
RE95Key.doc 01/12/94 Page 1

Problems & Requirements

Michael Jackson
101 Hamilton Terrace, London NW8 9QX England

MAJ Consulting Ltd
& AT&T Bell Laboratories, Murray Hill, NJ, USA

Abstract

Requirements, specifications, and programs are distinguished by the phenomena they concern.
Requirements are about phenomena of the application domain, and describe properties of the
domain that the machine is required to bring about and maintain. The application domain is
informal, and serious difficulties are encountered both in describing it and in reasoning about it.
Requirements are complex, so they must be decomposed. Decomposition is based on the
recognition of simple sub-problems, characterised by problem frames.

Keywords: Requirements, specifications, domain
 knowledge, problem frames

1 Why We Need Requirements

Software development aspires to be regarded as an engineering discipline. This aspiration can be
justified on two grounds. First, the end product of software development is a useful machine.
Dijkstra[1] pointed out a change in our attitude to computers: “It used to be the program’s purpose
to instruct our computers; it became the computer’s purpose to execute our programs.” We might
add: “It became the computer’s purpose to embody the machines that we describe by our
programs.” In software development we build machines by describing them: the medium is text,
but the products are engineering products. Second, because the machines, and the useful purposes
they serve, are complex, we must master the complexity by appropriate structuring and design of
our descriptions. We must engineer not only the machines, but also the texts by which we describe
them.

Among the descriptions we must make to construct a machine is often a carefully engineered
description of the requirement that the machine is intended to satisfy. The need for such a
description is not universal in software development, and not common in certain other branches of
engineering. It arises from the highly particularised nature of much software development. The
engineer designing a new model of a family saloon car is solving a standard problem and making
only small perturbations to an established standard design. There is no need to consider whether the
car should be able to carry a 5-ton load, or should be equipped with a crane, or should be capable
of travelling over deep snowdrifts. But an engineer developing a bespoke software system for a
particular customer must approach the problem in a more open-minded way. The first step must be
to capture the particular customer’s requirements.

These requirements are not to be sought in a description of the machine to be built. They are to be
sought in a description of the effects that the customer wants the machine to bring about in the
world. An airline reservation system must bring about relationships among flights and passengers;
a railway signalling system must bring about relationships among train movements, tracks, and
timetables. A lift control system must bring about relationships among lift movements between
floors, openings and closings of doors, illumination of indicator lights, and users’ requests for
travel.

Proceedings of the IEEE Second International Symposium on Requirements Engineering, pp2-8; ACM Press, 1995.

RE95Key.doc 01/12/94 Page 2

2 Requirements and Specifications

The requirement for a system, therefore, is to be expressed in terms of relationships among domain
phenomena. When a user presses the up button at a floor, reasonably soon the lift should come to
that floor and stop with the upwards arrow indicator illuminated. The doors should then open, and,
after an interval long enough for the user to enter the lift, the doors should close. If on entering the
lift the user presses the button for a higher floor, the lift should travel upwards and stop at that
floor, possibly after stopping at others on the way.

All of the phenomena mentioned are observable in the application domain. The lift control system
will be able to satisfy the requirement because — and only because — it shares some phenomena
physically with the application domain. But these phenomena are not, in general, the phenomena of
interest to the lift’s users and the developer’s customer. They are events and states at the interface
between the machine and its environment. For example, there are event classes MotorOn and
MotorOff, in which the winding motor of the lift is turned on and off. These events are shared by
the motor and the machine, and occur only when initiated by the machine. From the point of view
of an observer of the machine, each event is the sending of a signal on an output line; from the
motor point of view, it is the connection or disconnection of electrical power. There is a set of
states SensorOn[i] which hold when the sensor in the lift shaft at floor i is closed by the presence
of the lift car. These states are shared by the lift domain and the machine; they are controlled by the
domain. In the machine they appear as an array of Boolean values; in the lift they appear as the
positions in space of the sensor levers.

The relevant sets of phenomena may be shown in a Venn diagram:

The phenomena {Di} are private to the domain; {Mi} are private to the machine; and {Si} are
shared by both. The requirements are expressed as relationships over the domain phenomena
{Di}∪{Si}. Call these requirements u. They will be satisfied by constructing a machine. The
machine’s external behaviour and properties will be described in a specification v, expressed as
relationships over the shared phenomena {Si}. For example, when the machine detects that
Sensor[3] is true when there is an outstanding request to visit floor 3, it will cause a MotorOff
event.

