
Problems, Descriptions, and Objects

A Keynote Address at OOIS'94: the 1994 International Conference
on Object-Oriented Information Systems · 21st December 1994

by Michael Jackson 101 Hamilton Terrace · London NW8 9QX
0171 286 1814 (voice) · 0171 266 2645 (fax)
jacksonma@attmail.com · mj@doc.ic.ac.uk

Abstract

The business of software development is solving problems.
Following Polya, we can increase our ability to solve problems by
focusing directly on problems themselves, on their parts and
structures, and on the relationship between problem and solution
method. This leads to an emphasis on describing the world
outside the computer, and reasoning about it explicitly; to an
approach to problem complexity and decomposition; and to a
particular view of the proper role of object-orientation in software
development.

1 Problems and Solutions

Software development projects, in my view, are concerned to solve
engineering problems. Software developers make machines that are to be
installed in the world, and are to make a difference in the world by
interacting with it. For example, a word-processing system is a machine
installed in an office, just like a typewriter, but much more powerful and
versatile. As software developers we don't construct the physical fabric of
the machine; we only describe the properties and behaviour of the
machine we want. We present our descriptions to a general-purpose
computer, which then magically takes on the properties and behaviour of
the machine we have described. It is in this way that a software
development problem is an engineering problem — the problem of
creating a useful machine to fit some purpose.

People who are interested in the social, economic, ethical, and political
aspects of software development — especially of the development of
administrative or information systems — sometimes disagree with this
view. Software systems, they say, are situated in a human context, and
their specifications emerge and evolve by processes of continual

sbuart01.wsd Page 1
22/09/94

negotiation and adapation among all the interested parties. There is no
succession of well-defined problems for the software developer to solve:
the primary development activity is ongoing social interaction. Of course
there is truth in this view for some developments in some situations. But
at the end of the day, even in those situations, there are programs to be
created: that is, there are machines to be built, and engineering problems
to be solved.

But although we are engineers we are not, for the most part, like other
engineers. Most of the established branches of engineering — civil,
automobile, electrical, chemical, aeronautical — are specialisations.
Automobile engineers don't turn their hands to designing bridges or
chemical plants. Software engineers, in contrast, are usually generalists
rather than specialists. Except for courses in compiler construction and
in operating systems their education is in general principles and
techniques rather than in specific problem areas. And most software
development practitioners would think of themselves, with some
justification, as being equally able to work in one problem area as in
another.

This difference is of great importance. An automobile designer does not
begin by trying to discover what the problem is. The problem is, as
always, to design a particular kind of car. Both the purpose and the
nature of each kind of car are very well understood. The designer of a
family saloon car need not consider whether the car should be able to fly;
or to carry five-ton loads; or should incorporate a crane for lifting steel
girders. Nor need the designer consider whether the car should have
wheels or tracks; whether the driver should sit at the front or at the back;
whether it should be driven by steam or nuclear power. Both the
problem and its solution are very tightly constrained, and the work of the
automobile engineer — except for the most brilliantly revolutionary
designers — is to make very small perturbations within the given
constraints.

In bespoke software development, except for a few specialised areas, the
situation is quite different. Every problem, and every solution, is new.
The freedom of the software developer is several orders of magnitude
greater than the freedom of the automobile engineer. This is why
analysis, and requirements, and specifications, loom so large on the software
development landscape. A large part of our effort must almost always be
devoted to determining what the problem is, and to devising a new
solution — because it is always a new problem.

sbuart01.wsd Page 2
22/09/94

Faced with these demands, we have traditionally paid most of our
attention to solutions, and little or no attention to problems. Partly, this is
because of the seductive attraction of computer programming. Many
developers are programmers at heart, whatever their job titles may be;
their happiest hours are those spent devising how their machines should
work. Those who claim to be entirely concerned with their customer's
problem often try to express that problem in a dataflow diagram, or some
other representation of the internal behaviour of their planned machine.
As a representation of the problem they offer a design for a solution.
More damagingly, even resolute methodologists find it hard to pay
serious attention to problems. Ralph Johnson, a leading proponent of the
use of patterns in object-oriented development, says [Johnson 94]:

“We have a tendency to focus on the solution, in large part because
it is easier to notice a pattern in the systems that we build than it is
to see the pattern in the problems we are solving that lead to the
patterns in our solutions to them.”

