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WHERE DO OPERATIONS COME FROM?
A MULTIPARADIGM SPECIFICATION TECHNIQUE

1. Introduction

The biggest challenge to inventors of formal methods for software development is the size and complexity of

computer systems now being developed. Formal methods applicable only to small, academic examples have little

practical use. In particular, to write a manageable specification of a large system, it may be necessary to forego the

luxury of using only one specification language. Complex systems have many heterogeneous aspects. It may not be

possible to find a single specification language suitable for all aspects, and it may not be feasible (due to the

complexity of each aspect) to specify some aspects in languages ill-suited to them.

This paper presents a multiparadigm specification technique. It is intended to help people organize and write

complex specifications, exploiting the best features of several different specification languages.

The technique applies to graphical human-computer interfaces, telecommunications systems, and other

computer systems with the following characteristics. System input should be conveniently specifiable in terms of

events, while system output should be conveniently specifiable in terms of changes to the state of the environment.

The system should always respond fully to each input event before responding to the next input event.

The technique manages the complexity that arises when the primary computation of the system is controlled

by externally supplied commands, and there is a context-sensitive, many-to-many mapping from input events to the

commands they encode. Graphical human-computer interfaces and telecommunications systems, among others,

display this form of complexity. The applicability and leverage of the technique are discussed in much more detail

in Section 3.

Section 2 introduces the technique by means of a simple example of a graphical human-computer interface.

The example is presented informally, but Section 4 provides the formal foundations and a partial consistency
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analysis.

Sections 5 and 6 describe the application of the technique to a more substantial example of a

telecommunications system. Section 5 shows, step-by-step, how the multiparadigm specification was constructed.

Section 6 shows, step-by-step, how the multiparadigm specification was checked for consistency.

Section 7 surveys related work, and Section 8 summarizes the advantages and disadvantages of specifying

systems in this new way.

2. Construction of a simple specification

The specification technique will be illustrated with a simple example of a graphical human-computer interface

discussed by Abowd and Dix [Abowd & Dix 94]. In this example, a slider (Figure 1) is used to control some feature

of the primary computation. The user has two ways of interacting with the slider. Jumping: If the mouse is clicked

over the slider icon, the slider handle moves to the mouse position. Dragging: If the mouse button is pressed down

over the slider icon, then an outline of the slider’s handle appears, and as long as the button is held down, the outline

moves up and down with the mouse’s vertical position. If the mouse is then released within the icon, the slider

handle moves to the final depth of the outline. If the mouse is released outside the icon, the slider handle does not

move.

The specification will consist of partial specifications written in different languages. Each partial

specification has a vocabulary, which is the set of named, atomic concepts it is making assertions about. The

important vocabulary members fall into three categories: (1) An event class is a set of events. (2) An argument

function maps each member of an event class onto a unique value of a particular type. (3) A state component is

some representation (the exact form of the representation varies) of persistent state information.

A specification has a set of input event types; these are event classes that partition the set of all input stimuli to

the specified system. In the example all input events are generated by a mouse, and each belongs to one of the four

disjoint input event types press, release, click, and move.

Each input event has real-valued x and y argument functions, indicating the screen coordinates of the mouse at

the time of the event. As the mouse position moves around the screen, move events are generated with some

frequency determined by the input subsystem (not included in this specification).
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_ _____________________________________________________________________________________________

depth 0

depth 1

slider
handle

WHEN NOT DRAGGING WHEN DRAGGING

Figure 1. The slider icon. The origin of screen coordinates is at the lower left.
_ _____________________________________________________________________________________________

Disregarding the state of the primary computation, we need to specify four state components: the stable depth

(the position of the slider handle), the transient depth (the position of the slider outline, relevant only during

dragging), whether or not the slider is being dragged, and the screen position of the slider icon. With this

information, a display subsystem (not included in this specification) can maintain the proper screen image of the

slider.

In the proposed specification technique, each state component is represented and updated using a specification

language that is well-suited to the nature of the component. Other partial specifications written in other languages

may examine the state component, but they may not specify changes to it. The state component belongs to the

vocabularies of the partial specification that changes it and all the ones that examine it, and is shared among them.

In the example, we assume that the primary computation is specified in Z [Spivey 92]. The stable depth of the

slider is also represented in Z, so that the primary computation has direct access to it. Figure 2 gives the portion of

the Z specification related to the slider. Its three schemas describe the state component, the operation Move_Slider

that changes its value, and its initial value, respectively.

Whether or not the slider is being dragged depends on the sequence in which certain events occur. The status

of the slider is easily specified using a finite automaton with two states, dragging and not-dragging. This automaton

will be given shortly.
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_ _____________________________________________________________________________________________

stable_depth: R

0 ≤ stable_depth ≤ 1

Slider

∆ Slider
depth?: R

0 ≤ depth? ≤ 1
stable_depth’ = depth?

Move_Slider

Init_Slider

Slider

stable_depth = 0

Figure 2. Slider example: a partial specification in Z.
_ _____________________________________________________________________________________________

The transient depth of the slider and the slider icon position are both concerned with screen positions and the

coordinates of mouse inputs. They can be represented and maintained in a very simple language: first-order logic

augmented with some shorthand notations that make coordinate manipulation more convenient. This specification

will also be given shortly.

Partial specifications can constrain each other through shared state components. This form of influence can be

difficult to use, however, because it is unstructured, because it requires compatible state representations in the

sharing partial specifications, and because global consistency is difficult to establish. The three partial specifications

of the slider example share no state components whatsoever. Instead, they constrain each other by an alternative

means.

In addition to making assertions, a partial specification can also contain definitions of new vocabulary. In the

proposed specification technique, partial specifications define new event classes and argument functions which can

then be used in the vocabularies of other partial specifications.

In particular, there is always a partial specification written in Z. The Z operations correspond to operation
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event types; each operation event type is the set of events that stimulates the corresponding operation. Like input

event types, operation event types are special cases of event classes.1 Often there is a complex relationship between

input event types and operation event types. Non-Z partial specifications define the operation event types in terms

of the input event types, thus representing the complex relationship in a structured way.

In this example, the only operation event type is move-slider.2 Figure 3 summarizes how non-Z partial

specifications define move-slider (and also its argument function depth). Boxes represent partial specifications.

Solid lines represent event classes and dashed lines represent argument functions. Input event types enter from the

left. A line entering a box on its left represents an event class or argument function in the vocabulary of the partial

specification. A line leaving a box on its right represents an event class or argument function defined by the partial

specification.

_ _____________________________________________________________________________________________

Figure
4

(first-
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logic)
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press

release

click

move

inside-press

inside-release

outside-release

inside-click

move-slider

depth

Figure 3. The overall organization of definitions in the slider example.
_ _____________________________________________________________________________________________

Figure 4 is part of the slider example, written in first-order logic augmented with several shorthands. The first

clause uses a built-in syntax for input event types. In plain first-order logic, the four types would be unary

predicates true only of disjoint sets of individuals. Each individual that satisfies one of the four named predicates

also satisfies the unary predicate event(e).