A specification in this sense is a restricted kind of requirement. It is a requirement because it is a
relationship over domain phenomena; it is restricted because it must be expressed solely in terms of
domain phenomena that are shared with the machine. A program, of course, is scarcely ever a
requirement: it is a relationship over the machine phenomena {Mi}∪{Si}.

3 The Role of Domain Properties

It is possible for the specification v to satisfy the requirement u because the domain possesses
certain properties that are independent of the behaviour of the machine. When the motor is turned
on, the lift starts to rise within 250 milliseconds; when it is turned off the lift stops moving; when
the car arrives at a floor the sensor state changes from off to on. Let us call these domain properties
J.

Domain Machine

D1
D2

D3 D4

S2
S1

M2

M3

M1

RE95Key.doc 01/12/94 Page 3

It is these domain properties that allow the specification Y, restricted to shared phenomena, to
satisfy the less restricted requirement X. If the development has been correctly carried out, we
have the entailment:

 Y, J Ü X

That is, if the machine behaves as specified, and the domain has the properties we claim, then
satisfaction of the requirement can be deduced.

For purposes of constructing, rather than validating, the specification Y, it can be viewed as a
refinement of the requirement X. In this refinement, the underlying domain properties J play the
role that is played in program refinement by the semantics of the programming language — that is,
by the underlying properties of the computer.

4 A General Problem Frame

This view of requirements and specifications is very general. But it is not vacuous. It distinguishes
three parts of the problem: the application domain, the requirement, and the machine we will build.
It also offers an element of method by indicating a relationship among three descriptions of
interest: the requirement, the domain properties, and the machine specification. (If our scope
included programming we would add the executable program text as a fourth description.)

There is a close similarity to the problem-solving ideas of the ancient Greek mathematicians
expounded by Polya[2]. Polya identifies two problem classes: problems to prove, and problems to
find or construct. Each class of problem is characterised by its principal parts and a solution task,
which together may be called its problem frame. For example, the problem ‘Given lengths a, b, and
c, construct a triangle whose sides have those lengths’ is a problem to find or construct. The
principal parts of such a problem are:

the data (here, the three lengths);

the unknown (here, a triangle); and

the condition (here, that the triangle’s sides be of the three lengths).

The solution task is to construct the unknown so that it bears the relationship to the data described
by the condition.

By contrast,the problem ‘Prove that the angles at the base of an isosceles triangle are equal’ is a
problem to prove. The principal parts of such a problem are:

the hypothesis (here, that the triangle is isosceles); and

the conclusion (here, that the angles at its base are equal).

The solution task is to demonstrate that the conclusion follows from the hypothesis.

Software development problems are very similar to Polya’s problems to find or construct. The
principal parts are:

the application domain;

the machine; and

the requirement.

The solution task is to construct the machine so that it ensures that the requirement holds in the
application domain.

RE95Key.doc 01/12/94 Page 4

5 Heuristics for Solution

A problem frame makes it possible to talk usefully about solution methods for problems that fit the
frame. Polya offers several heuristic recommendations. For a problem to prove:

consider what other conclusions follow from the hypothesis;

split the conclusion into parts;

and so on. For a problem to find or construct:

check that you are using all the data;

ask whether the condition is sufficient to determine the unknown;

and many others. Such a discussion of methods depends on being able to talk about the named
principal parts of the problem.

For software development problems, we may offer in similar vein:

describe the application domain properties independently of the requirement;

describe the requirement separately;

look for additional relevant and useful properties of the application domain;

enumerate the phenomena shared by the machine and the application domain;

describe the machine in a specification expressed in terms of shared phenomena;

and so on.

6 Difficulties of Informality – 1

Very often, the application domain is informal. It will be so whenever it is physically tangible,
because the physical world is certainly informal at the level at which it can interact directly with a
computer system. Even intangible parts of the application domain are likely to be informal, because
they may be the product of human discourse or perception. For example, tax laws and negotiated
wage agreements are parts of the application domain of any payroll system, and rules of visual
elegance and balance are a part of any serious typesetting system such as TEX.

This informality presents an important challenge to software developers — to describe the
application domain precisely, and to reason about it accurately and explicitly. Unfortunately, the
challenge is easily declined. We may retreat into abstraction, preferring clean mathematical
concepts to the messy phenomena of the real world. We may retreat to the boundary with the
machine, because the shared phenomena are easier to deal with: being machine phenomena too,
they must be already formalised by the well-specified behaviour of the computer. Or we may lay
the burden of understanding the application domain on our customer’s shoulders, insisting that the
customer speak to us in well-defined terms. If twenty meanings of the word ‘sale’ are in use in the
customer organisation, let the customer resolve that conflict. If no-one at the phone company
knows exactly what is meant by a ‘telephone call’, we’ll come back later when they’ve worked it
out.