Of course it is easier to notice a pattern in the solutions. The solutions
are set in the context of a programming language and environment that
provide a rich structure and vocabulary for talking about solutions:
procedures and functions and parameters and invocations; pipes and
streams and processes; objects and methods and classes and instance
variables. By contrast, a typical problem is set in a context that offers no
such help. In the absence of a suitable vocabulary it is a daunting task to
try to speak of problems. Solutions are easier. The sixpence is sought, as
ever, under the street light.

2 Problem Frames: Polya

But a good starting point for talking about problems is readily available.
Polya shows the way in his monograph How to Solve It [Polya 57]. There
he expounds the work of the Greek mathematicians, especially Pappus, in
the field of heuristics — techniques for finding solutions to problems for
which no algorithmic method is known.

The Greeks classified simple mathematical problems into problems to prove,
and problems to find. For example, the problem ‘Show that if the sides of a
quadrilateral are equal its diagonals bisect each other’ is a problem to
prove; while the problem ‘Given three lengths a, b, and c, find a triangle
whose sides are of those lengths' is a problem to find. The different kinds
of problem can be recognised by their principal parts and the associated
solution task. A problem to find always has:

sbuart01.wsd Page 3
22/09/94

the unknown: here, a triangle;

the data: here, the three lengths;

the condition: here, that the triangle's sides should be equal to the
given three lengths.

The solution task in a problem to find is always to find or construct the
unknown so that it bears the relation to the data that is expressed by the
condition.

Polya gives a number of heuristics for solving problems to find. For
example:

Check that you are using all the data.
Check that you are using all the condition.
Split the condition into parts.
Think of a familiar problem having a similar unknown.

These heuristics can offer useful advice for solving all problems of the
class because — and only because — they are expressed in terms of the
problem alone. That is, they are expressed in terms of what Polya calls
the principal parts of the problem, not parts or aspects of any putative
solution.

The assemblage of principal parts and solution task that characterises a
problem class merits a name. I call it a problem frame. I think of it as a
kind of structure or jig into which a problem may be fitted so that it can
be worked on. By fitting a problem into a problem frame we should be
classifying it precisely enough to be able to select an appropriate method
for its solution. The key requirement for a good problem frame is that it
should be precise enough to give a really good grip on any problem that
fits it. And the key requirement for a good method is that it should be
associated with, and exploit, a sufficiently precise problem frame.

Polya writes of two problem frames for small mathematical problems. For
software development, very many more will evidently be needed.
Attempts to find a single general problem frame and an associated
method that will work well for all software development problems are
doomed to failure. They lead to the discredited and vapid emptiness of
top-down decomposition, with its vacuous problem frame. The problem
is characterised as — well, a problem. The method is to break it down to
sub-problems that are themselves — well, problems; to break these sub-
problems down to sub-sub-problems; and to continue until no further

sbuart01.wsd Page 4
22/09/94

decomposition is necessary. The fact that this prescription fits every
imaginable problem is the clearest possible symptom of its lack of efficacy.

3 Software Development Problem Frames and Methods

A useful problem frame must fit its problems tightly. So a symptom of its
utility will be that it excludes most problems and fits only relatively few.
Here are three examples: the JSD Information System Frame, the Simple
Control System Frame, and the Workpieces Frame.

The JSD Information System Frame may be suitable for an information
system to be used in a commercial organisation. It has these principal
parts:

The System. This is the machine we must build.

