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Abstract

The business of software development is solving problems.  
Following Polya, we can increase our ability to solve problems by 
focusing directly on problems themselves, on their parts and 
structures, and on the relationship between problem and solution 
method.  This leads to an emphasis on describing the world 
outside the computer, and reasoning about it explicitly; to an 
approach to problem complexity and decomposition; and to a 
particular view of the proper role of object-orientation in software 
development. 

1 Problems and Solutions

Software development projects, in my view, are concerned to solve 
engineering problems.  Software developers make machines that are to be 
installed in the world, and are to make a difference in the world by 
interacting with it.  For example, a word-processing system is a machine 
installed in an office, just like a typewriter, but much more powerful and 
versatile.  As software developers we don't construct the physical fabric of 
the machine; we only describe the properties and behaviour of the 
machine we want.  We present our descriptions to a general-purpose 
computer, which then magically takes on the properties and behaviour of 
the machine we have described.  It is in this way that a software 
development problem is an engineering problem — the problem of 
creating a useful machine to fit some purpose.

People who are interested in the social, economic, ethical, and political 
aspects of software development — especially of the development of 
administrative or information systems — sometimes disagree with this 
view.  Software systems, they say, are situated in a human context, and 
their specifications emerge and evolve by processes of continual 

sbuart01.wsd Page 1
22/09/94



negotiation and adapation among all the interested parties.  There is no 
succession of well-defined problems for the software developer to solve: 
the primary development activity is ongoing social interaction.  Of course 
there is truth in this view for some developments in some situations.  But 
at the end of the day, even in those situations, there are programs to be 
created: that is, there are machines to be built, and engineering problems 
to be solved.  

But although we are engineers we are not, for the most part, like other 
engineers.  Most of the established branches of engineering — civil, 
automobile, electrical, chemical, aeronautical — are specialisations.  
Automobile engineers don't turn their hands to designing bridges or 
chemical plants.  Software engineers, in contrast, are usually generalists 
rather than specialists.  Except for courses in compiler construction and 
in operating systems their education is in general principles and 
techniques rather than in specific problem areas.  And most software 
development practitioners would think of themselves, with some 
justification, as being equally able to work in one problem area as in 
another.

This difference is of great importance.  An automobile designer does not 
begin by trying to discover what the problem is.  The problem is, as 
always, to design a particular kind of car.  Both the purpose and the 
nature of each kind of car are very well understood.  The designer of a 
family saloon car need not consider whether the car should be able to fly; 
or to carry five-ton loads; or should incorporate a crane for lifting steel 
girders.  Nor need the designer consider whether the car should have 
wheels or tracks; whether the driver should sit at the front or at the back; 
whether it should be driven by steam or nuclear power.  Both the 
problem and its solution are very tightly constrained, and the work of the 
automobile engineer — except for the most brilliantly revolutionary 
designers — is to make very small perturbations within the given 
constraints.

In bespoke software development, except for a few specialised areas, the 
situation is quite different.  Every problem, and every solution, is new.  
The freedom of the software developer is several orders of magnitude 
greater than the freedom of the automobile engineer.  This is why 
analysis, and requirements, and specifications, loom so large on the software 
development landscape.  A large part of our effort must almost always be 
devoted to determining what the problem is, and to devising a new 
solution — because it is always a new problem.
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Faced with these demands, we have traditionally paid most of our 
attention to solutions, and little or no attention to problems.  Partly, this is 
because of the seductive attraction of computer programming.  Many 
developers are programmers at heart, whatever their job titles may be; 
their happiest hours are those spent devising how their machines should 
work.  Those who claim to be entirely concerned with their customer's 
problem often try to express that problem in a dataflow diagram, or some 
other representation of the internal behaviour of their planned machine.  
As a representation of the problem they offer a design for a solution.  
More damagingly, even resolute methodologists find it hard to pay 
serious attention to problems.  Ralph Johnson, a leading proponent of the 
use of patterns in object-oriented development, says [Johnson 94]:

“We have a tendency to focus on the solution, in large part because 
it is easier to notice a pattern in the systems that we build than it is 
to see the pattern in the problems we are solving that lead to the 
patterns in our solutions to them.”