The challenge should not be declined. Formalising the informal is central to software development.
The basic task here is to identify and exploit a set of phenomena that can act as ‘ground terms’ for
our descriptions and reasoning. These designated phenomena must be events and states that can be
described precisely enough to be reliably recognised in the application domain. In the presence of
call-forwarding, conference calls, call waiting, and chat lines, it may be difficult to say how to
recognise a telephone call. But it is easy enough to recognise when a telephone handset has been

RE95Key.doc 01/12/94 Page 5

lifted ‘offhook’ or replaced ‘onhook’. An enthusiast who likes to dismantle and rebuild cars may
find it difficult to say whether the car owned today is the same car as last week’s. But the licensing
authority may find it quite easy to recognise whether it has the same engine block.

The point is that the application domain is often best approached in a reductionist spirit. The
simplest and most distinctly observable phenomena form the soundest basis for description. More
complex concepts can be build from them by appropriate use of definition. The distinction between
designation of phenomena and definition of terms is fundamental to any serious attempt to describe
the world.

7 Difficulties of Informality – 2

Not all the difficulties of informality are overcome by careful designation of domain phenomena.
Because designation can never be perfect, there is always some residual error. Designated
phenomena are to real phenomena as numbers in a fixed-length representation are to real numbers.
And, as in real arithmetic, the errors can falsify apparently true assertions and vitiate the results of
sound reasoning.

The point is clearly illustrated by a well-known mishap that occurred to an aeroplane landing on an
airport runway. The plane’s control system was required to ensure that it is possible for the pilot to
engage reverse thrust (PRV is true) if, and only if, the plane has already touched down and is
moving along the runway (ONR is true):

X : PRV � ONR.

PRV is a phenomenon shared with the machine: the machine directly controls the interlock that
disables reverse thrust. The phenomenon ONR is not shared with the machine. However, if (and
only if) the plane has touched down and is moving along the runway (ONR is true), the wheels are
turning fast — that is, at at least 5 revolutions per second (WLS is true). And if (and only if) the
wheels are turning fast, pulses are being generated at a rate proportional to their speed of rotation,
that is, at at least 20 pulses per second (PUL is true). So:

J: ONR � WLS; and
WLS � PUL.

The wheel pulses are phenomena shared with the machine. The derived specification was

Y: PRV � PUL

which is clearly based on correct reasoning:

Y, J Ü X.

Unfortunately, there was a flaw in the domain description g. The plane was landing in heavy rain,
and the runway was covered in water. The wheels were aquaplaning instead of turning, so the
assertion

 ONR � WLS

was false in this situation. In the absence of wheel pulses, the control system prevented the pilot
from engaging reverse thrust, and the plane overshot the runway.

8 Specific Problem Orientation

This view of requirements and specifications is very general, so inevitably it is weak. It is a
principle of methodology that the power of a method is inversely proportional to its generality. The
heuristics given earlier — ‘look for additional relevant and useful properties of the application

RE95Key.doc 01/12/94 Page 6

domain’ — were limited in power because they made no distinction between the structure and
characteristics of one application domain and another. The account given of software development
problems applied as well to a compiler as to an airline reservation system. To be powerful, a
method must exploit the problem’s features very minutely. Because problem features vary widely,
we need a repertoire of methods, each suitable for problems of a particular class. Even in the realm
of small mathematical problems the Greeks recognised two problem classes. In software
development we must surely recognise many more than that.

A problem class is characterised by its problem frame. The principal parts of a problem frame are
furnished by the parts of the world — the machine and the application domain — that form the
problem context, and by the relationships among them. One approach to distinguishing different
classes of problem is to distinguish different characteristics and structures in the machine. This may
be called a solution-oriented approach, since the machine constitutes the solution rather than the
problem itself. It may seem perverse to adopt a solution-oriented approach, but it is common. In
fact, many of the traditional techniques of analysis can be seen as solution-oriented: problem
analysis may be their ambition, but their technique is to structure the machine.

A problem-oriented approach seeks to distinguish different characteristics and structures in the
application domain. Consider, for example, the restricted class of problem whose application
domain can be described as follows. There is a serial stream of operation requests; these are
requests from users of the system to perform operations on workpieces. The workpieces may be, for
example, texts held in the machine. The machine is viewed as a tool, its purpose being to fashion
the workpieces just as a metal workpiece is fashioned on a lathe or milling machine. The
requirement is a desired relationship between the operation requests and the states of the
workpieces. We might call this relationship the operation properties.