The Real World. This is the world about which information is
required. It is dynamic, but autonomous. That is, events and state
changes take place, but they are to be regarded as spontaneous and
unexplained.

The Information Outputs. These are the reports and displays
containing the required information.

The Information Requests. These are query transactions and
requests for various kinds of information outputs.

The Information Function. This is a relationship between the Real
World and the Information Outputs.

The solution task is to construct the System so that it produces the
Information Outputs in their correct relationship to the Real World, in
response to the Information Requests and to events and states of the Real
World.

The Simple Control System Frame might be suitable for controlling a
device such as a Washing Machine. It has these principal parts:

The Controller. This is the machine we must build.

The Controlled Domain. This is the domain to be controlled. It is
dynamic and both active and reactive. That is, some events and
state changes occur spontaneously, without external stimulus; and
there are also events that are externally controlled and cause the
domain to respond by internal events and predictable internal state
changes.

sbuart01.wsd Page 5
22/09/94

The Desired Behaviour. This is the desired relationship among the
various events and state changes of the Controlled Domain.

The solution task is to construct the Controller so that it brings about the
Desired Behaviour in the Controlled Domain.

Finally, the Workpieces Frame might be suitable for a very small and
simple CASE tool. It has these principal parts:

The Tool. This is the machine we must build.

The Workpieces. These are the objects that the users of the Tool
create and work on, with the help of the Tool. They are intangible
graphical or textual objects, realised entirely within the Tool. They
are dynamic but inert: that is, their states can change, but only in
response to externally controlled events.

The Operation Requests. These are the users' requests for operations
— such as graphic or text object creation and editing — to be
performed by the Tool. They occur autonomously.

The Operation Properties. These are desired relationships between
the occurrences of the Operation Requests and the states of the
Workpieces.

The solution task is to construct the Tool so that it responds to Operation
Requests by operating on the Workpieces in accordance with the Operation
Properties.

These three problem frames — the JSD Information System Frame, the
Simple Control System Frame, and the Workpieces Frame — are
significantly different. Most notably, they differ in the characteristics of
those principal parts that could be said to reflect their central subject
matter. In the JSD Frame, the Real World is active and autonomous; in
the Control Frame, the Controlled Domain is both active and reactive; in
the Workpieces Frame, the Workpieces are inert.

These differences, and others also, are reflected in the different methods
that may be associated with each frame. The JSD method [Jackson 83,
Cameron 89] may be understood as a method for solving JSD
Information System problems. JSD exploits the dynamic and
autonomous nature of the Real World by using concurrent simple
sequential processes to represent the subject matter about which the
Information Outputs must be produced. Events are regarded as primary,
and states as secondary: states are defined in terms of event histories.

sbuart01.wsd Page 6
22/09/94

For Simple Control System problems a candidate method is a simplified
version of the method described by Parnas and Madey [Parnas 91] and
incorporated into the Core method [Faulk 92]. A central theme in this
method is a distinction that is missing from JSD (and is not needed in
problems that fit the JSD Information System frame). Two descriptions
are made of the Controlled Domain: one to capture those natural properties
that it possesses regardless of the behaviour of the Machine; and another
to capture the Desired Behaviour — those properties with which the
Machine is required to endow it. Parnas and Madey represent both sets of
properties as relations over variables of the Controlled Domain. They call
the first relation NAT, and the second REQ.

For a Workpieces problem it would be appropriate to use a method based
on abstract data types, such as Larch [Guttag 85] or VDM [Jones 90] or Z
[Wordsworth 92]. The definition of the type is, in effect, a description of
the Workpieces. The operations to be performed by the Tool in response to
the Operation Requests are the operations of the type. In a model-based
method such as VDM or Z, the description of the model state is, of
course, the description of the Workpieces viewed as a data structure.