Of course it is easier to notice a pattern in the solutions.  The solutions 
are set in the context of a programming language and environment that 
provide a rich structure and vocabulary for talking about solutions: 
procedures and functions and parameters and invocations; pipes and 
streams and processes; objects and methods and classes and instance 
variables.  By contrast, a typical problem is set in a context that offers no 
such help.  In the absence of a suitable vocabulary it is a daunting task to 
try to speak of problems.  Solutions are easier.  The sixpence is sought, as 
ever, under the street light.

2 Problem Frames: Polya

But a good starting point for talking about problems is readily available.  
Polya shows the way in his monograph How to Solve It [Polya 57].  There 
he expounds the work of the Greek mathematicians, especially Pappus, in 
the field of heuristics — techniques for finding solutions to problems for 
which no algorithmic method is known.

The Greeks classified simple mathematical problems into problems to prove, 
and problems to find.  For example, the problem ‘Show that if the sides of a 
quadrilateral are equal its diagonals bisect each other’ is a problem to 
prove; while the problem ‘Given three lengths a, b, and c, find a triangle 
whose sides are of those lengths' is a problem to find.  The different kinds 
of problem can be recognised by their principal parts and the associated 
solution task.  A problem to find always has:
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the unknown: here, a triangle;

the data: here, the three lengths;

the condition: here, that the triangle's sides should be equal to the 
given three lengths.

The solution task in a problem to find is always to find or construct the 
unknown so that it bears the relation to the data that is expressed by the 
condition.

Polya gives a number of heuristics for solving problems to find.  For 
example:

Check that you are using all the data.
Check that you are using all the condition.
Split the condition into parts.
Think of a familiar problem having a similar unknown.

These heuristics can offer useful advice for solving all problems of the 
class because — and only because — they are expressed in terms of the 
problem alone.  That is, they are expressed in terms of what Polya calls 
the principal parts of the problem, not parts or aspects of any putative 
solution.

The assemblage of principal parts and solution task that characterises a 
problem class merits a name.  I call it a problem frame.  I think of it as a 
kind of structure or jig into which a problem may be fitted so that it can 
be worked on.  By fitting a problem into a problem frame we should be 
classifying it precisely enough to be able to select an appropriate method 
for its solution.  The key requirement for a good problem frame is that it 
should be precise enough to give a really good grip on any problem that 
fits it.  And the key requirement for a good method is that it should be 
associated with, and exploit, a sufficiently precise problem frame.  

Polya writes of two problem frames for small mathematical problems.  For 
software development, very many more will evidently be needed.  
Attempts to find a single general problem frame and an associated 
method that will work well for all software development problems are 
doomed to failure.  They lead to the discredited and vapid emptiness of 
top-down decomposition, with its vacuous problem frame.  The problem 
is characterised as — well, a problem. The method is to break it down to 
sub-problems that are themselves — well, problems; to break these sub-
problems down to sub-sub-problems; and to continue until no further 
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decomposition is necessary.  The fact that this prescription fits every 
imaginable problem is the clearest possible symptom of its lack of efficacy.  

3 Software Development Problem Frames and Methods

A useful problem frame must fit its problems tightly.  So a symptom of its 
utility will be that it excludes most problems and fits only relatively few.  
Here are three examples: the JSD Information System Frame, the Simple 
Control System Frame, and the Workpieces Frame.

The JSD Information System Frame may be suitable for an information 
system to be used in a commercial organisation.  It has these principal 
parts:

The System.  This is the machine we must build.

The Real World.  This is the world about which information is 
required.  It is dynamic, but autonomous.  That is, events and state 
changes take place, but they are to be regarded as spontaneous and 
unexplained.

The Information Outputs.  These are the reports and displays 
containing the required information.

The Information Requests.  These are query transactions and 
requests for various kinds of information outputs.

The Information Function.  This is a relationship between the Real 
World and the Information Outputs.

The solution task is to construct the System so that it produces the 
Information Outputs in their correct relationship to the Real World, in 
response to the Information Requests and to events and states of the Real 
World.  

The Simple Control System Frame might be suitable for controlling a 
device such as a Washing Machine.  It has these principal parts:

The Controller.  This is the machine we must build.

