem
in hand leaves many choices open. We must also consider
and estimate the error involved in the formalisation,
choosing the designated phenomena so that this error, and
the consequential errors that will arise from formal
reasoning with the designated terms, will be acceptably
small. The point is familiar to anyone who has ever given
directions to a passing motorist. It is very unsatisfactory to
give directions in terms of ‘bends in the road’; ‘turnings’
and ‘crossroads’ may be not much better; ‘traffic lights’
are often reliably recognisable, although even there
difficulties arise with lights that may be out of use in
certain periods or serve only to guard a pedestrian
crossing. In giving directions we seek to use the designated
phenomena with the smallest errors; in describing a
software engineering problem we can hardly do less.

1.4 Some Simple Structuring

The problem context presents immediate opportunities
for simple structuring. It is natural to divide the world into
domains — groupings of phenomena that are conveniently
considered together because they are in some sense
compact. That is, the mutual relationships and constraints
among the phenomena within one domain are much richer
and stronger than those — if there are any — that reach
across domains. So in the Patient Monitoring problem[10]
it is natural to divide the context into the Patients, the
Nurses’ Station, the Analogue Devices, the Database and
the Medical Staff (who specify the monitoring required for
each patient). Each of these domains has its own internal
properties; it is the purpose of the machine we build to
constrain those properties further and to connect the
domains together.

Suitably chosen domains are not only compact: they are
also likely to have distinctive phenomenological
characteristics. The Patients are autonomous, but the
Database is inert; the Nurses’ Station is reactive — it
displays messages to the nurses when stimulated to do so
by the machine; but the Medical Staff are active — they
act without external stimulus.

In describing the world we may structure our
descriptions by domain. We must also structure them
according to a fundamental distinction between what is
given and what is required. This distinction was well
known to traditional grammarians: what is given may be
expressed by statements in the indicative mood; what is
required may be expressed by statements in the optative
mood. It is not enough to make this distinction by the local
grammatically dubious use of the words ‘shall’ and ‘will’:
the distinction must be regarded as a fundamental
structuring principle of problem analysis and hence of
software engineering documentation.

2. Problem Structuring

Structuring the world is an important aspect of problem
analysis, but we also need a direct structuring of the
problem itself. The key idea presented here is the idea of a
problem frame[6], derived in concept, though not in name,
from the work of the mathematician Polya[9].

2.1 Polya

Polya, expounding the work of the ancient Greek
mathematicians, distinguishes two kinds of small
mathematical problem: problems to prove, and problems to
find or construct. Each kind has it own characteristic
principal parts. The parts of a problem to find or construct
are the data, the unknown, and the condition. For example,
in the problem “Given three lengths a, b, and c, construct a
triangle with sides of those lengths”, the data is the

lengths a, b and c; the unknown is a triangle; and the
condition is that the sides of the triangle should be of the
three given lengths. The solution task is to construct or
find an unknown which satisfies the condition with respect
to the data.

We can represent the structure of a problem to find in a
problem frame diagram. The unknown is represented by a
rectangle with a double outline (indicating that it is to be
constructed); the data by a rectangle with a single outline
(a given domain); and the condition by an ellipse. Dotted
lines connect the ellipse to the domains over which it is
required to hold.

A similar representation may be adopted for a general
problem frame for software engineering problems. Here,
being concerned with physical phenomena, we need to
represent the interaction of two domains by shared
phenomena; for this we use an unbroken line.

The principal parts of a general software engineering
problem are the machine, the world and the requirement.
The machine and the world interact by shared phenomena;
the requirement is a condition over the phenomena of the
world.

2.2 Methods and Problem Frames

Having identified and named the principal parts of a
class of problem, we can begin to talk about methods for
problem analysis and solution. For problems to find or
construct Polya gives these (and other) heuristics:

• Consider other problems with similar data or unknown
• Check that you are using all the data
• Decompose the condition into parts
• Change the data to bring it nearer the unknown
• Consider how the data determines the unknown
These heuristics, useful as they are, take no account of

the part characteristics of the particular problem in hand.
The same problem frame and method fits both
“Given three lengths, find a triangle” and the very
different problem “Given a matrix, find its inverse”. As a
result, Polya’s heuristics can neither focus on nor exploit
any specific solution opportunities that the particular
problem in hand may offer. The heuristics are very
general: any specialisation is left to the insight and
ingenuity of the user. The method embodied in the

heuristics is therefore less effective in particular cases than
it might otherwise be.

