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Abstract. Software writing is diÆcult for many reasons. One impor-
tant reason is the interplay between the formal world of the computer
and its programming language with the informal world where the prob-
lem to be solved is located. In this paper some of the direct and indirect
consequences of this interplay are brie
y discussed, both for software
speci�cation and design generally and for the composition of indepen-
dently identi�ed and speci�ed subproblems.
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1 Introduction

The title of this paper is taken from one of the section titles in Turski's re-
sponse [12] to a well-known talk by Brooks [2]. Brooks claimed that that there
can be no silver bullet to slay the monsters that beset software development:
his talk reviewed some fashionable panaceas of the time|Ada, object-oriented
programming, graphical programming, AI|and dismissed them all. In response,
Turski did not claim that there was a silver bullet: indeed, his reponse was en-
titled \And No Philosopher's Stone, Either." Instead he explained tersely and
with great insight why software writing is diÆcult and will remain so.

This paper elaborates Turski's explanation and discusses some of its conse-
quences for practical software development.

2 The Problem Domain And the Machine

Turski gave this account of the essence of the software development task:

Thus, the essence of useful software consists in its being a construc-
tively interpretable description of properties of two (in general: di�erent)
structures: hardware and application domain, respectively.

One of these two structures, the hardware, is fully arti�cial, man-
made according to a prior design . . . .



The other structure, an application domain, is often natural, or has a
major natural component, or, while man-made, has no discernible prior
design. Thus, its properties are diÆcult to describe and the resulting
descriptions are quite complex. It is because of these complexities that
some software is intrinsically complex.

Thus, software is inherently as diÆcult as mathematics where it is
concerned with relationships between formal domains, and as diÆcult as
science where it is concerned with description of properties of non-formal
domains . . . .

In short, to write useful software we must deal not only with the computer
and its software, but also with the complexities of the natural world in which
the application resides. We can picture the relationship between the two, along
with the problem to be solved, as it is shown in Figure 1.
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Fig. 1. The Machine and the Problem Domain

The task of software development is to construct the Machine by program-
ming a general-purpose computer. The machine has an interface a consisting
of a set of phenomena|typically, events and states|shared with the Problem
Domain: for example, keystrokes on the computer keyboard, pulses on attached
control lines, character and graphic displays on the computer screen, and so on.

The purpose to be served by the machine is the Requirement, stipulating
that the machine must bring about and maintain some relationship among the
phenomena of the problem domain: for example, to ensure that the lift comes
when it is summoned, or to ensure that the �gures printed on the electricity bill
correctly re
ect the customer's consumption. The requirement, then, is a predi-
cate on the problem domain. The dashed arrow indicates that the requirement
refers to some set b of the phenomena of the problem domain and stipulates a
constraint on their relationships.

The identi�cation of the phenomena at a and b is fundamental to under-
standing and analysing the problem. In a realistic development, or even in a
more expansive discussion, it is necessary to detail the phenomena and their
control: for example, some phenomena at a may be controlled by the problem
domain, and others by the machine1.

1 A small illustration of this detailing is given later in the paper.



2.1 The Requirement, the Speci�cation and the Problem Domain

We may call the phenomena a the speci�cation phenomena, and the phenomena
b the requirement phenomena. In general these sets of phenomena are distinct,
although they may intersect. The requirement phenomena are the subject matter
of the customer's requirement, while the speci�cation phenomena constitute the
interface at which the machine can monitor and control the problem domain.

One desirable form of software speci�cation is a description of the externally
observable behaviour of the machine: such a speci�cation must be expressed in
terms of the speci�cation phenomena a, because these are exactly the relevant
externally observable phenomena of the machine. In a lift control problem, for
example, the speci�cation phenomena will be motorOn, motorUp, motorO� ,
motorDown, buttonPressed[i] , 
oorSensorOn[f ] , and so on. Most of these are
not requirement phenomena of interest to the customer. Certainly the customer
is interested in buttonPressed[i] , but not at all in the states of the motor or the

oor sensors: instead, the customer is interested in the movement of the lift car,
and its departures and arrivals at 
oors|leaveFloor[f ] , arriveFloor[f ] , and so
on.