The Controlled Domain.  This is the domain to be controlled.  It is 
dynamic and both active and reactive.  That is, some events and 
state changes occur spontaneously, without external stimulus; and 
there are also events that are externally controlled and cause the 
domain to respond by internal events and predictable internal state 
changes.  

sbuart01.wsd Page 5
22/09/94



The Desired Behaviour.  This is the desired relationship among the 
various events and state changes of the Controlled Domain.  

The solution task is to construct the Controller so that it brings about the 
Desired Behaviour in the Controlled Domain.  

Finally, the Workpieces Frame might be suitable for a very small and 
simple CASE tool.  It has these principal parts:

The Tool.  This is the machine we must build.

The Workpieces.  These are the objects that the users of the Tool 
create and work on, with the help of the Tool.  They are intangible 
graphical or textual objects, realised entirely within the Tool.  They 
are dynamic but inert: that is, their states can change, but only in 
response to externally controlled events.

The Operation Requests.  These are the users' requests for operations 
— such as graphic or text object creation and editing — to be 
performed by the Tool.  They occur autonomously.

The Operation Properties.  These are desired relationships between 
the occurrences of the Operation Requests and the states of the 
Workpieces.  

The solution task is to construct the Tool so that it responds to Operation 
Requests by operating on the Workpieces in accordance with the Operation 
Properties.

These three problem frames — the JSD Information System Frame, the 
Simple Control System Frame, and the Workpieces Frame — are 
significantly different.  Most notably, they differ in the characteristics of 
those principal parts that could be said to reflect their central subject 
matter.  In the JSD Frame, the Real World is active and autonomous; in 
the Control Frame, the Controlled Domain is both active and reactive; in 
the Workpieces Frame, the Workpieces are inert.  

These differences, and others also, are reflected in the different methods 
that may be associated with each frame.  The JSD method [Jackson 83, 
Cameron 89] may be understood as a method for solving JSD 
Information System problems.  JSD exploits the dynamic and 
autonomous nature of the Real World by using concurrent simple 
sequential processes to represent the subject matter about which the 
Information Outputs must be produced.  Events are regarded as primary, 
and states as secondary: states are defined in terms of event histories.  
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For Simple Control System problems a candidate method is a simplified 
version of the method described by Parnas and Madey [Parnas 91] and 
incorporated into the Core method [Faulk 92].  A central theme in this 
method is a distinction that is missing from JSD (and is not needed in 
problems that fit the JSD Information System frame).  Two descriptions 
are made of the Controlled Domain: one to capture those natural properties 
that it possesses regardless of the behaviour of the Machine; and another 
to capture the Desired Behaviour — those properties with which the 
Machine is required to endow it.  Parnas and Madey represent both sets of 
properties as relations over variables of the Controlled Domain.  They call 
the first relation NAT, and the second REQ.

For a Workpieces problem it would be appropriate to use a method based 
on abstract data types, such as Larch [Guttag 85] or VDM [Jones 90]  or Z 
[Wordsworth 92].  The definition of the type is, in effect, a description of 
the Workpieces.  The operations to be performed by the Tool in response to 
the Operation Requests are the operations of the type.  In a model-based 
method such as VDM or Z, the description of the model state is, of 
course, the description of the Workpieces viewed as a data structure.

The accounts given here of the different problem frames and the 
different associated methods are hugely simplified.  This simplification is 
partly just a matter of the brevity of presentation in this paper.  But it is 
much more fundamental than that.  A problem frame must be simple, 
and the associated methods must be simple too.  It is only by stripping 
away the tangles of complications that surround realistic problems that we 
can see a basis for classifying them and devising powerful methods.  A 
method is powerful only to the extent that it exploits the particular 
properties of the class of problem being solved.  The resulting 
simplification and lack of realism is a central theme in dealing with 
complexity.  I shall return to this theme later in the paper.

4 Describing the World

If we mean to think seriously about software development problems we 
must focus our attention initially on everything except the machine we 
will ultimately build.  The System, the Controller, and the Tool each 
constitute only one principal part among several in the problem frame, 
and initially they are the least interesting.  Our customer's requirement 
lies elsewhere, in the world outside the machine: that is, in the other 
principal parts of the frame.  The machine we build will — if we are 
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successful — satisfy the requirement; but it does not itself embody that 
requirement.