3. Close-Fitting Frames

Effective methods need close-fitting problem frames.
The weakness of the problem frame shown above for
software engineering problems is its generality: it fits all
problems, and so can fit none of them very well.

A close-fitting problem frame fits a narrow class of
problem very well, but fits most problems not at all. The
frame may specify a particular decomposition of the world
into domains; the phenomenological characteristics that a
domain must have; the mathematical structures — for
example, sequence, group, connected graph, tree — of
relationships among phenomena of the domains; and the
structure of the condition. In this section some examples of
such frames are given and briefly discussed.

3.1 Workpieces Frame

The Workpieces frame may be thought of as capturing a
class of problem in which the machine is used as a simple
machine tool to create and edit textual or graphic objects.
The frame can be represented as shown below.

The principal parts are the tool, the workpieces, the
operation requests and the request effects. The tool is the
machine to be built. The workpieces are the textual or
graphic objects to be worked on; they are intangible, but
dynamic; they are inert — left to their own devices they
will not undergo spontaneous state changes; they are also
mutually independent, there being no connection between
one workpiece and another. The dynamic nature of the
workpieces rests on the elementary editing events, such as
‘insert the character a at position 2134’. These are events
in the workpieces domain, although they can occur only
when externally initiated. A proper description of the
domain must include a description of these events and the
state changes they cause. Because the workpieces domain
is intangible, we will look to the machine to give it a
physical realisation.

The operation requests are the requests made by users
of the tool for operations on the workpieces. They form an
active dynamic domain: the request events occur
spontaneously within the domain. The domain structure is
that of a stream of request events over time whose only

8QNQRZQ 'DWD&RQGLWLRQ

0DFKLQH :RUOG 5HTXLUHPHQW

7RRO

:RUN�
SLHFHV

5HTXHVW
(IIHFWV

2SHUDWLRQ
5HTXHVWV

grammar is request*: there are no relationships among
requests other than their raw temporal order.

A request event may not make sense with respect to the
current state of the current workpiece; even if it does make
sense, it will in general be expressed in terms of
phenomena — for example, the current cursor position —
that are not phenomena of the workpiece. The request
effects part in the frame, which is the condition to be
satisfied, stipulates whether each request is to give rise to
an operation on the workpieces, and, if so, to what
operation and with what operands. It is, of course, the
developer’s task to construct the machine so that it
connects the requests domain to the workpieces domain in
a way that satisfies this condition.

3.2 Indicative and Optative

In describing a software engineering problem we will
always need to make both indicative and optative
descriptions. At any point in a development we have, or
must make, indicative descriptions of what is given, and
optative descriptions of what is required. As development
progresses, some or all of what was required in an earlier
stage becomes what is given in a later stage. Old
descriptions must be fitted into new places in the
indicative/optative structure. (This is one reason why the
shall/will convention is unsatisfactory.)

For the workpieces frame we must give indicative
descriptions of the operation requests domain and of the
workpieces domain. For the first, we need only enumerate
and describe the request types: there is, by virtue of the
applicability of the frame, no structure over these requests
to be described. For the workpieces we must describe the
state space, perhaps in terms of character strings, the types
of event that change the state, and the specified changes
for each event type.

The description of the request effects condition is
optative: we describe the behaviour that we require of the
tool. Eventually, when we come to describe the tool itself
in an appropriate programming language, we will be
making another description. It is the special power of a
general-purpose computer that it can accept such an
description and grant the programmer’s wishes by
becoming the machine described.

It is worth noting that in the workpieces frame we are
demanding that the machine play two distinct roles. First,
it must provide the physical realisation of the intangible
workpieces domain. It may seem surprising that we regard
the description of this domain as indicative. We do so
because we take the view that a problem frame has only
one part expressing a required condition: all other parts
are domains, and are treated as given. The workpieces
domain is treated as a given because we are describing the
workpieces’ properties, not designing them; from a

descriptive point of view it is not crucial that they will be
realised in the machine.

Second, the machine must ensure satisfaction of the
request effects requirement. Effectively this will mean
receiving operation requests and either initiating or
refusing to initiate operations on the workpieces.

We will return later to this topic of multiple machine
roles.

3.3 Workpieces Method

An appropriate description analysis and solution method
for a workpieces problem would be one, such as Z[11],
based on model-oriented abstract data types. The
workpieces are instances of the type. The operations on the
workpieces — not the operation requests — are the
operations of the type. A model-oriented method is
appropriate because it allows the workpieces state, which
is expected to be relatively complex, to be dealt with in a
direct and natural way.