This gap between the speci�cation and the requirement phenomena must be
bridged by the problem domain properties. Examination of the lift mechanism
in the problem domain reveals causal properties that can be exploited to bridge
the gap. For example, the machine can cause the lift car to leaveFloor[2] and
arriveFloor[3] by a suitably chosen sequence of events in a, such as <motorUp;
motorOn; await(
oorSensorOn[3]); motorO� >. Con�dence that our software
will ensure satisfaction of our customer's requirement must rest on a convincing
demonstration, formal or informal, explicit or implicit, of the entailment:

machineSpecification; domainProperties ` requirement2

that is: if the machine behaves according to our speci�cation and the problem
domain has the properties stated, then we can deduce that the requirement will
be satis�ed.

2.2 Informal Domains

Naturally, we would like our demonstration of requirement satisfaction to be
explicit, formal and complete. But here we encounter the diÆculties that Turski
expressed very neatly:

There are two fundamental diÆculties involved in dealing with non-
formal domains (also known as `the real world'):
1. Properties they enjoy are not necessarily expressible in any single

linguistic system.
2. The notion of mathematical (logical) proof does not apply to them.

2 This formulation is an oversimpli�cation: for a more careful (though still imperfect)
formulation see [4]. It is shown as an entailment rather than an implication because
it may not rest on properties|nor even mention phenomena|that do not appear
in its terms.



The insight is important, but perhaps too pessimistic. First, it is true that
all the relevant properties of a problem domain are rarely, if ever, expressible
in a single formalism. But this is surely a challenge for our abilities in formal
reasoning and calculation, not a justi�cation for abandoning the enterprise alto-
gether.

Second, it is true that mathematical proof does not apply to an informal
domain in the full sense in which it applies to a formal abstract domain such as
the integers. Because the terms we use for the phenomena of a natural domain
have an inevitable degree of vagueness, we can scarcely ever, if at all, make
a universally quanti�ed statement with perfect con�dence. Nor, with perfect
con�dence, can we take given universal statements and derive from them further
universal statements with perfect con�dence. It is the essence of an informal
domain that the repertoire of potentially relevant considerations can not be
exhausted, so we can never be sure that our reasoning will not be invalidated by
some consideration we have neglected.

Nonetheless, reasoning about our speci�cation, requirement and domain prop-
erties is not pointless, any more than reasoning is pointless in the natural sci-
ences. Adapting a famous statement about program testing, we may say that in
an informal domain, formal reasoning can show the presence of bugs, but not
their absence. We may not be able to say that the entailment that guarantees
satisfaction of the requirement holds absolutely and without quali�cation, but
we may well be able to say two things that are very useful. First, that it cap-
tures a valuable approximation to the truth that we can rely on to hold much
of the time in the particular domain we are concerned with now; and, second,
that writing it down carefully has revealed possible failures of satisfaction that
we had not previously recognised.

In short, we must aim to succeed as engineers rather than as scientists. Our
goal is not|or should not be|to identify and formulate properties that hold
for the whole universe, or for the whole of humanity. Rather, it should be to
formulate properties that hold for the particular lift mechanism and building
that furnish our problem domain, or for the particular electricity supply, the
particular electricity company, and the particular customers for whom we are
building our system. In doing so we must be willing to take advantage of the
restrictions and limitations of the problem domain in hand. This is the essence
of the formalisation task, well expressed by Scherlis [10]:

... one of the greatest diÆculties in software development is formalization|
capturing in symbolic representation a worldly computational problem
so that the statements obtained by following rules of symbolic manip-
ulation are useful statements once translated back into the language of
the world. The formalization problem is the essence of requirements en-
gineering ...

The key observation is that we seek to obtain statements that are useful .
Universal truths we must leave to mathematicians.



3 Problem Classes

The diagram of Figure 1, and the entailment
machineSpecification; domainProperties ` requirement

have a general applicability. In software development such generality is, of course,
a serious handicap. An approach to problem solving is unlikely to o�er much real
help unless it exploits the particular characteristics of the problem in hand. For
this reason we choose to identify and study software development problems of
di�erent subclasses, capturing each subclass in a problem frame.

A problem frame [6] specialises the generalised problem of Figure 1 in a
number of ways. For brevity they are only sketched here:

{ The problem domain is decomposed into a number of distinct domains. Tak-
ing these domains and the machine as nodes, and the interfaces of shared
phenomena as arcs, gives a connected graph: each domain is connected, di-
rectly or indirectly, to the machine. The graph may have cycles.