Our primary concern is with understanding and describing what we may 
call the application domain and the requirement: in JSD, the Real World and 
the Information Outputs, Requests, and Function; in a Simple Control 
problem, the Controlled Domain and the Desired Behaviour; in a Workpieces 
problem, the Workpieces themselves and the Operation Requests and 
Properties.  

Explicit description of the application domain is unnecessary in the small 
mathematical problems that Polya discusses.  For those problems, the 
application domain is formal, and is already well known to the problem 
solver.  When the data in a problem to find is a triangle, we do not expect 
to devote serious effort to understanding and describing the 
mathematical notion of a triangle.  We already know what it is, and we 
already know its essential properties: that the sum of its interior angles is 
equal to two right angles; that its area is one half of the height multiplied 
by the base; that the length of each side is less than the sum of the two 
other sides; and so on.  When the unknown is a prime number, we already 
know what a prime number is.

This convenient, but atypical, property is shared by the integer and 
integer array problems that provide so much material for the exposition 
of certain formal styles of program development.  Those styles, and their 
expositors, are sometimes criticised on the ground that their techniques 
do not scale up: they deal in small and simple problems when real 
problems are large and complex.  But a far more serious criticism is that 
they have taught generations of software developers that problem capture 
is a trivial task: one need scarcely do more than mention the problem 
before setting about its solution.  Rather like the prison inmate who need 
only shout out ‘joke number 43' to make his fellow inmates laugh.

On the contrary.  In most real problems description of the application 
domain should consume a very large part of the total effort.  The context 
of the problem is in the application domain, not in the machine.  But 
immediately, this raises a severe difficulty.  The application domain is 
almost always informal.  This has several consequences.  

The first consequence is that generalisation and classification is always 
imperfect, and always vulnerable to the production of new evidence, new 
counterexamples, and new objections.  Everyone knows that the meaning 
of terms such as ‘customer' and ‘employee' varies from department to 
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department within the same organisation.  The meaning of ‘motor 
vehicle' depends on whether you are talking to a lawyer, a manufacturer, 
a licensing authority, or the AA.  There is no simple general definition 
under which all the meanings can be precisely subsumed.  

Another consequence is that reasoning in the application domain is 
inherently unreliable.  We may formalise our premises, and reason with 
correct logic to a conclusion.  Yet we may still find that our conclusion is 
false when translated back into statements about the domain.  The 
inevitable imprecision of our original formalisation introduces an error 
term — analogous, if you like, to the arithmetic error introduced when 
reals are represented by integers — that can vitiate the reasoning.

Another consequence is that we need a much richer and more varied
 repertoire of languages and notations than is needed for describing 
machines.  The task of describing a machine — that is, of writing a 
program — is greatly helped by the freedom to decide that the machine 
should embody a simple and consistent phenomenology.  So good 
programming languages are concisely definable, and exhibit such 
properties as syntactic and semantic consistency, or referential 
transparency.  But in describing the world outside the machine we have 
no such freedom.  We must describe the world — at least approximately 
— as it really is.  We will certainly impose some degree of systematic 
consistency on our descriptions: even natural languages do that.  But we 
are not free to sweep away the variety of the world by treating everything 
as a sequential process, or as a relation, or even as an object.

5 Description Types and Structures

To deal with this richness we must pay a lot of attention to the technology 
of description.  That means that we must be aware of how descriptions 
are related to the subject matter they describe, of the different kinds of 
description that may be needed, of the properties and dimensions of each 
description, and of the many different structures by which descriptions 
may be usefully related to one another.

The basis of the relationship between a description and what it describes 
is the designation.  A designation singles out certain phenomena of 
interest.  It gives an (ineluctably) informal explanation of how the 
phenomena may be recognised in the application domain, and it gives a 
formal term — such as a predicate — by which the phenomena will be 
referred.  For example, in the designation:
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“The human genetic mother of x is m    Â    Mother(x,m)” 

the designated phenomenon is the relationship of genetic motherhood 
between two people; it will be denoted in descriptions by using the 
predicate Mother (x,m).  Designations form the bridge between the formal 
descriptions we produce in software development and the informal real 
world.  Without explicit designations it is impossible to determine with 
any confidence whether a description of the world is true or false.  To 
quote John von Neumann: There is no point in being precise if you don't 
know what you are talking about.