Notice that the problem frame is so simple that it does
not provide for error diagnostic messages. A request to
delete selected text when no text has been selected will be
simply ignored, in accordance with the request effects
condition. The description of the workpieces domain does
not, of course, mention text selection: selection is not a
property of that domain but only of the required behaviour
of the tool. It is the tool that maintains the relationship
between the workpiece contents and current cursor
position.

3.4 Dynamic Information Frame

The Dynamic Information frame is shown below.

It captures a class of problem in which the machine is
used to provide information about a dynamic domain. For
example, a very simple financial information system might
provide information about the repayment of loans by bank
customers. The principal parts in the frame are the system,
the real world, the information outputs, the information
requests, and the information rules.

The system is the machine to be built. The real world is
the domain about which information is required. It is an
autonomous dynamic domain, entirely unaffected by the
behaviour of the system. The converse, of course, is not
true: the system is affected by the real world because it
must maintain some kind of internal model or simulation

6\VWHP

5HDO
:RUOG

,QIRUPDWLRQ
5XOHV

,QIRUPDWLRQ
5HTXHVWV

,QIRUPDWLRQ
2XWSXWV

of that domain in order to be able to generate the
information outputs.

The information outputs domain is dynamic: the outputs
are produced over time in response to events and state
changes in the real world and in response to the
information requests.

The information requests domain is similar to the
operation requests domain in the workpieces frame. It is
an active dynamic domain, consisting of a stream of
independent requests over which the only structure is their
ordering in time.

 The information rules part is a condition relating the
real world, information requests and information outputs
domains. It stipulates the output to be produced in all
circumstances.

3.5 Dynamic Information Method

An appropriate method for describing, analysing and
solving a dynamic information problem would be one,
such as JSD[5], which stipulates the construction of an
explicit model, or simulation, of the real world. The JSD
model is a process model, which makes it more suitable to
the dynamic character of the real world domain than, for
example, a model founded in a database schema.

It is now commonly observed that every software system
should embody a model or simulation of its environment.
But this observation is not correct. A model in this sense is
required only when the system must make use of
information about the relevant domain that is not
accessible at the time when it is needed. Not all systems
are of this nature. For example, a system to control a set of
traffic lights can consist merely of the algorithm for
stepping the lights through their defined sequence, perhaps
modifying the sequence in response to buttons pushed by
pedestrians who wish to cross the road. A full description
of the environment, including the layout and dimensions of
the intersection to be controlled by the lights, the speeds of
all vehicles and pedestrians, and the desired traffic flows,
is surely necessary in the problem analysis. But it is
entirely unnecessary to model these domains in the
implemented system. If they appear at all in the software
texts it should be only as explanatory comment.

The autonomous nature of the real world domain is an
important simplifying restriction. In the JSD method there
is no provision for describing a reactive real world — that
is, one that can be controlled by the system. The problem
frame does not provide for such control, and when the
problem in hand requires the machine to control the
environment, then a method such as JSD is found to be
much less effective than it is for a pure information
system. Essentially, the frame contains no condition over
the phenomena of the real world alone: an associated

method need therefore provide no place for any optative
description of the real world domain.

3.6 Control Frame

Problems in which the machine must control a part of
the world demand a different problem frame. The Control
frame is shown below.

The machine here is called the controller. It controls the
controlled domain, ensuring that it satisfies the required
behaviour.

The controlled domain is both active and reactive. That
is, it initiates some events and state changes
spontaneously, and initiates others in response to stimuli
from the controller.

A suitable method for a control problem might be a
simplified version of the Parnas/Madey method[8], or of
the related SCR method[3], or, perhaps, a method based on
finite-state machines.

For reasons of space we will not discuss the Control
frame further here.

4. Domain Characteristics

The differences between problem frames are partly in
their topology. Different frames decompose the world into
different numbers of domains: one for Control, two for
Workpieces, three for Dynamic Information. In all of these
frames every domain interacts directly with the machine,
but this is not true of all frames. For example, a frame
suitable for the Patient Monitoring problem mentioned in
Section 1.4 above would show the Patients domain
interacting only with the Analogue Devices, not with the
machine: the Patients are an essential part of the problem
space, but they are not directly connected to the machine.