The accounts given here of the different problem frames and the
different associated methods are hugely simplified. This simplification is
partly just a matter of the brevity of presentation in this paper. But it is
much more fundamental than that. A problem frame must be simple,
and the associated methods must be simple too. It is only by stripping
away the tangles of complications that surround realistic problems that we
can see a basis for classifying them and devising powerful methods. A
method is powerful only to the extent that it exploits the particular
properties of the class of problem being solved. The resulting
simplification and lack of realism is a central theme in dealing with
complexity. I shall return to this theme later in the paper.

4 Describing the World

If we mean to think seriously about software development problems we
must focus our attention initially on everything except the machine we
will ultimately build. The System, the Controller, and the Tool each
constitute only one principal part among several in the problem frame,
and initially they are the least interesting. Our customer's requirement
lies elsewhere, in the world outside the machine: that is, in the other
principal parts of the frame. The machine we build will — if we are

sbuart01.wsd Page 7
22/09/94

successful — satisfy the requirement; but it does not itself embody that
requirement.

Our primary concern is with understanding and describing what we may
call the application domain and the requirement: in JSD, the Real World and
the Information Outputs, Requests, and Function; in a Simple Control
problem, the Controlled Domain and the Desired Behaviour; in a Workpieces
problem, the Workpieces themselves and the Operation Requests and
Properties.

Explicit description of the application domain is unnecessary in the small
mathematical problems that Polya discusses. For those problems, the
application domain is formal, and is already well known to the problem
solver. When the data in a problem to find is a triangle, we do not expect
to devote serious effort to understanding and describing the
mathematical notion of a triangle. We already know what it is, and we
already know its essential properties: that the sum of its interior angles is
equal to two right angles; that its area is one half of the height multiplied
by the base; that the length of each side is less than the sum of the two
other sides; and so on. When the unknown is a prime number, we already
know what a prime number is.

This convenient, but atypical, property is shared by the integer and
integer array problems that provide so much material for the exposition
of certain formal styles of program development. Those styles, and their
expositors, are sometimes criticised on the ground that their techniques
do not scale up: they deal in small and simple problems when real
problems are large and complex. But a far more serious criticism is that
they have taught generations of software developers that problem capture
is a trivial task: one need scarcely do more than mention the problem
before setting about its solution. Rather like the prison inmate who need
only shout out ‘joke number 43' to make his fellow inmates laugh.

On the contrary. In most real problems description of the application
domain should consume a very large part of the total effort. The context
of the problem is in the application domain, not in the machine. But
immediately, this raises a severe difficulty. The application domain is
almost always informal. This has several consequences.

The first consequence is that generalisation and classification is always
imperfect, and always vulnerable to the production of new evidence, new
counterexamples, and new objections. Everyone knows that the meaning
of terms such as ‘customer' and ‘employee' varies from department to

sbuart01.wsd Page 8
22/09/94

department within the same organisation. The meaning of ‘motor
vehicle' depends on whether you are talking to a lawyer, a manufacturer,
a licensing authority, or the AA. There is no simple general definition
under which all the meanings can be precisely subsumed.

Another consequence is that reasoning in the application domain is
inherently unreliable. We may formalise our premises, and reason with
correct logic to a conclusion. Yet we may still find that our conclusion is
false when translated back into statements about the domain. The
inevitable imprecision of our original formalisation introduces an error
term — analogous, if you like, to the arithmetic error introduced when
reals are represented by integers — that can vitiate the reasoning.

Another consequence is that we need a much richer and more varied
 repertoire of languages and notations than is needed for describing
machines. The task of describing a machine — that is, of writing a
program — is greatly helped by the freedom to decide that the machine
should embody a simple and consistent phenomenology. So good
programming languages are concisely definable, and exhibit such
properties as syntactic and semantic consistency, or referential
transparency. But in describing the world outside the machine we have
no such freedom. We must describe the world — at least approximately
— as it really is. We will certainly impose some degree of systematic
consistency on our descriptions: even natural languages do that. But we
are not free to sweep away the variety of the world by treating everything
as a sequential process, or as a relation, or even as an object.