{ The domains are classi�ed according to the kinds of domain property they
can exhibit. For example, a causal domain is a material domain exhibiting
physical causality: the lift motor and mechanism form a causal domain. A
lexical domain has both a causal substrate and a symbolic interpretation
of its externally visible phenomena: the report showing the indebtedness
of electricity customers is a lexical domain. A biddable domain is a human
domain that can be enjoined to adhere to a certain behaviour, but may or
may not obey the injunction. For example, the driver of a train is a biddable
domain. The machine itself can be regarded as a programmable domain: that
is, it can (for most software developments) be relied on to behave exactly as
prescribed by its program.

{ Interfaces of shared phenomena that connect domains are detailed according
to the types of the shared phenomena and the locus of their control. For
example, motorOn and motorO� are events controlled by the lift control
machine; 
oorSensorOn[i] is a state controlled by the lift mechanism domain;
customerTotalLine.debtAmount[c] is a symbolic phenomenon controlled by
the indebtedness report domain.

{ The problem itself|that is, its requirement|is of a restricted class. Lift
control is, essentially, a behaviour problem; reporting customer indebtedness
for electricity consumed is an information problem; producing an object pro-
gram from a source program text is a transformation problem; editing text
or graphic objects in response to a user's commands is a workpieces problem.
Of course, the class of requirement is closely related to the classi�cations of
the problem domains: there can be no behaviour problem whose problem
domains are all entirely lexical.

Figure 2 shows roughly the shape of an Information Display problem. There
are two domains: the Real World, about which information is to be displayed; and
the Display domain, which will show the information. The requirement is called
\Display � Real World": it stipulates that the symbolic display phenomena b2
must correspond in a stated way to the causal real world phenomena b1. The
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Fig. 2. Information Display Problem Frame

presence of an arrowhead on the b2 line, and its absence from the b1 line, indicate
that the machine must achieve the correspondence by a�ecting the display, not
by a�ecting the real world. The detailing of the interfaces a1 and a2 would show
that all the phenomena a1 are controlled by the real world: that is, the real world
is not only causal, but autonomous: the machine can monitor, but not control,
its state and behaviour.

3.1 One Kind of Behaviour Problem

Most useful software development methods assume some more or less specialised
problem frame. For example, the well-known Four Variable Model [8] can be
regarded as based on the problem frame shown in Figure 3.
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Fig. 3. Four Variable Model Problem Frame

In Four-Variable terminology, the machine is the System, the problem do-
mains are Sensors, Actuators and Environment, and the requirement is REQ.
The speci�cation phenomena are i and o (the inputs and outputs of the sys-
tem), the requirement phenomena are m and c (the monitored and controlled
variables), and m and c also form the interfaces between the environment and
the sensors and between the environment and the actuators respectively. The
machine speci�cation is SOF, and the domain properties of the sensors, actua-
tors and environment are IN, OUT, and NAT respectively. The proof obligation
that we expressed as

machineSpecification; domainProperties ` requirement

appears (in relational form) as
((IN � SOF �OUT ) \NAT ) � REQ



The Four Variable Model approach exploits the special characteristics of its
problem frame. In particular, it is presumed that the problem domain can be
meaningfully partitioned into the sensors, actuators and environment, and also
that the requirement is expressible in terms of the phenomena m and c at the
interfaces between the environment and the other domains, and not in terms of
other phenomena more remote from the machine. These assumptions hold for
the class of problem addressed by the approach. Obviously a modi�cation of
the problem|for example, by introducing an operator into the domain|would
require a di�erent problem frame and a di�erent proof obligation.

3.2 Problem Concerns

The proof obligation
machineSpecification; domainProperties ` requirement

is the fundamental concern of the software developer. It appears in di�erent forms
in problems of di�erent classes, and in those various forms we may then call it
the frame concern. But any particular problem will raise additional concerns
that may properly be regarded as aspects of the problem requirement or the
frame concern, but are easy to overlook without some kind of enumeration and
taxonomy. An important bene�t of problem classi�cation by problem frames
is that it becomes easier to identify these additional concerns in problems of
particular classes and in domains of particular types. For example:

Initialisation concern The initial state of a program is readily de�ned, and
the standard mechanisms of invocation will guarantee to start it in that state.
But it is also necessary to consider the initial state of the problem domain,
and the means by which it is to be brought into the appropriate correspon-
dence with the initial state of the program or vice versa. In an information
problem the database|that is, the local variables of the machine|must be
initialised (`populated', in the usual jargon) to correspond with the state of
the real world. In the lift control system it may be a responsibility of the
maintenance engineer to restart the control computer only when the lift car
is at the ground 
oor with the doors open. In a transformation problem
there is no initialisation concern because the output domain (for example,
the object program lexical domain) is always initially empty.