But these topological differences are relatively small:
many different frames may be expected to have the same
topology. More significant are the differences among the
phenomenological and structural characteristics of the
domains in different frames.

4.1 Domains and Phenomena

The structural characteristics of domains can be
captured in familiar mathematical structures, and are not
discussed here. The phenomenological characteristics are
perhaps less familiar. We can approach them by
postulating concepts and notations to capture the crucial
differences between temporal and timeless phenomena and
among phenomena controlled or causally constrained by
different domains.

&RQWUROOHU
&RQWUROOHG
'RPDLQ

5HTXLUHG

%HKDYLRXU

Phenomena are declared within individual domain
descriptions. Where phenomena are shared by two or more
domains, the sharing is separately declared; it is not
discussed here. However, we observe that an intangible
domain such as the workpieces domain must share all of
its phenomena with another, machine, domain.

The distinction between temporal and timeless
phenomena is fundamental. We recognise the following
base types of phenomenon, of which the declared
phenomena of each domain are subtypes:

• VALUEs and TRUTHs. These are timeless
phenomena: a VALUE is an entity whose properties
are constant over time; a TRUTH is a fact whose truth
value is constant over time. The integers 3 and 5 are
VALUEs, and “3<5” is a TRUTH.

• THINGs. THINGs are temporal entities whose
properties can change over time. A company is a
THING, and so is a valve in a chemical plant.

• STATEs. A STATE is a temporal fact whose truth
value is not constant over time. The STATEs
“IsOpen(valve1)” and “LivesAt(address1,customer1)”
are true at one time but not at another.

• EVENTs. EVENTs are temporal individuals.
Evidently, a static domain is one in which there are only

VALUEs and TRUTHs, while a dynamic domain has also
THINGs, STATEs and EVENTs.

4.2 Control and Constraint

The control and causal constraint characteristics of
declared phenomena are to be understood with respect to
the domain in whose description they are declared.

Declarations of EVENTs and STATEs use a convention
similar to the CSP and Z convention for distinguishing
input from output, but for a different purpose. Our
distinction is between external and internal control (in the
sense of initiation) of an event or a state change. For
example, in the description of a Keyboard domain we may
write

?KeyStroke = EVENT;

while in the description of the User domain we may write

!KeyStroke = EVENT;

declaring that KeyStroke events are initiated by the User
domain. States are treated similarly, their declarations
showing whether the domain in whose description they
appear initiates the state changes.

We may also declare explicitly the causal constraints
which a domain enforces over events and state changes,
both internally and externally initiated. The detail of a
constraint must be given in a formal description, but it is
useful to summarise constraints in more abstract
declarations. Consider, for example, a simple switch
controlling an electric light. We declare the phenomena:

?Up = EVENT;
?Dn = EVENT;
!On = STATE;
!Off = STATE;

Up and Dn events are externally controlled; On and Off
states are internally controlled. A simple FSM description
shows the time-ordering of these events and states:

The constraints involved may be represented directly,
distinguishing between safety (-) and liveness (+)
constraints:

{?Up,?Dn} ±> {!On,!Off};
{!On,!Off} –> {?Up,?Dn};

The externally controlled Up and Dn events exercise both
safety and liveness constraints on the internally controlled
On and Off states; the states exercise safety constraints on
the externally controlled events. (It is, of course,
impossible for a domain to exercise a liveness constraint
on externally controlled phenomena.)

4.3 Dynamic Domain Characteristics

The characteristics of a dynamic domain reflect the
phenomena declared in the domain, their control
properties, and the constraints exercised within the
domain. For example:

• An inert dynamic domain has internally controlled
states, but no internally controlled events. All its
internally controlled states are subject to both safety
and liveness constraints exercised by externally
controlled events.

• An fully autonomous dynamic domain has no
externally controlled events or states. In any domain,
those internally controlled events and states are
autonomous that are not subject, directly or indirectly,
to constraint by externally controlled phenomena.

• A purely reactive dynamic domain has internally
controlled events that are subject to both liveness and
safety constraints exercised by externally controlled
phenomena.

• An active dynamic domain has internally controlled
events that are not subject to liveness constraints
exercised by externally controlled phenomena.

4.4 The Nature of Problem Frames

Software engineering is vitally concerned with making
and manipulating descriptions. We progress — though not
necessarily monotonically — from problem description

'Q

2II 2Q

8S

and analysis to solution design and construction, all the
time embodying the work in relevant descriptions.