The second clause uses a built-in syntax for typed partial functions of any arities. In plain first-order logic,

x(e,r) would be a binary predicate true only when event(e) and real(r). Furthermore, each e must be associated with

__________________
1In programming languages, atomic types are always disjoint. We use the word ‘‘type’’ in these two special cases as a reminder that all input
event types are disjoint and all operation event types are disjoint. Arbitrary event classes, on the other hand, can overlap freely.
2Our policy in handling formal names is that capitalization is irrelevant, and all separators (space, hyphen, underscore) are equivalent. This
enables us to satisfy the naming conventions of many languages without explicit name translation.
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_ _____________________________________________________________________________________________
input event types: { press, release, click, move }

functions: { icon-low-x:→real, icon-high-x:→real, icon-low-y:→real, icon-high-y:→real,
x:event→real, y:event→real, depth:event→real }

0 ≤ icon-low-x < icon-high-x
0 ≤ icon-low-y < icon-high-y
∀ e (event(e) ⇒ x(e) ≥ 0 ∧ y(e) ≥ 0)

depth(e) =∆
icon-high-y − icon-low-y

icon-high-y −y(e)_ ____________________

inside(e) =∆ icon-low-x ≤ x(e) ∧ icon-high-x ≥ x(e) ∧ (0 ≤ depth(e) ≤ 1)

inside-press(e) =∆ press(e) ∧ inside(e)
inside-release(e) =∆ release(e) ∧ inside(e)
outside-release(e) =∆ release(e) ∧ ¬ inside(e)
inside-click(e) =∆ click(e) ∧ inside(e)

∀ r ∀ p (transient-depth(r,p) ⇔ [initial(p) ∧ r=0] ∨
[ ∃ e (begins(e,p) ∧ move(e) ∧ r=depth(e))] ∨
[ ∃ e ∃ q (begins(e,p) ∧ ends(e,q) ∧ ¬ move(e) ∧ transient-depth(r,q))]

Figure 4. Slider example: a partial specification in augmented first-order logic.
_ _____________________________________________________________________________________________

a unique r. The functions x and y represent the input event arguments.

The real constants (nullary functions) icon-low-x, icon-high-x, icon-low-y, and icon-high-y give the screen

position of the slider icon. The function depth(e) is defined by this partial specification. The definition uses the icon

position and the y argument to give each event a depth relative to the position of the icon. The function depth(e) is

also the argument of the Z operation move-slider. Figure 4 also assumes the inclusion of a theory of real

arithmetic,3 and uses infix notation to generate values.

Inside(e), inside-press(e), inside-release(e), outside-release(e), and inside-click(e) are new event classes

defined by this specification on the basis of the event arguments and icon position. These event classes, which

obviously tell us whether the mouse was inside or outside the icon when it generated the events, will be used in the

vocabulary of another partial specification shown in Figure 5.

Finally, Figure 4 specifies the state component transient-depth, which is needed for display during dragging.

The transient depth of the slider always depends on the y coordinate of the most recent move event. The exact form

__________________
3To be more precise, rational arithmetic.
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of this assertion will be explained in Section 4.

Figure 5 is a finite automaton whose current state tells us whether or not dragging is going on. Its vocabulary

consists of the two Boolean state components dragging and not-dragging, and the four event classes inside-press(e),

inside-release(e), outside-release(e), and inside-click(e) defined in Figure 4.

_ _____________________________________________________________________________________________

not-dragging dragging

inside-press

outside-release inside-release/
move-slider

inside-click/
move-slider

Figure 5. Slider example: a partial specification which is a finite automaton.
_ _____________________________________________________________________________________________

This paper uses two versions of automaton syntax and semantics. The semantics assigned to an automaton

like Figure 5 never constrain when events can occur—all the semantics does is show the effect of event occurrence

on the current state. If a state has no out-transition on a particular event class, then events in that class simply have

no effect on that state. In contrast, automata with heavier state circles (Figures 7 and 11) constrain when events can

occur. If a state has no out-transition on a particular event class, then events in that class cannot occur in that state.

In Figure 5 the usual automaton syntax is augmented slightly with a notation for defining new event classes.

A transition label a/b indicates event classification in the sense that an a event causing the transition is also a b

event. The class of b events is defined as the set of all events causing transitions labeled .../b. This syntax enables

Figure 5 to carry out its other purpose (besides maintaining the dragging state component), which is to define the

operation event type move-slider.

The heart of our specification technique is the definition of Z operations and their arguments by the non-Z

partial specifications (which explains the title of the paper). It addresses the complexity of the correspondence

between input event types and operation event types. Since the definitions often use state components encapsulated

in the non-Z partial specifications, the definitions provide a structured means of propagating foreign state
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information into the Z specification.

The preceding point is important and deserves elaboration. An inside-release event is also a move-slider event

if it occurs in the dragging state, and not otherwise. Because the Z specification has the convenient operation

move-slider (precisely tailored for its needs), it enjoys the benefit of the dragging state information without

containing that state information or needing any representational or semantic compatibility with it. Other partial

specifications also often enjoy these benefits of event classification. For example, the event classes in the

automaton’s vocabulary are defined in terms of, and propagate information about, mouse coordinates and screen

positions. The very restrictive syntax and semantics of an automaton would prevent it from representing or using

such information directly, but the automaton can easily absorb and use relevant information in the form of a finite

set of event classes.

Sometimes operation arguments are assembled from sequences of input events. This complication is

illustrated by the telecommunications example, and we shall show how to handle it in Section 5.

3. Applicability of the technique

3.1. Characteristics of the specified computer system

In the proposed technique, system input takes the form of atomic, sequential events. System output, on the

other hand, takes the form of changes to the state of the environment. A state change in response to an event is

assumed to occur before any subsequent input event.

Event-oriented input and state-oriented output is a sweeping stylistic decision, and rules out any application

that cannot be described conveniently and understandably in this way. A synchronized stimulus/response pattern is

a strong restriction, and rules out any application for which it is not appropriate. However, there are some computer

systems that fit these conventions very well.

Switching systems, for instance, are driven by input signals from devices such as telephones. The primary

function of a switching system is to change the state of audio connections in response to user inputs, and its

secondary function is to maintain the states of indicator lights and sound generators at telephones so that they

provide accurate status information to users.
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The public telecommunications network is distributed world-wide, so synchronous specifications might seem

absurdly oversimplified, but in fact they are frequently used. Telecommunications features are easiest to understand

when described in terms of sequential input events and instantaneous responses. Telecommunications features

usually satisfy these synchronous specifications in the qualified sense that: (1) when no user can observe which of

two events occurred first, the implementation chooses an order nondeterministically and behaves consistently

according to that order, and (2) when input events are occurring too fast for the implementation to keep up, the

implementation queues them without loss and responds to them in the order in which they occurred.

Computer systems equipped with graphical human-computer interfaces might also be appropriate applications

of this technique. These interfaces allow a user to select and manipulate visual representations of objects, typically

with a mouse. Like telecommunications systems, graphical human-computer interfaces make changes to the

environment state (in the latter case a video screen) which then stabilizes so that users can observe and enjoy it.

Also like telecommunications systems, graphical human-computer interfaces usually respond to user-originated

events before subsequent events occur. When the implementation fails to keep up, it queues inputs and responds to

them without loss. In the worst case, users become discouraged by the lack of response and slow down until the

system catches up.

3.2. Manageable complexity

Based on the restrictions in Section 3.1, we can assume that a specification describes the following things: (1)

A state space and an initial state or initial state subspace. (2) A finite set of input event types. These event types

partition the input events, so that each input event is recognizable by the system as belonging to one of these types.

Each input event type can be associated with typed arguments. Each input event type can also have guaranteed

preconditions which constrain when events of that type can occur, or which further constrain what arguments they

can have. Note that guaranteed preconditions are constraints on the environment, not on the computer system. (3)

Event postconditions, specifying the effect of each possible input event on the state. Note that the state of the

specification includes both the state of the specified system and the portion of the environment state changed by the

system.

Often the components of the specification state fall naturally into clusters, where the components in each
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cluster are similar and closely related. The natural clusters of state components might be dissimilar—they might be

very different in their subcomponent structures, their ranges of values, or the style of computation and update that

they support. This is a form of complexity that can be managed by our multiparadigm specification technique. Each

cluster of state components can be represented in, and changed by, the specification language best suited to it. For

our specification technique to be applicable, at least one major cluster of state components must be appropriately

representable in a model-based, state-oriented language such as VDM [Jones 90] or Z [Spivey 92]. For clarity, this

presentation of the technique uses Z specifically.