5 Description Types and Structures

To deal with this richness we must pay a lot of attention to the technology
of description. That means that we must be aware of how descriptions
are related to the subject matter they describe, of the different kinds of
description that may be needed, of the properties and dimensions of each
description, and of the many different structures by which descriptions
may be usefully related to one another.

The basis of the relationship between a description and what it describes
is the designation. A designation singles out certain phenomena of
interest. It gives an (ineluctably) informal explanation of how the
phenomena may be recognised in the application domain, and it gives a
formal term — such as a predicate — by which the phenomena will be
referred. For example, in the designation:

sbuart01.wsd Page 9
22/09/94

“The human genetic mother of x is m Â Mother(x,m)”

the designated phenomenon is the relationship of genetic motherhood
between two people; it will be denoted in descriptions by using the
predicate Mother (x,m). Designations form the bridge between the formal
descriptions we produce in software development and the informal real
world. Without explicit designations it is impossible to determine with
any confidence whether a description of the world is true or false. To
quote John von Neumann: There is no point in being precise if you don't
know what you are talking about.

A definition gives a formal definition of a term that may be used by other
descriptions. For example, the definition:

“Child(x,y) Ò Mother(y,x) ∨ Father(y,x)”

defines the term “Child(x,y)” to mean exactly the same as “Mother(y,x) or
Father(y,x)”. A definition can not be true or false: it can only be well-
formed or not well-formed, and useful or not useful. It conveys no
information whatsoever about the application domain or the machine.

A refutable description describes some part of the world, saying something
about it that could — in principle — be refuted or disproved. Whether it
could in practice be disproved is another matter: the important thing is
that it could make sense to disprove it, as it can't make sense to disprove a
definition. For example, here's a tiny refutable description:

“∀ m,x · Mother(x,m) → ¬Mother(m,x)”

Whatever m and x you choose, if m is the human genetic mother of x, then
x is not the human genetic mother of m. To refute it you would have to
find a pair of mutual genetic mothers. Inconceivable. But not
nonsensical.

Because there are many parts and aspects of the world to be described, it
will always be necessary to build quite elaborate structures of
designations, definitions, and refutable descriptions. Determining how to
separate the whole description into a number of partial descriptions —
that is, how to separate concerns — is a central development activity. At a
certain scale, separation is prescribed by the chosen method: JSD enjoins
the developer to separate the description of the Real World from the
description of the Information Function; and Parnas and Madey enjoin a
separation of the NAT and REQ relations. At a larger scale, separation

sbuart01.wsd Page 10
22/09/94

will be guided by the treatment of complexity, in which several methods
and frames are deployed on one problem.

6 The Machine and the World

The requirement is in the application domain, but its satisfaction is to be
achieved by the machine. The transition from one to the other depends
on a relationship between the two. Two aspects of the relationship are of
special importance for descriptive technique: interaction, and modelling.

The machine interacts with its physical environment. This means that
some phenomena — events and states — are common to the machine and
the environment. These common phenomena constitute what we may
call the specification interface. I picture it like this:

Problems and requirements are to be expressed solely in terms of the
environment phenomena. Programs are to be expressed solely in terms
of the machine phenomena. The bridge between them is formed by
specifications, which are expressed in terms of the phenomena common
to the environment and the machine.

A specification is both a restricted kind of requirement, and a restricted
kind of program. Programs in general may be expressed partly in terms
of phenomena that are private to the machine and not visible at the
interface. Programs that refer to private machine phenomena are not
specifications. (Or they are very bad specifications that may be said to
exhibit implementation bias [Jones 90].) Similarly, requirements in
general may be expressed partly in terms of phenomena that are private
to the environment and are not shared with the machine. They, too, are
not specifications: they do not give enough information for the
construction of a program.