This frame would fit a problem like the construction of an extremely simple editor. The principal
parts of the problem frame are:

the workpieces;

the operation requests;

the tool; and

the operation properties.

The solution task is to construct the tool so that it operates on the workpieces in response to
operation requests, in accordance with the operation properties.

A simple model-oriented method based on abstract data types would be suitable for solving such a
problem. The workpieces are instances of the type, and the operation requests invoke operations of
the type. We can be confident that such a method would be suitable because the problem frame,
stated in full, imposes further constraints on its parts. The workpieces must be intangible,
physically realised only within the tool; dynamic — they can change state; and inert — they
change state only as a result of externally controlled events. The operation requests must be
viewed as an unstructured autonomous stream of request events. There is no notion of users as
individuals, so there is no way, for example, of providing for user preferences in text styles. The
stream is autonomous: requests are presumed valid and can not be rejected by the tool. The tool is
reactive, rather than active. It does nothing except respond to requests; it has no behaviour other
than its ReadRequest–PerformOperation loop.

9 More Simple Problem Classes

It is the simplicity — the unrealistic simplicity — of the Workpieces problem frame that gives it its
power. Because the principal parts are tightly constrained it is possible to apply the associated

RE95Key.doc 01/12/94 Page 7

method very easily and directly. We have, as it were, moved up only one level from a classroom
problem such as ‘Write a model-based specification of a double-ended queue’, or ‘Extend the stack
specification to accept top and pop operations when empty, and to respond appropriately’. The
complications that plague realistic developments have been purged.

There are many other simple problem frames, although not many have been explicitly identified
and described. Among them are the Simple Control frame, and the Simple IS frame.

The Simple Control frame is really a carefully purged version of the general frame discussed
earlier. Its principal parts are:

the controlled domain;

the desired behaviour; and

the controller.

The solution task is to construct the controller — that is, the machine — so that it enforces the
desired behaviour in the controlled domain. The controlled domain must be directly connected by
shared phenomena to the controller; it must be dynamic, and partly autonomous and partly
reactive. The desired behaviour is a relationship among the states and events of the controlled
domain.

A method associated with the Simple Control frame, albeit with a far more elaborate version of the
frame, is discussed by Parnas and Madey[3]. Appropriately, they stress the distinction between
their mathematical relation NAT, which captures the natural properties of the controlled domain,
and their relation REQ, which captures the desired behaviour.

The Simple IS frame underlies a number of development methods, including JSD[4]. Its principal
parts are:

the real world, about which information is to be provided;

the information requests;

the information outputs;

the system; and

the information function.

The solution task is to construct the system so that it produces the information outputs in response
to the information requests; the outputs must contain information related to the real world as
specified in the information function. The real world must be dynamic and autonomous, its
behaviour expressible as a set of regular expressions over events. The information requests, like the
operation requests of the Workpieces frame, form an unstructured autonomous stream of request
events. No distinction is made between a request from one user and a request from another.

10 Complexity and Decomposition

Problem frame variety is the key to mastering complexity. A complex requirement must somehow
be broken down into simpler, more manageable, partial requirements. This process can be guided
by treating it as the decomposition of complex problems into simple problems. A simple problem is
one that we know how to solve: that means one for which we have a close-fitting problem frame
and an effective associated method.

In identifying or formulating effective methods and problem frames, the purpose is therefore to
ensure that the frame is so tightly defined that any problem that fits it must be soluble by
systematic application of the associated method. This purpose rules out solution frames, because

RE95Key.doc 01/12/94 Page 8

their suitability to a particular problem — or lack of suitability — emerges only very indirectly and
very late in the development process. It also rules out very loose problem frames, because they fit
no problem tightly enough to give confidence that it can be solved by applying the associated
method. That is why top-down methods are of little value, and why Fred Brooks’[5] adjuration —
‘Plan to throw one away’ — rings so true in the ears of top-down developers.

Problem decomposition depends on the developer’s ability to recognise the simple problems within
the complex problem. This recognition is based on analysis of the application domain by fitting
parts of the domain and parts of the overall requirement into the principal parts of known problem
frames.