Since the Z specification will be a part of a bigger whole, choosing its set of operations is an act of invention

performed by the specifiers. The operations should be intuitive and convenient ‘‘update transactions’’ on the Z

state. The second form of complexity that can be managed by our specification technique is a many-to-many

correspondence between input event types (and their arguments) and the operations of the Z specification (and their

arguments).

A conceptual gap between input event types and operations can occur for many reasons. Events of one type,

occurring in different contexts, can correspond to several different operations. Also, users can request the same

operation by means of several different inputs. Input events are often ignored if they occur at the wrong time, some

operations are requested by means of sequences of events, some operation arguments are assembled from sequences

of events, and so on. When several of these factors are present in the same specification, the correspondence

between inputs and operations becomes very difficult to understand.

Both of the examples used in this paper exhibit these forms of manageable complexity. Unsurprisingly, the

state space of a switching system is very complex. The states of individual telephones, including their indicator

lights and sounds, are most easily specified using finite automata. Digit analysis is a parsing problem, and its state is

best represented through the parse trees associated with a grammar. Voice connections among an arbitrary number

of telephones can be successfully represented in Z [Mataga & Zave 94]. Every reason for a conceptual gap between

input event types and operations applies to the correspondence between telephone events and connection operations,

as will be illustrated in Section 5.

Concerning human-computer interfaces, graphical interfaces are notorious for their wide range of aspects and

concerns:
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For the dialogue developer, details can be overwhelming: end-user navigation and sequencing, grammar
and other syntactic constraints, lexical rules for input, appearance of displays (e.g., graphics,
positioning, clearing screen, character-by-character cursor movement, echoes, highlighting, color,
movement of objects), message content and format, device and interaction style dependencies, data
flow, data typing, semantics, conditional and adaptive behavior, scrolling, paging, windowing, and so
on [Hartson & Hix 89].

Such diversity is exactly what multiparadigm specification is intended to handle, and it is difficult to imagine

specifying all these aspects without multiple paradigms.

One of the most valued properties in this application area is dialogue independence:

Dialogue independence is supported by the design-time separation of dialogue from computational
software. This means that an interactive application system is composed of a dialogue component,
through which all communication between the end-user and the system takes place, and a computational
component, the functional processing mechanisms of the application system with which the human
being does not directly interact. These components are kept separate as much as possible during system
design, redesign, and maintenance but are bound together for rapid prototyping and execution [Hartson
& Hix 89].

In the introductory example, we encapsulated the computational component in the Z specification and did not

discuss it further, assuming that the rich state representation facilities of Z would be sufficient for capturing the

subject, substance, and history of the computation. The dialogue component is responsible for translating from user

inputs to convenient operations on the computational component, which is exactly the kind of complexity our

specification technique is intended to manage. In the introductory example, the dialogue component was

encapsulated in the non-Z partial specifications.

4. Formal foundations and consistency analysis

4.1. Conjunction as composition

In a previous paper [Zave & Jackson 93], we presented a framework for composing partial specifications

written in many different languages. This section summarizes the material from the previous paper needed to

explain the specialized technique in this paper; all justification is omitted.

A multiparadigm specification is the composition of a finite set of partial specifications. For the purposes of

understanding the meaning of this composition, and of assigning a semantics to it, a partial specification is

equivalent to an assertion in one-sorted first-order predicate logic with equality. The composition of a set of partial

specifications is equivalent to the conjunction of their equivalent assertions.
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To elaborate the above point, each specification language used has an algorithm for translating specifications

in the language to assertions in first-order logic. These translations are used to answer questions such as: Are these

partial specifications consistent? How do they constrain one another? Conjoined, do they say everything that needs

to be said? The translation may omit some of the meaning of the original, but only if the omitted aspects of the

language’s meaning do not affect the answers to the first two of these questions.

Since the linguistic common denominator is first-order logic, the semantics of specifications is found in model

theory: each specification is satisfied by a set of first-order models. A first-order model consists of a universe of

distinct individuals, a finite set of constant names referring to individuals, and a finite set of named atomic

predicates. Each predicate has a fixed number of arguments; an n-ary predicate can be thought of as a total Boolean

function on the n-fold Cartesian product of the universe with itself.

The vocabulary of a partial specification is the set of atomic predicates and constants found in its equivalent

first-order assertion. The vocabulary of a partial specification is its subject matter—the set of phenomena it is

making an assertion about.

Partial specifications can influence each other directly through shared vocabulary. For example, two partial

specifications might both constrain the same predicate. Or one might constrain it, and the other might examine it for

the purpose of constraining other predicates appropriately.

In addition to making assertions about its vocabulary, a partial specification can also define new predicates in

terms of the predicates and constants of its vocabulary. These defined predicates can appear in the vocabularies of

other partial specifications as if they were model predicates (the specified models are simply being extended by

definition), provided that the overall structure of definitions in the specification is acyclic and rooted in model

predicates.

If one partial specification defines a predicate that another partial specification uses in its vocabulary, then the

two can influence each other. The defining specification is determining the meaning of the terms that the other is

using. The using specification can constrain the defined predicate and thus, indirectly, constrain the predicates in

terms of which it is defined.

4.2. Encoding of specifications in first-order logic
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This section describes how the basic structures of specifications constructed using our technique, as

enumerated at the beginning of Section 3.2, are encoded in first-order logic. This information should make it easy to

understand, when a particular specification language is introduced, how it would be translated into first-order logic.

There are some disjoint primitive types such as event, pause, integer, and real. Since the underlying universe

of individuals is untyped, types translate into unary predicates such as event(e), pause(p), integer(i), and real(r).

Type disjointness translates into assertions such as:

∀ e (event(e) ⇒ ¬ pause(e) ∧ ¬ integer(e) ∧ ¬ real(e) ∧ . . .)

We have assumed that events are atomic and sequential. Clearly, the assumption that a state change in

response to an event always occurs before the next event implies that events are also nondense (their sequence is like

the integers, not like the real numbers). Thus we can postulate a unique pause between each adjacent pair of events

during which the state has changed in response to the first event, cannot change again, and can be observed. These

pauses are formalized as individuals satisfying the predicate pause(p).

There is a ‘‘temporal theory’’ stating that the ordering predicate earlier(t 1 ,t 2 ) establishes a nondense total

order on events and pauses in which events and pauses alternate strictly, starting with a pause and ending (if the

sequence ends) with a pause.4 Several other useful predicates are derived from earlier(t 1 ,t 2 ). begins(e,p) means

that event e begins pause p, i.e., precedes it immediately in the temporal sequence. ends(e,p) means that event e

ends pause p, i.e., succeeds it immediately in the temporal sequence. initial(p) means that p is the initial pause,

having no predecessor in the temporal sequence.

Every state component is a predicate with a pause argument. For example, onhook(t,p) means that the handset

of telephone t is onhook during pause p. For another example, counter-value(n,p) might mean that the value of a

counter during pause p is integer n. The initial state is determined by the predicates true of the initial pause, for

example:

∀ p ∀ t (initial(p) ⇒ onhook(t,p))

Each event class is a set of events characterized by a unary atomic predicate. Each input event type is an event

class. Input event types are special because they partition the set of all events, and because the specified system can

__________________
4Note that a specific earlier predicate encodes a single behavior or trace. But many distinct model predicates named earlier can satisfy whatever
constraints the specification imposes. In other words, each model that satisfies the specification represents one behavior that satisfies the
specification.
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readily distinguish which input event type an event belongs to. If the input event types of a specification are press,

release, click, and move, then their partioning properties are expressed as follows:

∀ e (event(e) ⇒ press(e) ∨ release(e) ∨ click(e) ∨ move(e))

∀ e (press(e) ⇒ ¬ release(e) ∧ ¬ click(e) ∧ ¬ move(e))

. . .