A definition gives a formal definition of a term that may be used by other 
descriptions.  For example, the definition:

“Child(x,y)    Ò    Mother(y,x) ∨ Father(y,x)”

defines the term “Child(x,y)” to mean exactly the same as “Mother(y,x) or 
Father(y,x)”.  A definition can not be true or false: it can only be well-
formed or not well-formed, and useful or not useful.  It conveys no 
information whatsoever about the application domain or the machine.

A refutable description describes some part of the world, saying something 
about it that could — in principle — be refuted or disproved.  Whether it 
could in practice be disproved is another matter: the important thing is 
that it could make sense to disprove it, as it can't make sense to disprove a 
definition.  For example, here's a tiny refutable description:

“∀ m,x · Mother(x,m) →  ¬Mother(m,x)”

Whatever m and x you choose, if m is the human genetic mother of x, then 
x is not the human genetic mother of m.  To refute it you would have to 
find a pair of mutual genetic mothers.  Inconceivable.  But not 
nonsensical.

Because there are many parts and aspects of the world to be described, it 
will always be necessary to build quite elaborate structures of 
designations, definitions, and refutable descriptions.  Determining how to 
separate the whole description into a number of partial descriptions — 
that is, how to separate concerns — is a central development activity.  At a 
certain scale, separation is prescribed by the chosen method: JSD enjoins 
the developer to separate the description of the Real World from the 
description of the Information Function; and Parnas and Madey enjoin a 
separation of the NAT and REQ relations.  At a larger scale, separation 
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will be guided by the treatment of complexity, in which several methods 
and frames are deployed on one problem.

6 The Machine and the World

The requirement is in the application domain, but its satisfaction is to be 
achieved by the machine.  The transition from one to the other depends 
on a relationship between the two.  Two aspects of the relationship are of 
special importance for descriptive technique: interaction, and modelling.

The machine interacts with its physical environment.  This means that 
some phenomena — events and states — are common to the machine and 
the environment.  These common phenomena constitute what we may 
call the specification interface.  I picture it like this:

Problems and requirements are to be expressed solely in terms of the 
environment phenomena.  Programs are to be expressed solely in terms 
of the machine phenomena.  The bridge between them is formed by 
specifications, which are expressed in terms of the phenomena common 
to the environment and the machine.  

A specification is both a restricted kind of requirement, and a restricted 
kind of program.  Programs in general may be expressed partly in terms 
of phenomena that are private to the machine and not visible at the 
interface.  Programs that refer to private machine phenomena are not 
specifications.  (Or they are very bad specifications that may be said to 
exhibit implementation bias [Jones 90].)  Similarly, requirements in 
general may be expressed partly in terms of phenomena that are private 
to the environment and are not shared with the machine.  They, too, are 
not specifications: they do not give enough information for the 
construction of a program. 

This distinction among requirements, specifications, and programs is of 
great significance.  In a trivial problem we may write the program text 
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directly: no sane software developer would progress from requirement 
through specification to program to construct the ‘Hallo World' program.  
For a slightly less trivial problem we may content ourselves with 
developing a specification and progressing from there to a program.  This 
is the danger zone for more demanding problems.  The specification is a 
requirement — that is, it is expressed in terms of environment 
phenomena.  So it is easy to suppose that it is the customer's requirement, 
ignoring the virtual certainty that the customer's requirement is not 
confined to the part of the environment that interfaces directly with the 
machine.  

This is the source of some of the failures in which a system fails to achieve 
the required effects in the application domain.  Avionics system failures 
furnish some notable and tragic examples.  In one system a plane 
overshot the runway on landing in rain because the thrust reversers could 
not be turned on.  The wheels were aquaplaning on the wet runway, and 
an interlock prevented engagement of the thrust reversers when the 
landing wheels were not turning.  