Identities concern When a problem domain contains multiple individuals that
do not identify themselves explicitly at the speci�cation interface it is neces-
sary to ensure that the machine does not interact with one individual when
it should be interacting with another. For example, in a patient monitor-
ing system there is one chain of identity concerns from a particular patient
through a particular sensor to a particular machine port address, and an-
other chain from the particular patient through that patient's name to the
symbols in a doctor's prescription for the monitoring. How can it be guar-
anteed that the links in these chains will not become confused, causing the
system to apply to Smith the monitoring prescribed for Jones? What if the
wrong plug is inserted into a machine input socket? What if Jones changes



her name while in hospital? What if there are two patients both bearing
the name Jones? What if the doctor knows the patient as Jones but he is
registered on admission under his alias Smith?

Information de�cit concern When the machine must use information ob-
tained by monitoring a problem domain, whether in an information problem
or in a behaviour problem, it is most convenient if the information is directly
available when it is needed. For example, in a car park control system, a ticket
obtained at entry to the car park is marked with the entry time; when the
same ticket is read on exit the machine has, directly available in the read
event, all the information needed to compute the charge. But if an account
customer, charged by time used, simply presents his account card on both
occasions, then there is an information de�cit on exit: the read event on exit
does not inform the machine of the entry time.

Breakage concern A causal domain sharing phenomena controlled by the ma-
chine may be liable to break if the machine fails to observe some protocol.
For example, the lift motor may break if switched from up to down while
it is running. Lexical domains, if competently designed, do not have break-
age concerns. Causal Real World domains about which information is to be
provided in information problems do not raise breakage concerns because
they are not controlled by the machine, but only monitored; but the Display
domain in an information problem may raise a breakage concern, because
the machine controls it in order to produce the required output.

Reliability concern A causal domain for which certain stated domain proper-
ties must hold may sometimes fail to exhibit those properties. For example,
the lift motor may fail to start because it is burnt out; or a 
oor sensor may
stick on or o�. Similar considerations apply when heavy demands are placed
on a human biddable domain. Users of ATMs are not expected to be experts
or even to interact with the ATM in a sensible way; but such expectations
do hold for airline pilots and train drivers. The developer must arrange to
handle situations in which a causal or biddable domain frustrates these ex-
pectations by erroneous behaviour. Reliability is not a concern for a lexical
domain.

The capacity to recognise and address the full range of such problem concerns
is vital. Many common or notorious failures are directly caused by ignoring a
standard concern3. Sometimes a concern can be addressed by a fairly small elab-
oration of the development texts: for example, it is not diÆcult to arrange that
the input language for an ATM includes all possible sequences of key depressions
interleaved with events in which the card is inserted or removed. Sometimes it
demands something more radical, in the form of a special-purpose decomposi-
tion. In the next section we turn to the topic of problem decomposition.

3 An examination of the Risks forum reported in ACM Software Engineering Notes
reveals many instructive examples. For an account of an air disaster for which an
unaddressed identities concern is thought to have been at least partly responsible,
see [7].



4 Realistic Problems

Realistic problems do not �t neatly into problem frames. The essence of the prob-
lem frame approach is that each frame should capture a problem class stylised
enough to be solved by a standard method and simple enough to present clearly
separated concerns. A realistic problem is not stylised and simple: it is more
likely to be complex and heterogeneous, with many potentially interacting con-
cerns that are almost impossible to identify until they are encountered on the
journey towards a solution. This complexity of realistic problems springs partly
from their sheer size, but also from a cause recognised by Turski [12]:

... many problems are of the one-o� variety. Almost all air traÆc
control systems are di�erent because airports and their broadly de�ned
physical environments are di�erent. Large companies have di�erent pay-
roll software systems because they have di�erent concepts of what con-
stitutes the legitimate concerns of their payroll oÆcers and what other
services are integrated with payroll computations. And so we could con-
tinue.

Unlike practitioners of automobile, civil or aeronautical engineering, we do
not restrict ourselves �rmly to standard combinations of functionality having
standard forms of composition. Rather, we are like engineers who are willing to
embark on the construction of a car o�ering also the added functionality of a
crane and a lawnmower and a concrete mixer, or an aeroplane combined with a
submarine, a hot-air balloon and a windmill. This is not wilfulness or gratuitous
folly: it is an inescapable response to to the demands of our customers. They
recognise the huge versatility of a computing machine, and like rich functionality
and interacting features more than they like simplicity and reliability.