Imagine, for example, the development of an editor in which certain operations are forbidden to
certain users. This can obviously be viewed as a complex problem consisting of a Workpieces
problem combined with a Simple Control problem. Neither frame alone can accommodate the
complete problem: the Workpieces frame has no provision for distinguishing one user from another
or for constraining occurrences of operation requests; and the Simple Control frame has no
provision either for the workpieces themselves or for the operation properties of the operations to
be performed on them.

The decomposition into the two subproblems can be easily understood by supposing one of them to
be already solved. Suppose that the Workpieces problem has been solved, and the resulting system
is in operation. Then the Simple Control problem is concerned with an application domain in which
there are people using the editor that has been built. The people, the editor, and the texts being
edited together form the controlled domain. The desired behaviour is that certain people do not use
the editor in certain ways. The controller is, in principle, another machine that we must build to
ensure that behaviour is as desired.

11 Some Consequences

The two simple problems are combined in a parallel, rather than hierarchical, structure. Phenomena
are shared between principal parts of different frames, just as they are shared between different
subdomains of the application domain and between the application domain and the machine. The
events in the operation requests part of the Workpieces frame are also events in the controlled
domain of the Simple Control frame. Some phenomena are private to one frame. The users of the
editor, as individuals to be distinguished one from another, are private to the Simple Control
Frame: in the Workpieces frame the originators of the operation request events are, as it were,
anonymous.

This sharing and privacy has important consequences for description technique, and for the
structures within which individual descriptions must be fitted. Large-scale parallelism is a crucial
need in requirements engineering: further descriptions can always be superimposed on those
already made. In broad terms, this point is widely recognised: for example, additional
ViewPoints[6] can always be added in parallel to those already specified. But in specific terms the
richness of the mutual constraint of two parallel problem frames raises issues that have not been
widely addressed.

We may illustrate this richness by two examples. First, a class of shared phenomena may not be a
class of explicit interest in either of the parallel frames taken in isolation. Suppose that in frame A
the event classes EA1, EA2, and EA3 are identified. This classification scheme is appropriate to
the concerns of the frame. In the parallel frame, B, the event classes EB1, EB2, EB3, and EB4 are
identified for analogous reasons. Then a class of shared events ES may be such that:

ES ⊂ (EA1 ∪ EA2); and

ES ⊂ (EB1 ∪ EB3 ∪ EB4).

RE95Key.doc 01/12/94 Page 9

Its members appear in both frames, but are drawn from a union of subclasses in each frame.

Second, the control properties of events may be different in different frames. An event that is
controlled by the machine in one frame may appear as an autonomous event of the application
domain in another frame. Consider, for example, an event in which a user requests an operation on
a workpiece in the Workpieces frame. This is a phenomenon shared by the operation requests and
the tool principal parts of the frame. It is controlled by the users who issue the operation requests.
In the Simple Control frame the same event is seen as an event of the controlled domain, this
domain comprising both the operation requests and the tool of the Workpieces frame. It is an
autonomous event in the controlled domain, but if it is forbidden for the issuing user then the
controller in the Simple Control frame must inhibit it, directly or indirectly. Since the human user
can not be prevented from making the request, the tool must be elaborated. For example, before
performing any requested operation it must check with the controller that the operation is
permissible. (It is worth remarking that any message to the user explaining why the operation has
been inhibited must naturally come from the controller in the Simple Control frame, not from the
tool in the Workpieces frame. The fact that they are almost certainly implemented on the same
computer increases, rather than diminishes, the importance of the separation of concerns.)

The richness and fluidity of shared phenomena in parallel problem frames should not be taken to
imply that requirements description must necessarily be informal. On the contrary. The richer and
more complex the phenomena and relationships to be described, the more we need to formalise our
thinking about them. But the formal descriptions must be expressed in languages, and related
within structures, that do justice to the complexity of their mutual constraints and the multi-faceted
nature of the phenomena and relationships they describe.

Acknowledgement

Pamela Zave read an earlier draft of this paper and made many helpful comments.

References

[1] Edsger W Dijkstra; A Discipline of Programming; Prentice-Hall, 1976.

[2] G Polya; How To Solve It; Princeton University Press, 2nd Edition, 1957.

[3] D L Parnas and J Madey; Functional Documentation for Computer Systems Engineering
(Vn 2); CRL Report 237, McMaster University, 1991.

[4] M A Jackson; System Development; Prentice-Hall International, 1983.

[5] Frederick P Brooks, Jr; The Mythical Man-Month: Essays on Software Engineering;
Addison-Wesley,1975.

[6] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein; A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification; IEEE Transactions on
Software Engineering, Volume 20 Number 10 pages 760-773, October 1994.