An argument function is represented as a binary predicate. For example, the fact that events in class click

have a real-valued argument x is expressed by the following assertions:

∀ e ∀ r (x(e,r) ⇒ event(e) ∧ real(r))

∀ e (click(e) ⇒ ∃ r x(e,r))

∀ e (∃ r x(e,r) ⇒ ∃ !r x(e,r))

Now we will show how these basic encodings are used in translations of real specifications. The first-order

semantics of the automaton in Figure 5 are suggested by the following sample assertions:

∀ p (pause(p) ⇒ (not-dragging(p) ∨ dragging(p)) ∧ ¬ (not-dragging(p) ∧ dragging(p)))

∀ p (initial(p) ⇒ not-dragging(p))

∀ p ∀ e ∀ q (not-dragging(p) ∧ inside-press(e) ∧ ends(e,p) ∧ begins(e,q) ⇒ dragging(q))

The first assertion says that dragging and not-dragging are mutually exclusive, exhaustive states. The second

assertion says that not-dragging is the initial state. The third assertion says that an inside-press event occuring in the

not-dragging state causes a transition to the dragging state. Other assertions would say that the event classes in the

automaton’s vocabulary are disjoint, and that nothing except for the explicit transitions causes the state to change.

The specification of the transient slider depth in Figure 4 uses the same temporal predicates:

∀ r ∀ p (transient-depth(r,p) ⇔ [initial(p) ∧ r=0] ∨
[ ∃ e (begins(e,p) ∧ move(e) ∧ r=depth(e))] ∨
[ ∃ e ∃ q (begins(e,p) ∧ ends(e,q) ∧ ¬ move(e) ∧ transient-depth(r,q))]

The transient depth of the initial pause is 0. The transient depth immediately after a move event is the depth

argument of that event. For all other events, the transient depth immediately after the event is the same as

immediately before the event. Thus a transient depth is defined for all pauses, whether it is needed or not.

4.3. Translation of Z into first-order logic
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Every Z specification is supposed to be accompanied by an informal narrative that explains how its formal

structures correspond to interesting parts of the real world. Because we are using Z in a particular way, the

following aspects of that narrative are predetermined by our technique: (1) Z operations represent changes in the Z

state over time. (2) The narrative must distinguish ‘‘external’’ operations, representing responses to external stimuli,

from ‘‘internal’’ operations used only to build up external operations. In the remainder of this paper, ‘‘operation’’

always refers to an external operation of the Z specification. (3) The values of some state variables represent the

state of the environment, and thus must be regarded as externally observable. Operations never have output

arguments, because system output is always described in terms of changes to the values of these externally

observable state variables. In the remainder of this paper, ‘‘operation argument’’ always refers to an input argument

of an operation of the Z specification.

Here are instructions for translating a tiny subset of Z into first-order logic, illustrated by the Z specification in

Figure 2: (1) Basic types, both built-in and user-declared, are translated into unary predicates and disjointness

assertions as shown in Section 4.2. (2) An operation (such as move-slider) is an event class, and is translated as

shown in Section 4.2. (3) An argument whose value belongs to a basic type (such as depth) is an argument function

of its operation event class, and is translated as shown in Section 4.2. (4) A global variable whose type is a basic

type is translated into a binary predicate with value and pause arguments. For example, stable-depth(r,p) is true if

and only if r is the value of stable_depth during pause p. There are type and uniqueness constraints:

(∀ r ∀ p (stable-depth(r,p) ⇒ real(r) ∧ pause(p))) ∧ (∀ p (pause(p) ⇒ ∃ !r stable-depth(r,p)))

If the type of the global variable is a power set of a basic type, then the uniqueness constraint is omitted, and

global-variable(v,p) is true if and only if v is a member of the value of global-variable during pause p. If the type of

the global variable is a power set of an n-way Cartesian product of basic types, then the corresponding predicate has

n Z arguments and one pause argument. (5) A state invariant is translated as an assertion quantified over all pauses:

∀ r ∀ p (stable-depth(r,p) ⇒ ≤ (0,r) ∧ ≤ (r,1))

(6) A constraint on an argument is translated using the event-class and argument-function representations:

∀ e ∀ r (move-slider(e) ∧ depth(e,r) ⇒ ≤ (0,r) ∧ ≤ (r,1))

A genuine precondition, expressed in the contrapositive form of a constraint on the state at the time of the event

occurrence, would constrain any pause p for which move-slider(e) ∧ ends(e,p). (7) A postcondition is translated as
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shown in Section 4.2:

∀ e ∀ r ∀ p (move-slider(e) ∧ depth(e,r) ∧ begins(e,p) ⇒ stable-depth(r,p))

(8) The specifications of other operations will need to include ‘‘frame’’ assertions that they do not change the slider

position, for example:

∀ e ∀ r ∀ p ∀ q (other-operation(e) ∧ ends(e,p) ∧ begins(e,q) ∧ stable-depth(r,p) ⇒ stable-depth(r,q))

(9) The translation of an initial condition invokes the initial pause:

∀ p (initial(p) ⇒ stable-depth(0,p))

Figure 2 is so simple that the preceding instructions cover all the Z syntax found in it. It would be impossible

(as well as undesirable) to translate all of Z into first-order logic [Zave & Jackson 93]. The situation that arises

when portions of the Z specification are untranslatable is illustrated by the telecommunications example. We

explain how to handle this complication in Sections 5 and 6.

4.4. Consistency analysis

Finally, it is desirable to establish that the partial specifications are consistent with one another. Partial

specifications can constrain each other in two ways: shared state components, and definitions of event classes and

argument functions.

There is no general method for establishing inter-specification consistency in the presence of shared state

components. The best we can do is enforce the structural rule that each state component is changed by only one

partial specification, and rely on this structure to organize our reasoning. Note that the use of multiparadigm

specification does not make this problem substantially easier or harder. In reasoning about a multiparadigm

specification, we may have to work a little harder to translate language-dependent state representations into common

representations. In reasoning about a single-paradigm specification, however, we may have to work harder to ensure

that the intended module boundaries are respected.

In constrast, there is a method for determining that constraint through definition introduces no inconsistencies.

The goal is achievable because this specification mechanism is highly structured. Given that a specification follows

the structural rules, there are very few ways in which its definitions could introduce inconsistencies.

The result is a short list of proof obligations. Each proof obligation ensures that the specification adheres to
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some structural rule, ensures that the partial specifications are logically consistent, or both. Some of the proof

obligations are local to individual partial specifications, in which case we do not examine them further. Other proof

obligations have global implications, in which case a proof technique will be provided.

Here is a summary of the organization of definitions in this technique, together with an analysis of the

resulting structural and consistency obligations:

(1) Non-Z partial specifications define predicates representing event classes and argument functions; these

predicates are used in the vocabularies of other partial specifications, particularly the Z specification. So that

definitions retain their integrity, the global graph of definitions and uses must be acyclic and must be rooted in

model predicates. This simple syntactic check is trivial for the slider example; it is illustrated in Section 6.1 for the

telecommunications example.

(2) We use several specification languages with event classes in their vocabularies (finite automata and Z so

far, with more to come). In the semantics of all of these languages, there is an assertion that the event classes in the

vocabulary of a particular partial specification are disjoint. If the event classes in the vocabulary of a particular

partial specification are not disjoint, then there is a logical inconsistency.

If the event vocabulary of a partial specification consists solely of input event types, then disjointness is

guaranteed by the original assumptions in Section 3. If the event vocabulary contains defined event classes, on the

other hand, then disjointness is an important proof obligation.