4.1 Decomposition

Naturally, we hope to solve our realistic problems by decomposing them into
subproblems simple enough to �t into the problem frames that we know we can
solve. This kind of decomposition|into subproblems of known classes|di�ers
from traditional decomposition approaches in a number of respects.

First, it takes us out of the morass of top-down or stepwise decomposition,
in which we guess at a decomposition of an unfamiliar problem into unfamiliar
subproblems, hoping that a recursive application of this optimistic4 approach
will eventually lead to a sound hierarchical structure whose leaves correspond to
familiar computations.

Second, it ensures that the subproblems identi�ed are, to the greatest possible
extent, understood and analysed directly in the problem context. If a subproblem

4 Dijkstra's detailed account [3] of the development of a program to \print the �rst
1000 prime numbers" contains several allusions to the programmer's `courage' in
making decomposition decisions. What is courage for one programmer may be un-
justi�ed optimism for another.



concerns some part of the original problem domain, then that part appears in the
subproblem diagram and its relevant properties are described in the discharge
of the subproblem proof obligation. Access of each subproblem machine to its
problem domain is not mediated by machines of other subproblems.

Third, traditional decomposition assumes a uniform structure into which the
parts identi�ed in the decomposition are �tted as they are successively identi-
�ed. This uniform structure may be a procedure hierarchy, or a pipe-and-�lter
structure, or a collection of parallel processes, or an assemblage of objects com-
municating by method calls, or something else of that general kind. Each iden-
ti�ed part is speci�ed as a component of this uniform structure, conforming to
whatever constraints that structure demands: for example, a procedure must
have `upper' and a `lower' (or `exported' and `imported') interfaces at which it
respectively provides and uses `services' requested by procedure calls; a �lter in a
pipe-and-�lter architecture must communicate by reading and writing sequential
data streams. But in problem frame decomposition we assume no more than that
the solution of each subproblem is to be implemented by a programmable ma-
chine: we make few or no explicit assumptions about the mechanisms by which
that machine may interact with others.

Fourth, traditional decomposition invites or compels us to address the in-
teractions among subproblems at the same time as we are busy identifying the
subproblems and specifying the decomposed parts that will satisfy their require-
ments. But in a problem frame decomposition we consciously ignore the compo-
sition concerns: that is, we treat each identi�ed subproblem as if it were truly
the whole of the problem, consciously ignoring the indisputable fact that we
must later consider how the subproblems are to interact. This approach has two
major consequences:

{ Identi�cation and treatment of the subproblems are not polluted by com-
position concerns. This purity has the advantage of allowing us to apply
whatever appropriate techniques we have in our arsenal for each particular
subproblem, without confusing their application by subproblem interactions.
(It has also, of course, the corresponding disadvantage that we may later �nd
that we must abandon, or at least qualify, some of our assumptions about
the subproblem when we come to consider its interactions with others.)

{ The composition concerns, in which we address the question of how the sub-
problems are to interact, are deferred until the subproblems to be composed
are well understood. Composition concerns may involve subproblem ma-
chines, suproblem domains, subproblem requirements, or any combination
of them. At �rst sight this need to address composition concerns explicitly is
a self-in
icted wound. But of course it is nothing of the kind. The composi-
tion concerns, like a JSP boundary clash [5], are there in the given problem
whether we like it or not: the only question is when and how we are to
address them.



4.2 Origins of Decomposition

Realistic problems demand decomposition primarily because their requirements
are multifarious: in Turski's words, our customers have \... di�erent concepts of
what ... other services are integrated with payroll computations." But decompo-
sition is often demanded also by the need to address subproblem concerns. Two
very common examples are the need for an internal model, such as a database, to
address an information de�cit concern in an information or behaviour subprob-
lem, and the need for diagnosis of an unreliable causal domain in a behaviour
problem and provision of an appropriate fallback treatment.

An information de�cit concern is addressed by providing some internal surrogate|
a model|for the current state of the Real World domain: the state of the Real
World is not immediately available for inspection, but must have been incre-
mentally computed from the shared events that have been observed in the past.
So in the car park example mentioned earlier a model of at least the account
customers' behaviour must be maintained, re
ecting the presence or absence of
each customer computed from his entry and exit events. The inevitable devia-
tions of the model domain from the Real World it models constitute a major
concern in themselves, and it is therefore necessary to separate the information
problem into two subproblems: one to build and maintain the model domain,
and another to exploit it, using information about the model state as a surrogate
for direct information about the state of the Real World.