A close-fitting problem frame provides the necessary
basis for method. It identifies and names the principal
parts of the problem: these are the subject matter of
description throughout the problem-oriented phase of the
development.

More importantly, the frame restricts the problem in
ways that an effective method can exploit. Restricted
domain characteristics and structures relieve the developer
from the obligation to consider the full range of
imaginable possibilities. In a workpieces problem it is not
necessary to consider relationships between one workpiece
and another: there can be no significant relationship
because the domain structure stipulates that the workpieces
are mutually independent. Nor is it necessary to consider,
or even explicitly exclude, the possibility mentioned by
Lamport[11]:

“Consider a Modula-2 package that implements a
queue by providing get and put procedures. If we
failed to specify that only the environment can call
these procedures, then the specification would be
satisfied by an implementation that calls the put
procedure itself to cause random elements to appear
in the queue.”

By characterising the workpieces domain as inert we
tersely exclude the whole range of such possiblities.

Restricted domain structure allows a method to stipulate
the use of less powerful but still adequate descriptive
languages, thus simplifying both reasoning and
manipulation. For example, a restricted time-ordering
structure may be described by a regular language rather
than by a more powerful but less convenient language.

5. The Structures of Realistic Problems

The methodological simplifications made possible by
restricted and close-fitting problem frames are bought at a
high price. A close-fitting frame is surpassingly unlikely to
fit any realistic problem: too much has been excluded, and
too many restrictions imposed.

But close-fitting frames can still be applied to realistic
problems. A realistic problem can be regarded as a
superimposition of subproblems, each fitting a recognised
problem frame. Problem frames then play an additional
role: they guide the decomposition of a realistic problem
into subproblems for which solution methods are known.
By taking care to check the fit between a putative
subproblem and its close-fitting frame, the conscientious
engineer benefits from the frame restrictions by a high
degree of confidence that the identified subproblem will be
soluble and that the proposed decomposition is, to that
extent at least, sound.

5.1 Example: An Editing System

Consider a problem of constructing an editing system to
support the work of clerks in a confidential environment.
The clerks work on editing texts; there are managers who
demand information on the progress of the work; and there
are access rules that stipulate that certain operations may
be performed only by staff with certain levels of security
clearance reflected in their passwords.

The context of the problem can be decomposed as
follows:

The problem of the editing system can be regarded as
the superimposition of three subproblems:

• A workpieces subproblem, concerned with the task of
text editing. In the Workpieces frame the operation
requests part is the Clerks domain (ignoring the
identity of the individual clerks); the tool is the
Editing System; the workpieces part is the Texts; and
the request effects condition is provided by the
specific editing requirements.

• A dynamic information subproblem, concerned with
the provision of mangagement information. In the
Dynamic Information frame the system is the Editing
System; the real world part is the Clerks and Texts
domains taken together; the information requests part
is the Managers domain; the information outputs part
is the management reports; and the information rules
condition is the specification of the make-up of those
reports.

• A control subproblem, concerned with enforcing the
access rules. The controlled domain is the Clerks,
Texts, and Password Database taken together; the
Controller is the Editing System; and the required
behaviour condition is provided by the access rules
themselves.

5.2 Problem Structure

Of course, the example is contrived and somewhat
obvious, and the identified subproblems match just the
frames previously discussed. But the example is enough to
illustrate some important points about the structure in
which subproblems fit together to give realistic problems.

First, the structure is a parallel, not a hierarchical,
structure. The subproblems fit together by superimposition.

(GLWLQJ
6\VWHP

0DQDJHUV

3DVVZRUG
'DWDEDVH

7H[WV

&OHUNV

3URJUHVV
5HSRUWV

In considering and analysing each subproblem we ignore
the existence of the other subproblems. They are supposed
solved: that is, their optative descriptions, wherever they
are relevant to the subproblem in hand, are taken as
indicative.

Each subproblem is concerned with a subset of the
domains of the complete context, and with a subset of the
phenomena of those domains. The subproblems are pinned
together by phenomena with which they are concerned in
common.

Consider, for example, an event in which some text is
opened for updating. In the Workpieces subproblem only
the operation type (open_for_update) and the text (text T)
are relevant; in the Dynamic Information subproblem the
operation type, the text and the clerk (clerk C) are
relevant; in the Control subproblem the operation type, the
text, the clerk and the clerk’s password (password P) are
all relevant. This individual event is one of the many
single points in the problem world at which the three
subproblems come together, much like a common event in
a complex of CSP processes. The subproblems are not
pinned together by large abstractions, nor by the expansion
of what is elementary in one subproblem — such as a
procedure call — into what is composite in another —
such as the procedure body.