Even in a context in which it is proper to confine attention to the shared 
phenomena there is a further danger.  One may easily suppose that an 
interface can be equally well described from either side.  But it is not so.  
On the machine side we can manage very well with descriptive techniques 
that abstract from causality and from the distinction between what is true 
and what we would like to be true.  The causal properties of the machine 
are well understood in terms of the programming language, especially if 
it is an imperative programming language.  Also, we know that we are 
always constructing the machine de novo: a general-purpose computer left 
alone will do nothing, it will exhibit only a null behaviour.  It is therefore 
fully adequate to describe behaviour from the point of view of what we 
may call the idiot observer: in CSP terms [Hoare 85], the trace semantics 
is enough.  The effect of behaviour outside the bounds of the specification 
is, naturally enough, undefined.  

But as a description of the environment this conceptual parsimony is 
harmful.  We need to know whether the precondition on an operation 
specification means that the environment will never, because of its 
internal properties, try to execute the operation when the precondition is 
false; or that the environment must be externally constrained to ensure 
the same restriction; or that the machine itself will frustrate any attempt 
to flout the restriction.

Another source of much confusion is the use of modelling.  Modelling is 
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an important technique in a number of methods.  For example, the JSD 
method prescribes that the foundation of the System should be a model of 
the Real World: that is, that the concurrent sequential processes observable 
in the Real World should be simulated by processes within the System.  This 
notion of modelling gives rise to a kind of reuse of descriptions.  The 
same refutable description can be truthfully applied both to the Real 
World and to the System, by using two different sets of designations.

If there is no explicit recognition of the role of designations in a 
development that uses modelling in this kind of way, there will always be 
uncertainty about whether a particular description is intended to describe 
the machine or the  application domain.  This uncertainty is particularly 
noticeable in data modelling methods, and also in model-oriented 
methods such as VDM and Z.  The reader of an Entity-Relation diagram 
is never sure whether the diagram describes the database or the real 
world.  The reader of a Z operation schema is never sure whether the 
schema is describing the changes of state within the machine, or the 
effects of the operation in the world outside the machine.

One might ask: If the machine is a simulation of the world, then surely 
the same description applies to both.  Does it matter which is being 
described?  Of course it does matter.  The simulation is only a partial 
simulation, and the refutable description that applies to both is only a 
partial description of each.  Both the machine and the real world have 
properties that do not enter into the modelling.  A database, for example, 
is far from a complete model of the application domain: the domain has 
many features that are not modelled in the database, including a range of 
possible causal relations among events.  Symmetrically, the database has 
features, such as record deletion, and null values in records, that are 
peculiar to the machine and are not models of anything in the domain.  
There are therefore at least three descriptions of interest: the shared 
description; a description peculiar to the machine; and a description 
peculiar to the application domain.  We must always know which of the 
three we are writing or reading.

7 Complexity and Problem Decomposition

The problem frames and associated methods briefly discussed earlier 
were all simple; certainly too simple for most realistic problems.  This 
simplicity is an essential characteristic, because the central purpose of a 
problem frame is to define a class of problem for which a reliable solution 
method is known.  The problem frame is purged of the realistic 
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complexities that may — almost certainly will — make an otherwise 
simple problem difficult.

Given a repertoire of such problem frames, the complexity of realistic 
problems may be handled by decomposing them into simple problems.  
This is not the unguided decomposition of top-down functional 
decomposition.  It differs in three important ways:

The choice of ‘subproblems' is restricted to those for which a 
problem frame and associated method are known.  This means that 
the decomposition is a decomposition of a problem that you don't 
know how to solve into problems that you do know how to solve.  
(A decomposition into problems that you still don't know how to 
solve may make matters worse rather than better.)

The decomposition is into heterogeneous subproblems.  There is no a 
priori reason to decompose into several instances of one problem 
frame in the style of a homogeneous top-down decomposition into 
several procedures or into several processes.  On the contrary, 
different aspects of a realistic problem are likely to conform to 
several different problem frames.