This distinction among requirements, specifications, and programs is of
great significance. In a trivial problem we may write the program text

sbuart01.wsd Page 11
22/09/94

The
Machine

The
Environment

Environment
Phenomena

Machine
Phenomena

Specification

Interface

directly: no sane software developer would progress from requirement
through specification to program to construct the ‘Hallo World' program.
For a slightly less trivial problem we may content ourselves with
developing a specification and progressing from there to a program. This
is the danger zone for more demanding problems. The specification is a
requirement — that is, it is expressed in terms of environment
phenomena. So it is easy to suppose that it is the customer's requirement,
ignoring the virtual certainty that the customer's requirement is not
confined to the part of the environment that interfaces directly with the
machine.

This is the source of some of the failures in which a system fails to achieve
the required effects in the application domain. Avionics system failures
furnish some notable and tragic examples. In one system a plane
overshot the runway on landing in rain because the thrust reversers could
not be turned on. The wheels were aquaplaning on the wet runway, and
an interlock prevented engagement of the thrust reversers when the
landing wheels were not turning.

Even in a context in which it is proper to confine attention to the shared
phenomena there is a further danger. One may easily suppose that an
interface can be equally well described from either side. But it is not so.
On the machine side we can manage very well with descriptive techniques
that abstract from causality and from the distinction between what is true
and what we would like to be true. The causal properties of the machine
are well understood in terms of the programming language, especially if
it is an imperative programming language. Also, we know that we are
always constructing the machine de novo: a general-purpose computer left
alone will do nothing, it will exhibit only a null behaviour. It is therefore
fully adequate to describe behaviour from the point of view of what we
may call the idiot observer: in CSP terms [Hoare 85], the trace semantics
is enough. The effect of behaviour outside the bounds of the specification
is, naturally enough, undefined.

But as a description of the environment this conceptual parsimony is
harmful. We need to know whether the precondition on an operation
specification means that the environment will never, because of its
internal properties, try to execute the operation when the precondition is
false; or that the environment must be externally constrained to ensure
the same restriction; or that the machine itself will frustrate any attempt
to flout the restriction.

Another source of much confusion is the use of modelling. Modelling is

sbuart01.wsd Page 12
22/09/94

an important technique in a number of methods. For example, the JSD
method prescribes that the foundation of the System should be a model of
the Real World: that is, that the concurrent sequential processes observable
in the Real World should be simulated by processes within the System. This
notion of modelling gives rise to a kind of reuse of descriptions. The
same refutable description can be truthfully applied both to the Real
World and to the System, by using two different sets of designations.

If there is no explicit recognition of the role of designations in a
development that uses modelling in this kind of way, there will always be
uncertainty about whether a particular description is intended to describe
the machine or the application domain. This uncertainty is particularly
noticeable in data modelling methods, and also in model-oriented
methods such as VDM and Z. The reader of an Entity-Relation diagram
is never sure whether the diagram describes the database or the real
world. The reader of a Z operation schema is never sure whether the
schema is describing the changes of state within the machine, or the
effects of the operation in the world outside the machine.

One might ask: If the machine is a simulation of the world, then surely
the same description applies to both. Does it matter which is being
described? Of course it does matter. The simulation is only a partial
simulation, and the refutable description that applies to both is only a
partial description of each. Both the machine and the real world have
properties that do not enter into the modelling. A database, for example,
is far from a complete model of the application domain: the domain has
many features that are not modelled in the database, including a range of
possible causal relations among events. Symmetrically, the database has
features, such as record deletion, and null values in records, that are
peculiar to the machine and are not models of anything in the domain.
There are therefore at least three descriptions of interest: the shared
description; a description peculiar to the machine; and a description
peculiar to the application domain. We must always know which of the
three we are writing or reading.