In the slider example, the vocabulary event classes of Figure 5 can easily be shown disjoint by examining their

definitions in Figure 4. The Z specification has only one vocabulary event class, so disjointness is trivial. In Section

6.1 we shall show how to discharge the nontrivial disjointness obligations of the telecommunications example.

(3) Non-Z partial specifications define predicates representing new argument functions on particular event

classes. Each such definition must be valid in the sense that the predicate represents a function whose domain

includes the event class and whose range is contained in the argument type.

In the slider example, Figure 4 defines the real-valued argument function depth used in the Z specification. It

is easy to see from Figure 4 that depth is a function whose domain is event.

(4) A partial specification can assert preconditions on event classes in its vocabulary. If the event class is an

input event type, then this is a guaranteed precondition; it is a constraint on the environment of the system, as
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explained in Section 3.2. If the event class is defined, on the other hand, then our specification technique requires

that it be regarded as an expected precondition. The partial specification expects the precondition to be true, and the

specification cannot be trusted (it is logically inconsistent, undefined, or has an unanticipated meaning) if the

precondition is not true. Thus all the expected preconditions on a defined event class and its argument functions

must be guaranteed by their definitions. In other words, the event class must be defined in such a way that the

expectations of all the partial specifications that use it are met. Otherwise the specification is dangerously flawed, if

not outright inconsistent.

Note that this is a specialization of the general framework presented in Section 4.1. The general framework

allows a partial specification to constrain defined predicates in its vocabulary. For simplicity of reasoning, the

specification technique of this paper does not allow it.

The slider example has the explicit expected precondition:

∀ e ∀ r (move-slider(e) ∧ depth(e,r) ⇒ ≤ (0,r) ∧ ≤ (r,1))

which could also have been computed from the state invariant in Figure 2. We can see from Figure 5 that a move-

slider event must also be an inside-release or inside-click event. We can see from Figure 4 that an inside-release or

inside-click event must be an inside event, the definition of which guarantees that its depth is between 0 and 1. This

ad hoc proof style is inadequate for complex specifications; in Section 6.2 we shall provide a more systematic proof

technique for handling the precondition obligations in the telecommunications example.

In all of Section 4 we have stressed the translation of partial specifications into first-order logic, because it is

needed for detailed understanding of how partial specifications work together. Despite this tedious translation, the

reader should remember that the actual specification of the slider example is completely contained in Figures 2, 4,

and 5. A reader already familiar with our technique would not need to refer to the first-order translation in order to

understand the example.

This issue becomes more serious in the telecommunications example, where the size and nature of the

specification make full translations into first-order logic impossible. In explaining that example we shall

demonstrate that little translation is usually needed or appropriate. Analysis and exploitation of the organization of

the specification can replace most global, low-level reasoning with proof obligations on individual partial

specifications. These local proof obligations can be discharged using higher-level, language-dependent technology.
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5. Construction of a specification of a switching system

This section presents the step-by-step construction, using the new technique, of a specification of a switching

system. The system connects telephones like the one shown in Figure 6. The example is a simplified version of a

specification of a real AT&T switching system [Mataga & Zave 93, Zave & Mataga 93a, Zave & Mataga 93b]

offering ordinary telephone service and twelve additional features.5

_ _____________________________________________________________________________________________
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Figure 6. A modern telephone has at least these hardware features.
_ _____________________________________________________________________________________________

As pictured in Figure 6, a VT is part of a telephone, and is a hardware resource supporting time-multiplexing

of calls at that telephone. Each VT is a locus of control for making and answering calls. It includes red and green

status lights and a selection button. A telephone can participate in as many calls simultaneously as it has VTs.

__________________
5Shared Directory Numbers, Multiple Directory Numbers, Conference, Transfer, Drop, Hold, Call Forwarding All, Call Forwarding No Answer,
Call Forwarding Busy, Call Pickup, Speed Calling, and Privacy.
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5.1. Input event types and their argument functions

The specification uses eight global basic types, shown in Table 1. They are characterized by the unary

predicates in Table 1, and this table can be viewed as a shorthand for the assertion that the characterized sets are

disjoint. Whenever we use first-order logic to show the meaning of some partial specification, rather than clutter the

expressions with explicit type constraints, we shall use the mnemonic argument names in Table 1 to indicate the

types of all predicate arguments.

_ ______________________________________________________________________________________________________________________________________________
unary predicate mnemonic argument explanation_______________________________________________________________________
telephone t see Figure 6
VT v virtual telephone, see Figure 6
DN n directory number
SC-code c speed-calling code
status u one of the individuals ‘on’ or ‘off’
event e see Temporal Theory
pause p see Temporal Theory
episode s see Temporal Theory________________________________________________________________________ _______________________________________________________________________ 
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Table 1

A DN is a global address that can be entered from a dialpad. Each VT has a DN assigned to it (shown in

abbreviated four-digit form in Figure 6). An SC code is a mechanism for quick entry of frequently used DNs. An

SC code can usually be entered by pressing a dedicated button or by dialing two digits followed by ‘‘#’’, although in

this simplified treatment the dedicated buttons are not used. Each telephone is associated with a user-programmable

mapping for translating from SC codes to DNs.

Table 2 shows the input event types. All input events are produced by human manipulations of telephones.

There are two input argument functions. source-tel(e,t) means that the source of event e is telephone t; its

domain is the class of all events. selected-VT(e,v) means that event e is selecting VT v; its domain is the event class

select. The fact that selected VTs are treated as arguments (rather than encoded in event types) ensures that the

specification will be valid for an entire product line of telephones, some of which may have more VTs than shown in

Figure 6.

5.2. State components

The second step is to identify state components and separate them into groups, each of which will be updated
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_ ________________________________________________________________ ______________________________________________________________
input event type explanation: e is an event in which . . ._ ______________________________________________________________
go-offhook(e) the handset of a telephone goes offhook
go-onhook(e) the handset of a telephone goes onhook
press-speaker(e) the speakerphone button on a telephone is pressed
press-conf(e) the conference button on a telephone is pressed
press-trans(e) the transfer button on a telephone is pressed
press-drop(e) the drop button on a telephone is pressed
press-hold(e) the hold button on a telephone is pressed
select(e) the selection button of a VT is pressed
dial-0(e) ‘‘0’’ is dialed
dial-1(e) ‘‘1’’ is dialed
. . . . . .
dial-9(e) ‘‘9’’ is dialed
dial-*(e) ‘‘*’’ is dialed
dial-#(e) ‘‘#’’ is dialed_ _______________________________________________________________ _______________________________________________________________ 


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Table 2

by a different partial specification. The components of a group should be closely related, so that it makes sense to

specify them together. The components of a group should also be similar enough to be represented conveniently

using the same language.

Formalization and decomposition of state components are not completely independent activities, because the

exact choice of predicates depends somewhat on the language used to represent them. Consider, for example, the

switchhook state of a telephone. We could formalize it as the predicate offhook(p), and use its negation to indicate

the onhook state. We could use two predicates offhook(p) and onhook(p) such that exactly one of them is true of

each pause p. Or we could use a predicate switchhook-state(u,p), true only when u is a status individual. If we

choose to represent the switchhook state using a finite automaton, then the second alternative is the most convenient,

because it fits best with the semantics of finite automata.

The state components relevant to this example are listed in Table 3. The state decomposition, explained in the

remainder of this section, is indicated by the horizontal lines separating groups of predicates in Table 3.