The resulting structure of subproblems is essentially a parallel, not 
a hierarchical structure.  The principal parts of the different 
problem frames overlap.  In particular, they will be concerned with 
different views and groupings of overlapping phenomena of the 
problem domain.  Although hierarchical relationships may 
sometimes be found, they will be the exception rather than the 
rule.  

8 Objects and Problems

Object-oriented methods, especially object-oriented analysis, are an 
important field of application of these ideas about problems and 
descriptions.  

The distinction between problems and solutions has not always been fully 
recognised in object-oriented methods.  It is always tempting to fall into 
the traditional software trap of treating every new technique as a panacea, 
capable of curing all ills, and into the related trap of treating each new 
programming language as a language for describing problems and 
problem domains.  In their time Fortran and COBOL were touted as 
problem description languages.  We should avoid making the same 
mistake with object-oriented languages.  
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A salutary paper by Høydalsvik and Sindre [Høydalsvik 93] makes a 
number of important points.  It should be compulsory reading for all 
students of object-orientation.  The authors say:

“An object-oriented representation might be good for some kinds 
of [domain] knowledge, but less suitable for other kinds of domain 
knowledge.  Since an analysis specification has to contain many 
different kinds of knowledge, OOA [Object-Oriented Analysis] will 
only present a partial solution.  …
“The main motivation for choosing OOA … is clearly target-
orientation — the analysis technique is chosen to fit in with the 
following design technique rather than the problem at hand.”

They give two examples of domain knowledge that is hard to capture in 
terms of objects.  Global rules, such as ‘Product A should never be 
cheaper than product B'; and the dynamics of high-level tasks involving 
operations from several objects.  In both cases, the granularity of an 
object-oriented description makes it difficult to reference all the relevant 
phenomena in a single description of sufficient span.

But even where there are no problems of granularity, the 
phenomenological assumptions built into the most commonly used object-
oriented approaches may be very ill-suited to the realities of an 
application domain.  The inadequacy of single inheritance is well-known: 
that particular shoe pinches almost every wearer.  In principle, if we 
regard a class as a collection of properties, we should be prepared to 
contemplate any combination whatsoever of classes whatsoever.  
McAllester and Zabih's notion of Boolean classes [McAllester 86] is very 
attractive: discrete properties are defined in base classes, and the classes 
actually used in a description are drawn from the unrestricted powerset 
of those base classes.  There is a connection here with the unrestricted 
composition of problem frames to capture a particular complex problem.

The presumption that classification is static is at least as arbitrarily 
restrictive as the presumption of single inheritance.  There are 
remarkably few examples of static classification in realistic domains.  As 
Hendler [Hendler 86] pointed out in motivating his work on 
Enhancements, undergraduates become graduates, and graduates 
become PhDs.  We may also observe that pupils become teachers, 
warehouses become apartment buildings, caterpillars become butterflies, 
cotton mills become offices, and employees become pensioners.  Real-
world individuals not only partake freely of the properties of many 
classes; they also take on and shed those properties over time with at least 
equal freedom.
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It seems to me that there are two important — but so far somewhat 
neglected — challenges now facing those who advocate object-oriented 
approaches to software development.  First, to understand and exploit 
the true strengths of object orientation while recognising its limitations.  
It may, perhaps, be said that those aspects of object-orientation — 
classification and inheritance — that now receive most attention in 
tutorials and in method advocacy are its weakest aspects for describing 
the real worlds in which problems and requirements are found.  

The second challenge, I believe, is to develop the work on patterns, and 
the closely related work on frameworks, that is now beginning to emerge.  
This work, developed in the right direction, promises to explore object-
orientation in a very fruitful way, by focusing — as I believe we must — 
on the nature and structure of complexity, analysing some of the 
problems — at least in the programming context — that it is our business 
to solve.  A new book [Gamma 94] on patterns in object-orientation ends 
with a provocative quotation from the software developer's favourite 
architect, Christopher Alexander [Alexander 79]:

“It is possible to make buildings by stringing together patterns, in a 
rather loose way.  A building made like this is an assembly of 
patterns.  It is not dense.  It is not profound.  But it is also possible 
to put patterns together in such a way that many patterns overlap 
in the same physical space: the building is very dense; it has many 
meanings captured in a small space; and through this density it 
becomes profound.”
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