An appropriate metaphor for such a problem structure is
the CMYK separation familiar from colour printing: each
subproblem has its own particular projection of the
problem world, and the complete problem is composed by
superimposing these projections.

5.3 Composing Subproblems

Where the whole problem requirement is decomposed
into the condition parts of the subproblem frames, there is
in principle the possibility of conflict. Such a conflict is
present in the editing system example.

In the workpieces subproblem the tool is required to
initiate operations on workpieces in response to operation
requests. Essentially, it is absolved from this obligation
only for an ill-defined request, such as a request to delete
the current selection when there is no current selection. In
the eventual description of the tool — that is, the machine
to be built — there will be a liveness constraint, applicable
to a subset of requests:

{?request} +> {!operation}

However, in the control subproblem there is a safety
constraint, applicable to another subset of requests:

{?request} –> {!operation}

Here the relevant requests are those emanating from
clerks whose passwords indicate that they are not
permitted to access the requested operation. There is a
conflict because the two subsets of requests are not disjoint.

It is necessary to detect and resolve any such conflicts.
Ideally, the resolution would fully respect the separation of
subproblems, but it is not clear whether this should be
done. One possibility approach is to compose the
descriptions of the conflicting constraints, resolving the
conflict in the composition. That is, the description of the
liveness constraint would contain embedded conditions
reflecting the access rule restrictions. Another, slightly
more attractive, possibility is to embed in the liveness
constraint only a communication with the safety
constraint, abstracting in the workpieces subproblem from
the details of the access rules but not from the fact that
they must be applied.

Another, very different, possibility is to impose a
precedence ordering either on the constraints themselves
or on the whole of the containing subproblems. For
example, we might specify that the safety constraint in the
control subproblem must take precedence over the liveness
constraint in the workpieces subproblem. The attraction of
such a possibility is that it respects the subproblem
separation perfectly: the interaction between the
subproblems is confined to a description that is itself a part
of neither subproblem.

5.4 Multiple Machine Roles

We observed in discussing the Workpieces frame that
the machine has two roles to fulfil. It must act as the tool,
initiating workpiece operations in response to the
operation requests; and it must also provide a realisation
of the intangible workpieces themselves.

Similarly, we could regard the Dynamic Information
frame as imposing two obligations on the machine: to
realise a suitable model of the real world, and to initiate
and implement the production of information outputs in
response to information requests and to real world events
and state changes.

Further, we have perhaps implicitly assumed in the
Editing System problem that the machines to be built as
solutions to the three subproblems are all to be
implemented in one machine.

In considering these multiple machine roles we are
beginning to enter the space of solutions rather than
problems. One general-purpose computer, by suitable
software structuring, can be treated as a complex of
machines that may be connected in many different ways;
this machine structuring is certainly solution design rather
than problem analysis.

The problem frame notation can be slightly extended, if
we wish, to allow us to represent machine roles quite
directly. In particular, we can indicate on a domain-to-
domain connection that one domain is entirely contained
in the other (as the workpieces domain is entirely
contained in the machine that realises it); and we can also

elaborate problem frames whose methods demand explicit
models to represent those models as separate domains (as
we might represent the model of the real world domain in
the Dynamic Information frame as a separate domain).

5.5 Composing Solutions

In general, even in the absence of conflict, it will be
necessary to achieve some composition of the subproblem
solutions. Pieces and aspects of machines that implement
subproblem requirements must be made to work together,
at least to the extent of co-ordinating their execution; and
the same is true of pieces of machines that realise
intangible domains or model tangible domains. This need
brings its own complexities in the solution space.

The composition of conflicting requirements has already
been briefly discussed. Composition is also needed in the
absence of conflict. For example, an individual occurrence
of an open_to_update operation event must be initiated by
the workpieces subproblem tool, and it must also be
recorded — more properly, modelled or simulated — by
the system in the dynamic information frame. Indeed, the
system in the dynamic information frame may need to
model a considerable part of the history of each clerk and
each text: some at least of the text history will replicate a
part of what is realised for the text as a workpiece.