In a behaviour problem, where the machine is required to impose certain
behavioural patterns on a causal domain, it is necessary to exploit causal do-
main properties. The lift control machine exploits the domain property that
the event sequence <motorUp; motorOn > will cause the lift car to rise in the
shaft. But in truth this property is not entirely reliable, and a conscientiously
formulated requirement will address this unreliability by providing an alterna-
tive behaviour|perhaps stipulating that the motor must be stopped and the
emergency brake applied and the alarm sounded. As Turski expressed it [11] in
discussing Randell's recovery blocks [9] scheme:

Seen in this light, the recovery block concept is not so much a defence
mechanism against an error as a programming technique to be used
when the problem in hand requires not only a perfect solution when
the whole environment exactly satis�es the speci�cations, but also an
admissible solution when some constituents of the environment happen
not to satisfy the speci�cations. This property, known as `fail-safe' or
`graceful degradation', is a much desired one for many software systems
for which objectives are formulated as a basic inviolable core surrounded
by a host of other functions which ought to be performed|if possible.

The basic inviolable core is the requirement to operate the lift safely. Ser-
vicing requests for travel from 
oor to 
oor is another function that ought to
be performed if possible. It is a natural consequence that the reliability concern
leads to a decomposition: one behaviour subproblem to service requests; one



information subproblem to detect impending or actual failure of the lift mecha-
nism; and a third subproblem to impose the emergency behaviour that will avoid
catastrophe when the lift mechanism malfunctions.

5 Composition Concerns

We will illustrate the kind of composition concern that arises here by a very
small and simple example, still further simpli�ed for brevity. The problem is
to control an irrigation sluice gate to provide the needed water 
ow. The gate
is driven by an electric motor, through a gearbox and vertical rack-and-pinion
mechanisms. Sensors detect the top and bottom of the gate travel, and the motor
can be switched on and o�, up and down. The irrigation schedule is �xed: the
gate must be open for at least nine minutes in every hour and shut for at least
forty nine minutes in every hour.

Because the sensors, motor or mechanism may fail, and because debris in
the watercourse can become lodged in the gate and block its travel, the fail-safe
requirement is that in the event of such malfunction the motor should be turned
o� and not subsequently turned on (until the whole system has been repaired
and restarted by a maintenance engineer).
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Fig. 4. Sluice Gate Control With Audit and Safety Shut-O� Features

Figure 4 shows the problem decomposition. Subproblem 1 is the basic irri-
gation problem. The Control Machine operates the gate in accordance with the
�xed irrigation requirement. Subproblem 2 is the fail-safe problem|shutting o�



the motor in the event of malfunction. This has been decomposed into Subprob-
lem 2a, in which the Audit machine builds and maintains a model of the actual
behaviour of the sluice gate and mechanism under the control of the Control
Machine, and Subproblem 2b, in which the Safety machine shuts o� the mo-
tor when the state of the SGM model domain, in its role as a surrogate for
the Sluice Gate, Motor, Mechanism and Control Machine, indicates that some
speci�ed kind or degree of malfunction has occurred.

Although the physical causal domains|the Sluice Gate, Motor, Mechanism
and Control Machine|appear in all three subproblems, they are viewed very
di�erently in each. In the Irrigation subproblem we are interested in those prop-
erties that can be exploited to open and shut the gate: in particular, that the
gate moves according to the motor settings, and that the top and bottom sensors
are on exactly when the gate is open and shut respectively. In the SGM Audit
subproblem we are interested in whatever evidence may indicate malfunction:
for example, that the motor has been set on and up for two seconds but the
bottom sensor is still on; or that both sensors are on simultaneously; or that
the top sensor changes state while the motor is o�; and so on. In the Safety
subproblem we are interested only in shutting the motor o� permanently.

5.1 Common Phenomena

Composition is concerned with phenomena that are common to two or more
subproblems and with their treatment in them. Here, for example, the Control
Machine controls the on and off and up and down motor events, and monitors
the states of the top and bottom sensors. The Audit machine is concerned with all
of these phenomena, but controls none of them. The Safety machine is concerned
only with the on and off motor events, for purposes of satisfying its requirement
to shut o� the motor. The Audit and Safety machines respectively build and use
the SGM Model. The SGM Model may be quite complex in its simulation of the
potentially faulty Sluice Gate, Motor and Mechanism, but the Safety machine
might monitor only a binary summary state faultySGM of the model.