The first group of state components will be represented using a finite automaton with state predicates

including onhook(p) and offhook(p). Obviously, the automaton is a description of one individual telephone. To

construct the final specification, this description must be applied to each telephone separately. Assertions seemingly

about a state predicate such as onhook(p) must really be assertions about the predicate onhook(t,p). In the

application of the automaton to telephone t, events of type go-offhook are really in the vocabulary of the description

only if their source-tel argument is t.
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__________________________________________________________________________________ ________________________________________________________________________________
state component explanation_ ________________________________________________________________________________
onhook(t,p) the handset of telephone t is onhook during pause p
offhook(t,p) the handset of telephone t is offhook during pause p
no-audio(t,p) telephone t has no signal on the audio channel during pause p
in-handset(t,p) telephone t has audio through the handset during pause p
in-speaker(t,p) telephone t has audio through the speakerphone during pause p;

the green speakerphone light on telephone t is lit during pause p_ ________________________________________________________________________________
conferencing(t,p) telephone t is in a conferencing protocol during pause p
transfering(t,p) telephone t is in a transfering protocol during pause p
neither(t,p) telephone t is neither conferencing nor transfering during pause p
saved-VT(v,t,p) VT v is saved for a protocol at telephone t during pause p_ ________________________________________________________________________________
selected(v,t,p) VT v controls the shared resources of telephone t, such as

the audio channel and dialpad, during pause p;
the red selection light on VT v is lit during pause p_ ________________________________________________________________________________

idle(v,p) VT v is idle during pause p
dialing(v,p) VT v is being used for dialing during pause p;

the green light on VT v is lit during pause p
talking(v,p) VT v is being used for talking during pause p;

the green light on VT v is lit during pause p
ringing(v,p) VT v is ringing during pause p;

the green light on VT v is flashing slowly during pause p
reserved(v,p) VT v is reserved for a call during pause p;

the green light on VT v is lit during pause p
held(v,p) VT v is held during pause p;

the green light on VT v is flashing quickly during pause p
configuration physical attachments, DN assignments, etc.
connections all audio connections among VTs
user-programmable data includes telephones’ mappings from SC codes to DNs_ _________________________________________________________________________________________________________________________________________________________________ 
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Table 3

The semantics of application of a partial specification to all telephones can be formalized awkwardly in first-

order logic or elegantly in Higher Order Logic [Gordon & Melham 93]. As this modularity mechanism is rather far

from the focus of the paper, it is left informal here.

The second group of state components is necessary because performing a conference or transfer takes several

button pushes. Consider, for example, a conference that joins the calls being engaged in by VTs v 1 and v 2 at the

same telephone. Assume that v 1 is selected and talking, which means that v 2 must be held. A conference can be

formed in two steps: (1) Press the conference button. The telephone is now in the conferencing state, and the saved-

VT is v 1. (2) Press the selection button of v 2.

The second group of state components is a little more complex than the first, because although the first three

components are like the states of an automaton, the fourth component is like a VT-valued variable. So we shall use

a Statechart, whose richer semantics includes variables. Like the automaton, the Statechart will be applied
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separately to each telephone.

The selected state component makes a third group all by itself. It does not lend itself to a structured

representation such as an automaton or Statechart, and will be constrained using ordinary predicate logic.

The state components in the fourth and final group will be updated by the Z specification. Many of these state

components are affected by input events from all telephones, rather than reflecting the status of a single telephone

separately. The size of many of these state components is proportional to the number of telephones, which is not

limited in this specification.

Note the six predicates representing VT states. At any time, each VT is in exactly one of these states. It is

also convenient to define and use some aggregate VT states. A VT is busy if it is not idle. A VT is opened if it is

dialing or talking, and closed otherwise. The opened and closed states of a VT are analogous to the offhook and

onhook states, respectively, of an old-fashioned nonmultiplexing telephone.

The full Z specification is not reproduced in this paper—we merely describe relevant aspects of it. The last

three entries in Table 3 are among the aspects of the Z specification that are not discussed. Each of these entries

stands for a number of state components. The representation of audio connections among VTs is especially rich, as

nine different features create and destroy various forms of connection.

5.3. Partial specifications

The third step is to write the partial specifications representing the state components, following the

decomposition in Section 5.2. If input event types do not constitute a convenient vocabulary for a partial

specification, then we can postulate and use whatever event classes we like, provided that they can be defined by

other partial specifications.

Figure 7 represents the first group of state components. Figure 7 has a slightly extended semantics for state

components in that the states correspond to expressions rather than single predicates. For example, the initial state

in Figure 7 is the expression onhook(p) ∧ no-audio(p) on pauses p.

Recall from Section 2 that the heavy state circles indicate event-constraining semantics. The fact that some

states have no out-transitions on go-offhook means that go-offhook events cannot occur in those states. As explained

in Sections 3.2 and 4.4, these constraints on input event classes are guaranteed preconditions, expressing our
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knowledge of the behavior of the environment.

_ _____________________________________________________________________________________________

onhook,
no-audio
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with-target
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speaker-with-target
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speaker-with-target

select

select

select

speaker-without-target

Figure 7. A finite automaton representing the first group of state components. Multiple labels on an arrow represent
independent transition rules with the same source and destination states.
_ _____________________________________________________________________________________________

Figure 7 has several to-be-defined event classes in its vocabulary. In general, the ‘‘target’’ of an event is the

VT to which it is relevant; If the event is not a select, then its target is the VT selected at the source telephone at the

time of the event, if any (see Section 5.4 for further details). So a speaker-with-target event is a press-speaker event

occurring when some VT at its telephone is selected, and a speaker-without-target event is a press-speaker event

occurring when no VT at its telephone is selected.

Figure 8 is a Statechart representing the second group of state components. The semantics of Statecharts are

based on the semantics of finite automata, with extensions to accommodate nested states and more complex

transitions. Like Figure 5, Statecharts do not constrain the occurrences of events [Harel 87]. Statecharts can have

local variables such as saved-VT. In predicate logic, there is a predicate saved-VT(v,p), meaning that the value of the

variable saved-VT during pause p is v.6

__________________
6Recall that Figure 8 will be applied separately to each telephone. The application mechanism will supply the telephone argument of the state
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_ _____________________________________________________________________________________________

neither

conferencing transfering

conf-when-talking(target-VT);
saved-VT := target-VT

trans-when-talking(target-VT);
saved-VT := target-VT

select-when-active-and-held(target-VT)

select-when-active-and-held(target-VT)

active

inactive

go-inactive go-active

Figure 8. A Statechart representing the second group of state components.
_ _____________________________________________________________________________________________

We have added one small feature to Statecharts: the events in its vocabulary can have arguments. The

argument of an event class, if any, is named in parentheses just after the event-class name labeling a transition.

After a conf-when-talking event, the variable saved-VT has the value of the target-VT argument of the event.

All of the event classes used in Figure 8 need to be defined. go-inactive and go-active events toggle a

telephone into and out of an ‘‘inactive’’ state, which is really synonymous with no-audio in Figure 7. The other

event classes will be defined based on the input event types of which they are subsets (press-conf/trans, etc.), the

states of their telephones at the time they occur (-when-active) and the states of their target VTs at the time they

occur (-when-talking, etc.).

Figure 9 contains logic constraining the value of the state component selected(v,t,p). Like Figures 7 and 8,

Figure 9 is applied to each telephone separately. Thus the t (telephone) argument is implicit in Figure 9, and its

__________________
component saved-VT(v,t,p), as in Table 3.
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quantification over VTs is implicitly restricted to the VTs of the telephone it is describing.