7 Complexity and Problem Decomposition

The problem frames and associated methods briefly discussed earlier
were all simple; certainly too simple for most realistic problems. This
simplicity is an essential characteristic, because the central purpose of a
problem frame is to define a class of problem for which a reliable solution
method is known. The problem frame is purged of the realistic

sbuart01.wsd Page 13
22/09/94

complexities that may — almost certainly will — make an otherwise
simple problem difficult.

Given a repertoire of such problem frames, the complexity of realistic
problems may be handled by decomposing them into simple problems.
This is not the unguided decomposition of top-down functional
decomposition. It differs in three important ways:

The choice of ‘subproblems' is restricted to those for which a
problem frame and associated method are known. This means that
the decomposition is a decomposition of a problem that you don't
know how to solve into problems that you do know how to solve.
(A decomposition into problems that you still don't know how to
solve may make matters worse rather than better.)

The decomposition is into heterogeneous subproblems. There is no a
priori reason to decompose into several instances of one problem
frame in the style of a homogeneous top-down decomposition into
several procedures or into several processes. On the contrary,
different aspects of a realistic problem are likely to conform to
several different problem frames.

The resulting structure of subproblems is essentially a parallel, not
a hierarchical structure. The principal parts of the different
problem frames overlap. In particular, they will be concerned with
different views and groupings of overlapping phenomena of the
problem domain. Although hierarchical relationships may
sometimes be found, they will be the exception rather than the
rule.

8 Objects and Problems

Object-oriented methods, especially object-oriented analysis, are an
important field of application of these ideas about problems and
descriptions.

The distinction between problems and solutions has not always been fully
recognised in object-oriented methods. It is always tempting to fall into
the traditional software trap of treating every new technique as a panacea,
capable of curing all ills, and into the related trap of treating each new
programming language as a language for describing problems and
problem domains. In their time Fortran and COBOL were touted as
problem description languages. We should avoid making the same
mistake with object-oriented languages.

sbuart01.wsd Page 14
22/09/94

A salutary paper by Høydalsvik and Sindre [Høydalsvik 93] makes a
number of important points. It should be compulsory reading for all
students of object-orientation. The authors say:

“An object-oriented representation might be good for some kinds
of [domain] knowledge, but less suitable for other kinds of domain
knowledge. Since an analysis specification has to contain many
different kinds of knowledge, OOA [Object-Oriented Analysis] will
only present a partial solution. …
“The main motivation for choosing OOA … is clearly target-
orientation — the analysis technique is chosen to fit in with the
following design technique rather than the problem at hand.”

They give two examples of domain knowledge that is hard to capture in
terms of objects. Global rules, such as ‘Product A should never be
cheaper than product B'; and the dynamics of high-level tasks involving
operations from several objects. In both cases, the granularity of an
object-oriented description makes it difficult to reference all the relevant
phenomena in a single description of sufficient span.

But even where there are no problems of granularity, the
phenomenological assumptions built into the most commonly used object-
oriented approaches may be very ill-suited to the realities of an
application domain. The inadequacy of single inheritance is well-known:
that particular shoe pinches almost every wearer. In principle, if we
regard a class as a collection of properties, we should be prepared to
contemplate any combination whatsoever of classes whatsoever.
McAllester and Zabih's notion of Boolean classes [McAllester 86] is very
attractive: discrete properties are defined in base classes, and the classes
actually used in a description are drawn from the unrestricted powerset
of those base classes. There is a connection here with the unrestricted
composition of problem frames to capture a particular complex problem.

The presumption that classification is static is at least as arbitrarily
restrictive as the presumption of single inheritance. There are
remarkably few examples of static classification in realistic domains. As
Hendler [Hendler 86] pointed out in motivating his work on
Enhancements, undergraduates become graduates, and graduates
become PhDs. We may also observe that pupils become teachers,
warehouses become apartment buildings, caterpillars become butterflies,
cotton mills become offices, and employees become pensioners. Real-
world individuals not only partake freely of the properties of many
classes; they also take on and shed those properties over time with at least
equal freedom.

sbuart01.wsd Page 15
22/09/94

It seems to me that there are two important — but so far somewhat
neglected — challenges now facing those who advocate object-oriented
approaches to software development. First, to understand and exploit
the true strengths of object orientation while recognising its limitations.
It may, perhaps, be said that those aspects of object-orientation —
classification and inheritance — that now receive most attention in
tutorials and in method advocacy are its weakest aspects for describing
the real worlds in which problems and requirements are found.