The treatment of common phenomena may, in the simplest case, demand no
more than an appropriate distribution of events or states. The top and bottom
sensor states are controlled by the Sluice Gate mechanism, and monitored by
both the Control and Audit machines. The sharing of the states of the SGM
Model, however, is more complex. The SGM Model is a shared variable for these
machines, and access must be managed with appropriate mutual exclusion. The
on and off motor events are more complex still. They are all monitored by the
Audit machine; off events are controlled both by the Control machine and by
the Safety machine; on events are controlled by the Control machine, but may
be inhibited by the Safety machine. These events are a locus of con
ict between
the requirements.



5.2 Requirement Precedence

Considering only the bare requirement of each subproblem, we can see that
the Irrigation and the Safety requirements are potentially in con
ict. Follow-
ing detection of a malfunction a point in time will come when satisfaction of
the Irrigation requirement demands that the motor be set on but the Safety
requirement stipulates that it must have been set o� and must now remain o�.

This kind of con
ict is commonplace among decomposed requirements. It
occurs wherever preconditions are imposed on the basic functionality of a system
and the decomposition separates evaluation of the precondition from the basic
functionality. For example, in a secure editing system in which only certain users
have access to certain �les the basic editing requirement may con
ict with the
security requirement. In an air traÆc control system the basic interaction scheme
for controlling well-behaved planes is varied for a plane that deviates too far from
its 
ight plan or advised trajectory. In the presence of con
icting requirements
it is clearly necessary to determine which must take precedence, and to compose
the subproblem machines accordingly5.

5.3 The Composition Task

Evidently it is not enough merely to recognise that a decomposition into sub-
problems is an incomplete analysis of the given realistic problem. It is necessary
also to address the task of composition itself, taking it at least to the point where
the desired composition has been captured to the same extent as the solutions
of the individual subproblems|that is, expressed in terms of clearly identi�ed
machines and problem domains, interacting at interfaces of shared phenomena,
for which we can write clear domain descriptions and about which we can rea-
son e�ectively. The structure of our descriptions must also provide appropriate
places to express the composition requirements, such as the precedence we want
to give to the Safety machine over the Control machine.

In the present discussion we will do no more than sketch some of the compo-
sition possibilities presented by the Sluice Gate problem. Considering only the
relationship between the Control machine and the Safety machine, and ignoring
both the Audit machine and the SGMModel domain, we may consider four com-
position approaches. The �rst three are sketched, without explicit requirement
symbols6, in Figure 5.

5 The presence of requirement con
icts makes the straightforward use of re�nement
impossible, or at least very diÆcult, and motivates the development of such tech-
niques as retrenchment [1]. Requirement con
icts are a signi�cant source of the fea-
ture interaction problem, found in a well-known and particularly compelling, though
complex, form in telephone systems.

6 The diagrams of the compositions B and C depart also in another way from the
conventions of problem diagrams: a problem diagram has only one machine. We
choose to add this further informality to the informality of the preceding diagrams
to allow the accompanying discussion to be greatly shortened.
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Fig. 5. Three Simpli�ed Compositions of the Control and Safety Machines

5.4 Comparing Di�erent Composition Approaches

Composition A merges the two machines into a single machine that must satisfy
the requirements of both. The implementation7 may proceed by dismembering
each machine into a collection of procedures to be executed on occurrences of
externally controlled phenomena. Each machine will therefore have one set of
procedures from which the procedure is chosen to be executed on each state
change of the top sensor, one on each state change of the bottom sensor, and
one on each time tick. In general, the choice of procedure within each set will
depend on state variables that are global to the machine. By combining the
procedure sets in pairs, taking due account of the requirement con
ict, the cor-
responding procedure sets, and the mechanisms for choosing within each set, can
be derived for the composed machine. Evidently, this composition has certain
disadvantages. In particular, the fragmentation and recombination obscure both
the structure of the composed machine and the structure of the composition
requirement; it will be diÆcult to demonstrate that the resulting system will
satisfy the overall requirement of the original problem.

Compositions B and C are less invasive: that is, these compositions demand
less modi�cation of the subproblem machines than composition A. Composition
B treats the Safety machine as having a governing responsiblity over the Con-
trol machine. One way of thinking about this relationship is to view the Safety
machine as an additional problem domain for the Control machine, playing the
part of an operator whose commands must override the irrigation requirement.
At the same time, the Control machine is an additional problem domain for
the Safety machine, interposed between it and the Sluice Gate and Mechanism
domain.