_ _____________________________________________________________________________________________
∀ p ( (¬ no-audio(p) ∧ ∃ v opened(v,p)) ⇒ (∃ !v selected(v,p) ∧ ∀ v (selected(v,p) ⇒ opened(v,p))) )

∀ p ( (¬ no-audio(p) ∧ ¬ ∃ v opened(v,p)) ⇒ ¬ ∃ v selected(v,p) )

∀ p ( (no-audio(p) ∧ ∃ v busy(v,p)) ⇒ (∃ !v selected(v,p) ∧ ∀ v (selected(v,p) ⇒ busy(v,p))) )

∀ p ( (no-audio(p) ∧ ¬ ∃ v busy(v,p)) ⇒ ∃ !v selected(v,p) )

Figure 9. Logic representing the state component of the third group.
_ _____________________________________________________________________________________________

Figure 9 specifies four separate cases. If there is an audio setting (the telephone is active) and a VT is opened,

then exactly one opened VT is selected. If there is an audio setting and no VT is opened, then no VT is selected. If

there is no audio setting (the telephone is inactive) and a VT is busy, then exactly one busy VT is selected. If there

is no audio setting and no VT is busy, then any one VT is selected.

Finally we come to the partial specification in Z, representing the fourth group of state components. This is a

substantial specification in its own right [Mataga & Zave 94], employing a large percentage of the rich Z syntax. It

would be absurdly difficult to explain all of it in terms of first-order logic. How can we understand and reason about

its composition with the other partial specifications?

Once again, we rely on the restricted overall organization of the specification. The only portions of the Z

specification that influence or are influenced by other partial specifications are the operations, operation arguments,

expected preconditions (these three are given in Table 4), and the shared state components. Operations are always

translatable. If the operation arguments have values belonging to basic types, and if the expected preconditions and

shared state components fall within the tiny translatable subset of Z, then the semantic problem is solved.

In this example all of the operation arguments have values belonging to Z basic types (the Z basic type dest is

the union of the global basic types DN and SC-code). However, some shared state components and state

components used in expected preconditions cannot be represented within the translatable subset of Z. For instance,

expected preconditions often refer to the state of the target VT. VT states are buried deep within a complex,

hierarchical state representation in Z.

The solution to this problem is redundancy. The complex, hierarchical structure is the primary representation

of VT states, and is the representation updated by operations. In addition, the Z specification contains a simple
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_ _______________________________________________________________________________________ ______________________________________________________________________________________
operation typed arguments expected preconditions_ ______________________________________________________________________________________
Close target_VT?:VT target_VT? ∈ Opened_ ______________________________________________________________________________________

target_VT? ∈ Held
target_VT?:VT

target_VT? ≠ waiting_VT?
Complete_Conf ∃ t:telephone • (target_VT?,t) ∈ VT_attached

waiting_VT?:VT ∧ (waiting_VT?,t) ∈ VT_attached_ ______________________________________________________________________________________
target_VT? ∈ Held

target_VT?:VT
target_VT? ≠ waiting_VT?

Complete_Trans ∃ t:telephone • (target_VT?,t) ∈ VT_attached
waiting_VT?:VT ∧ (waiting_VT?,t) ∈ VT_attached_ ______________________________________________________________________________________

Open target_VT?:VT target_VT? ∈ Closed_ ______________________________________________________________________________________
Hold target_VT?:VT target_VT? ∈ Talking_ ______________________________________________________________________________________
Drop_When_Talking target_VT?:VT target_VT? ∈ Talking_ ______________________________________________________________________________________
Begin_Dialtone target_VT?:VT target_VT? ∈ Dialing_ ______________________________________________________________________________________
End_Dialtone target_VT?:VT target_VT? ∈ Dialing_ ______________________________________________________________________________________

target_VT?:VT
Complete_Dialing

target_dest?:dest
target_VT? ∈ Dialing

_ ______________________________________________________________________________________
Pick_Up target_VT?:VT target_VT? ∈ Dialing_ ______________________________________________________________________________________

target_VT?:VT
Set_CF_Status

target_status?:status
target_VT? ∈ Dialing

_ ______________________________________________________________________________________
target_VT?:VT

Set_CF_Dest
target_dest?:dest

target_VT? ∈ Dialing
_ ______________________________________________________________________________________

target_VT?:VT
target_DN?:dest target_VT? ∈ Dialing Set_SC_DN
target_SC_code?:dest_ _______________________________________________________________________________________ ______________________________________________________________________________________ 
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Table 4

representation of VT states:

Idle: P VT
Dialing: P VT
Talking: P VT
. . .

Z invariants relate this redundant representation to the primary representation. The simple representation falls

within the translatable subset of Z, so its relation to the other partial specifications can be understood and all of the

expected preconditions can be translated into first-order logic.

The ability to state invariants without specifying explicitly how their truth is preserved is the feature that

makes it easy to compose Z with other languages, and is a reason why Z is better for multiparadigm specification

than other similar specification languages [JacksonD 95].

5.4. Definitions of event classes
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Figure 10 shows the overall organization of event classes in the example. Figure 10 uses the same notation as

Figure 3 except that argument functions are not shown, and the operation event types are shown leaving the figure

on the right.

_ _____________________________________________________________________________________________
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nitions

2

open

hold

Figure
12
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complete-trans

preop-hold
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Figure
11
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plus
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onhook-
with-target
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with-target

speaker-
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drop

press-
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press-
speaker

press-
trans

close

activating-open

conf-
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trans-
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hold-when-talking

drop-when-talking

Figures
13-15

begin-dialtone

end-dialtone

complete-dialing

pick-up

set-CF-status

set-CF-dest

set-SC-DN

dial-...
when-dialing

drop-
when-dialing

go-inactive

go-active

Figure 10. The overall organization of event classes in the switching example.
_ _____________________________________________________________________________________________

Figure 11 is a new version of Figure 7 which uses the definition syntax for automata first presented in Figure
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5. As is often the case in software development methods, a little backtracking was required to get Figure 11. Figure

7 uses the input event type go-onhook, but in the offhook ∧ in-handset state this event type does not encode enough

information to discriminate between events that belong to the class close and events that do not. For this reason, it is

necessary to revise the transition labels, replacing input event type go-onhook by the defined event classes onhook-

without-target and onhook-with-target.

_ _____________________________________________________________________________________________

onhook,
no-audio

offhook,
in-handset

onhook,
in-speaker

offhook,
in-speaker

go-offhook

onhook-without-target

onhook-with-target

go-offhook/
activating-open,

go-active

select/
activating-open, go-active

speaker-with-target/
activating-open, go-active

onhook-
without-target/

go-inactive

onhook-
with-target/

close, go-inactive

speaker-
without-target/

go-inactive

speaker-
with-target/

close, go-inactive

speaker-without-target

speaker-with-target

speaker-without-target

speaker-with-target

speaker-without-target

select/select-when-active select/select-when-active

select/select-when-active

Figure 11. A revised finite automaton representing the first group of state components and defining new event
classes.
_ _____________________________________________________________________________________________

Figure 9 must be augmented with the definition of a new argument function target-VT and the definitions of

several new event classes based on it. The target-VT argument of an event is the VT to which it is relevant. If the

event is a select, then its target is its selected-VT argument. Otherwise, its target is the VT selected at the source

telephone at the time of the event (if any). In the style of Figure 9 (in which references to distinct telephones are all

implicit), the definition of target-VT is:

target-VT(e,v) =∆ (select(e) ∧ selected-VT(e,v)) ∨
(event(e) ∧ ¬ select(e) ∧ ∃ p (ends(e,p) ∧ selected(v,p)))



30

We shall give only a representative sample of the definitions of event classes in this partial specification, as they are

all similar:

onhook-without-target(e) =∆ go-onhook(e) ∧ ¬ ∃ v target-VT(e,v)

onhook-with-target(e) =∆ go-onhook(e) ∧ ∃ v target-VT(e,v)

conf-when-talking(e) =∆ press-conf(e) ∧ ∃ v ∃ p (target(e,v) ∧ ends(e,p) ∧ talking(v,p))

Note that this partial specification uses VT states such as talking. VT states are shared with the Z

specification (which constrains them). We prefer to minimize shared state components, but in this case sharing is

necessary. Because the structure of definitions must be acyclic, definitions can only propagate state information

(and constraint based on state information) from left to right in Figure 10. Since the Z specification lies, implicitly,

on the extreme right of Figure 10, shared state information is the only way that the Z specification can constrain this

partial specification.