The second challenge, I believe, is to develop the work on patterns, and
the closely related work on frameworks, that is now beginning to emerge.
This work, developed in the right direction, promises to explore object-
orientation in a very fruitful way, by focusing — as I believe we must —
on the nature and structure of complexity, analysing some of the
problems — at least in the programming context — that it is our business
to solve. A new book [Gamma 94] on patterns in object-orientation ends
with a provocative quotation from the software developer's favourite
architect, Christopher Alexander [Alexander 79]:

“It is possible to make buildings by stringing together patterns, in a
rather loose way. A building made like this is an assembly of
patterns. It is not dense. It is not profound. But it is also possible
to put patterns together in such a way that many patterns overlap
in the same physical space: the building is very dense; it has many
meanings captured in a small space; and through this density it
becomes profound.”

References

[Alexander 79] Christopher Alexander; The Timeless Way of Building;
Oxford University Press, 1979.

[Cameron 89] J R Cameron; JSP & JSD: The Jackson Approach to
Software Development; IEEE Computer Society Press, 2nd Edition
1989.

[Faulk 92] Stuart Faulk, John Brackett, Paul Ward, and James Kirby, Jr;
The Core Method for Real-Time Requirements; IEEE Software
Volume 9 Number 5 pages 22-33, September 1992.

[Gamma 94] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides; Design Patterns: Elements of Reusable Object-Oriented
Software; Addison-Wesley 1994.

[Guttag 85] John V Guttag, James J Horning, and Jeannette M Wing;
The Larch Family of Specification Languages; IEEE Software Volume
2 Number 5 pages 24-36, September 1985.

sbuart01.wsd Page 16
22/09/94

[Hendler 86] James Hendler; Enhancement for Multiple Inheritance;
SIGPLAN Notices Volume 21 Number 10 pages 98-106, October
1986.

[Hoare 85] C A R Hoare; Communicating Sequential Processes; Prentice-
Hall International, 1985.

[Høydalsvik 93] Geir Magne Høydalsvik and Guttorm Sindre; On the
Purpose of Object-Oriented Analysis; with a discussion by Dave
Thomas, Adele Goldberg, James Coplien, Peter Coad and Geir
Magne Høydalsvik; in Proceedings of OOPSLA '93, ACM Sigplan
Notices Volume 28 Number 10 pages 240-258, October 1993.

[Jackson 83] M A Jackson; System Development; Prentice-Hall
International, 1983.

[Johnson 94] Ralph E Johnson; Why a Conference on Pattern Languages?
ACM SE Notes, Volume 19 Number 1, pages 50-52, January 1994.

[Jones 90] Cliff Jones; Systematic Software Development Using VDM;
Prentice-Hall International, 2nd Edition 1990.

[McAllester 86] David McAllester and Ramin Zabih; Boolean Classes; in
OOPSLA ’86 Conference Proceedings: SIGPLAN Notices Volume 21
Number 11 pages 417-423, November 1986.

[Parnas 91] D L Parnas and J Madey; Functional Documentation for
Computer Systems Engineering (Version 2); CRL Report 237,
McMaster University, Hamilton Ontario, Canada, 1991.

[Polya 57] G Polya; How To Solve It; Princeton University Press, 2nd
Edition 1957.

[Wordsworth 92] J B Wordsworth; Software Development with Z: A
Practical Approach to Formal Methods in Software Engineering;
Addison-Wesley, 1992.

sbuart01.wsd Page 17
22/09/94