Composition B has two disadvantages. First, the modi�cation of the Control
machine is more substantial that appears at �rst sight, because it must take
account of possible interventions by the Safety machine at every point in its
execution. Second, interposing the Control machine between the Safety machine

7 Composition A is essentially an event-based architecture.



and the problem domain creates a major safety hazard: a defect in the design
or implementation of the Control machine may frustrate the satisfaction of the
Safety machine's requirement8.

Composition C appears signi�cantly better than compositions A and B. Cer-
tainly, it does not have the second disadvantage of composition B: appropriate
and careful design of the Safety machine can make its eÆcacy invulnerable to
errors in the design or implementation of the Control machine. However, it is
still necessary to make substantial modi�cations to the machine that is placed
closer to the problem domain: the Safety machine must act as intermediary for
all interaction between the Control machine and the Sluice Gate and its mech-
anism, including its inspections of the top and bottom states. In this way the
safety requirement is potentially compromised: the machine that satis�es it must
simultaneously satisfy other less critical but complex requirements.

5.5 Another Composition Approach

Another possible approach to composition focuses directly on the interfaces be-
tween the machines and their problem domains, aiming at interfering as little
as possible with the speci�cation and execution of each machine. An irreducible
minimum of interference is that needed to ensure the precedence of the ShutO�
requirement over the Irrigation requirement: it is necessary to intervene in the
shared on events between the Control machine and the Sluice Gate and Mech-
anism in order to inhibit further occurrences of those events once malfunction
of the gate and mechanism has been detected. This can be achieved by intro-
ducing a new machine into this interface as shown in composition D, pictured
in Figure 6.

The top and bottom shared states are still shared between the Control ma-
chine and the Sluice Gate and Mechanism domain at interface d: as indicated by
the pre�x SG! in the detailing annotation, the Sluice Gate domain controls these
states. The previously shared on and off events, by contrast, have been split
by the introduction of the Interface machine. The Control machine now causes
on1 and off1 events at interface a, and the Interface machine, subject to the
precedence of the Safety machine, causes corresponding on2 and off2 events at
interface c. The Safety machine causes off3 events at interface a. The require-
ment to be guaranteed by the Interface machine is the composition requirement:
if the Safety machine causes an off3 event, the Interface machine must cause an
off2 event and must subsequently refuse to cause any further on2 event. Thus
the Sluice Gate motor is set o� and is not subsequently set on.

8 An extraordinary example of exactly this hazard was discovered in a recent analysis
of software for a radiotherapy machine. The requirement to shut down the beam
when the emergency button is pressed had to be composed with the requirement to
log all operator commands. By adopting the approach of composition B, the designers
made the eÆcacy of the shutdown button dependent on correct termination of the
logging function: if disk space for the log database were exhausted, or the log disk
drive failed, the emergency shutdown button would not work.
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One advantage of composition D is that the Interface machine is concerned
only with the composition itself. It is therefore easy both to represent the com-
position requirement and to demonstrate convincingly that it is satis�ed by the
machine.

Another advantage is that both the Safety and the Control machine are as
close as they can be to their problem domains: neither is compelled to rely on
the other for access to its problem domain, and neither is complicated by the
need to serve the other. Finally, neither is dependent on the other for its correct
functioning. In particular, the Safety machine and a correct Interface machine
together can guarantee satisfaction of the safety requirement even in the presence
of an incorrect Control machine9.

6 Conclusion

Software writing is diÆcult, and will remain so, precisely because it combines the
mathematical challenge of formal program construction with the scienti�c and
engineering challenges of designing machines to interact with the informal natu-
ral and human world. The problem frames approach can expose many concerns
to be addressed both in the separate treatment of the identi�ed subproblems
and in their composition, and can also provide some indications of alternative
implementations of the composition and of the concerns they raise in their turn.

Whatever development approach we may choose to take, these concerns are
all real: addressing them e�ectively is a major part of the diÆculty of writing
good software|and will remain so.

9 We are ignoring here such considerations as defects in the Control machine that mo-
nopolise computer instruction cycles, cause storage leaks, crash the common operat-
ing system, or otherwise interfere with the computational infrastructure on which the
Safety machine relies. In a realistic problem those concerns too must be addressed.
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