This necessary composition can be achieved by a variety
of strategies located at or between two extremes. At one
extreme is what we may call the ‘strategy of tightest
composition’. In this strategy each object implemented in
the machine combines the properties it needs for all
subproblems to which it is relevant. This is the traditional
approach. Its advantage is that it leads to solutions that are
simple in implementation terms, even if they are complex
in problem terms. Its crucial disadvantage, long ago
implicitly recognised by researchers in object technology,
is that it virtually guarantees that the resulting
implementation objects will have no value for re-use: the
particular combination of subproblems that gave rise to
them will not recur.

At the other extreme is the ‘strategy of loosest
composition’. In this strategy each machine object
implements only one subproblem projection, whether of a
requirement or of a domain model or realisation. The
advantage of this strategy is clear: the separation and
structure achieved in the problem decomposition is
maintained in the solution. The disadvantage is that it
demands implementation support that is scarcely yet
available. The inadequacy of a hierarchical scheme of
object class inheritance — especially in the single-
inheritance form — is well understood. But it is not yet
clear what must take its place. Some of the patterns now
well known in the object-oriented world (for example, the
Decorator pattern[6]) aim to provide ways of combining

different subproblem projections. But combination is not
enough. It is also necessary to implement identity: to be
able to specify simply that the event x in A is the same
event as the event y in B. This is a much harder need to
satisfy.

6. Some Observations

The problems we set ourselves in software engineering,
and our consequent expectations, are perhaps unreasonably
demanding. Traditional engineers, who design and build
aeroplanes or TV sets, chemical plants or bridges, motor
cars or electricity generating plants, certainly deal with
realistic problems. In spite of what we may like to think,
their problems are not always dramatically simpler than
ours. But when we castigate ourselves for our failure to
achieve the levels of reliability and confidence of
traditional engineers, we tend to forget an important
difference.

Traditional engineers work mostly on problems that are
only small perturbations of problems that have been solved
many times before. They do not have, and do not need,
constructive methods for tackling large and complex
problems de novo: instead they apply their collegiate
experience to construct solutions that are as far as possible
just like the known solutions to previously solved
problems. Constructive methods in traditional engineering
are focused on very tightly constrained solutions to very
tightly constrained problems.

The use of problem frames, and the decomposition of
realistic problems into parallel structures of subproblems
that fit close-fitting frames, can be seen as an attempt to
emulate traditional engineering in this respect. The goal is
to absorb significant parts of software engineering into
specific well-recognised problem classes with well-
recognised solutions. The major difficulties arise in the
composition of solutions to the subproblems.

Problem frames can also be seen as embodying an
attempt to capture and systematise some of the heuristics
and expedients that are well-known to experienced
software engineers: find a related but simpler problem;
think of a problem that you have previously solved that
partially solves your present problem; recognise recurring
patterns; think of solutions you have previously used and
check them for fit to your problem. The similarity to work
in object-oriented patterns is strong, but there is an
important difference. Most of the patterns work focuses on
solutions, but problem frames aim to focus on problems.
Problem analysis should be problem-oriented.

References

[1] Tom DeMarco. Structured Analysis and System
Specification. Yourdon Press, 1978.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Object-Oriented
Software. Addison-Wesley, 1994.

 [3] Constance L Heitmeyer, Ralph D Jeffords and Bruce G
Labaw. Automated Consistency Checking of Requirements
Specifications. ACM Transactions on Software Engineering
and Methodology, Volume 5 Number 3 (July 1996), pp231-
261.

[4] C A R Hoare. Communicating Sequential Processes.
Prentice-Hall International, 1985.

[5] M A Jackson. System Development. Prentice-Hall
International, 1983.

[6] Michael Jackson. Software Requirements & Specifications:
A Lexicon of Practice, Principles, and Prejudices. Addison-
Wesley, 1995.

[7] Leslie Lamport. A Simple Approach to Specfiying
Concurrent Systems. Comm ACM, Volume 32 Number 1
(January 1989), pp32-45.

[8] D L Parnas and J Madey. Functional Documentation for
Computer Systems Engineering (Version 2). CRL Report
237, McMaster University, Hamilton Ontario, Canada,
1991.

[9] G Polya. How To Solve It. Princeton University Press, 2nd
Edition 1957.

[10] W P Stevens, G J Myers, and L L Constantine. Structured
Design. IBM Systems Journal Volume 13 Number 2 pages
115-139, 1974; reprinted in [Freeman 83] pages 328-352.

[11] Jim Woodcock and Jim Davies. Using Z: Specification,
Refinement, and Proof. Prentice-Hall, 1996.