The box labeled Definitions 1 in Figure 10 is a new partial specification containing no assertions and two

definitions of new event classes. Here is the complete contents of Definitions 1:

select-when-active-and-held(e) =∆ select-when-active(e) ∧ ∃ v ∃ p (target(e,v) ∧ ends(e,p) ∧ held(v,p))

select-when-active-and-free(e) =∆ select-when-active(e) ∧ ∃ v ∃ p (target(e,v) ∧ ends(e,p) ∧ ¬ held(v,p))

Figure 12 is a new version of Figure 8, written in a Statechart language extended for defining event classes

and argument functions. The general form of a transition label is now:

vocabulary-event-class(vocabulary-argument-function)
[enabling condition on arguments and local variables]/

defined-event-class(defined-argument-function := value);
update to local variables

where all parts are optional except the vocabulary-event-class. New event classes are defined using the a/b notation,

exactly as in finite automata. A new argument function waiting-VT is defined by giving its value on relevant events

(its value in all other cases is unconstrained).

Figure 12, and the example of forming a conference given in Section 5.2, are deceptively simple. Conferences

and transfers are complex and prone to implementation errors, because so many different events can be interleaved

with the steps of conference or transfer formation. But the power of event classes in filtering out irrelevant events,

and the power of Statecharts in expressing complex event/state relationships, result in a simple and highly structured

description.
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_ _____________________________________________________________________________________________

neither

conferencing transfering

conf-when-talking(target-VT)/
preop-hold;

saved-VT := target-VT

trans-when-talking(target-VT)/
preop-hold;

saved-VT := target-VT

active

inactive

go-inactive go-active

select-when-active-and-held(target-VT)
[target-VT = saved-VT]/

canceling-free

select-when-active-and-held(target-VT)
[target-VT = saved-VT]/

canceling-free

select-when-active-and-held(target-VT)
[target-VT ≠ saved-VT]/

complete-conf(waiting-VT := saved-VT)

select-when-active-and-held(target-VT)
[target-VT ≠ saved-VT]/

complete-trans(waiting-VT := saved-VT)

select-when-active-and-held/
normal-select

Figure 12. A revised Statechart representing the second group of state components and defining new event classes
and an argument function.
_ _____________________________________________________________________________________________

The box labeled Definitions 2 in Figure 10 is a new partial specification containing no assertions and two

definitions of new event classes. Here is the complete contents of Definitions 2:

hold(e) =∆ preop-hold(e) ∨ hold-when-talking(e)

open(e) =∆ (activating-open(e) ∨ canceling-free(e) ∨ normal-select(e) ∨ select-when-active-and-free(e))
∧ ∃ v ∃ p (target(e,v) ∧ ends(e,p) ∧ closed(v,p))

Clearly the main purpose of these definitions is to collect related event classes into single operation event classes.

Looking at Figure 10, we see seven event classes left to define, all based on what happens during dialing. The

definitions of these event classes rely on parsing of event sequences, as will the definitions of some argument

functions in Section 5.5. The need for this type of specification was missing in the simple example presented in

Section 2. It necessitates the use of a grammar for specification of parsing, and the use of a grammar necessitates an

extension to the temporal theory.

An episode is a distinct, identifiable set of events. Each episode satisfies the predicate episode(s). The
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predicate episode-member(e,s) means that event e belongs to episode s. (Note that the members of each episode are

a subsequence of the whole event sequence, are not necessarily contiguous, and are ordered totally by

earlier(m 1 ,m 2 ).) subepisode(s 1 ,s 2 ) means that episode s 1 is contained in episode s 2, i.e., every event that is a

member of s 1 is also a member of s 2.

A dialing episode is the set of dial-... and press-drop events occurring at a telephone while a single VT in the

dialing state is continuously selected. A dialing episode is also a sequence, because its events are ordered by

earlier(m1 ,m 2). Figures 13, 14, and 15 are Jackson diagrams [Jackson 75]. Together they form a new partial

specification that provides a grammar for a dialing episode. This partial specification is applied to each dialing

episode separately, in the same way that Figures 9, 11, and 12 are applied to each telephone separately.

Although the language of these figures is rich, it is formally equivalent (not counting the large circles, which

will be ignored for the moment) to a regular grammar with start symbol dialing-episode. We shall first explain the

syntax of these diagrams and their semantics as a grammar, and then show how the large circles are used to define

new event classes.

Each parent-and-children structure in the diagrams is analogous to a production in a textual grammar.

Terminal nodes are labeled according to the event classes in the vocabulary of this partial specification, except that

the suffix -when-dialing has been dropped. dial-... is a shorthand for a choice among any of the dial- events, dial-

digit is a shorthand for a choice among any of the dial- events in which a digit is dialed, and dial-(2...4) is a

shorthand for a choice among dialing digits 2, 3, or 4.

Any tree node that is not a terminal of the grammar, as presented above, is a nonterminal of the grammar. A

nonterminal node that is a leaf in one diagram is always a parent in another diagram, where its children show how it

can be expanded.

‘‘Annotations’’ are found in the upper right corners of tree nodes. If the children of a parent have no

annotations, then the parent sequence is the concatenation, left-to-right, of the child sequences. If the children of a

parent have small circles for annotations, then the parent sequence consists of any one of the child sequences. If the

child of a parent has a ‘‘*’’ annotation, then the parent sequence consists of zero or more repetitions of the child

sequence. If the child of a parent has a ‘‘!’’ annotation, then the parent sequence consists of any proper, nonempty

prefix of the child sequence. If the child of a parent has an integer n annotation, then the parent sequence consists of
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Figure 13. A Jackson diagram specifying a grammar for each dialing episode. Figures 14 and 15 complete the
grammar.
_ _____________________________________________________________________________________________

exactly n repetitions of the child sequence. A tree node labeled with a dash represents the empty sequence.

Figure 13 also uses the posit/admit technique [Jackson 75] for error handling. In the expansion of complete-

dialing-entry, an erroneous-entry is a minimal-length sequence that cannot be parsed as a correct-entry.

Definition of new event classes is accomplished through an extension to regular expressions inspired by
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Kaleidoscope [Zave & JacksonD 89]. When a large circle is attached to the left side of a node, the first event parsed

within the node receives the classification labeling the circle. When a large circle is attached to the right side of a

node, the last event parsed within the node receives the classification labeling the circle. Note that when circles are

attached high in the tree, they may cover several alternatives with one symbol.

A new event class such as complete-dialing is defined as the set of all events classified as complete-dialing

events by the above mechanism. Thus the partial specification in Figures 13 through 15 completes the definition of

all new event classes.

_ _____________________________________________________________________________________________
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Figure 14. Continues the grammar.
_ _____________________________________________________________________________________________

When a dialing episode begins, the telephone user is always hearing a dialtone. The end-dialtone and begin-

dialtone operations stop and restart it as necessary. After one digit has been dialed there is no way to know if it is

the beginning of a multievent-nonfinal-entry, multievent-final-entry, erroneous-entry, or incomplete-entry (see

Figure 13). The fact that the parse requires lookahead does not matter, however, because event-class definition does

not require lookahead—the event belongs to end-dialtone no matter which of the four entries it initiates.
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Figure 15. Completes the grammar.
_ _____________________________________________________________________________________________

Notice the specification of setup command in Figure 15. During two of the three setup commands, the system

provides feedback to the user by giving a new dialtone which is withdrawn as soon as the user begins to enter

additional digits. This situation is interesting because a single event is both an end-dialtone operation and a part of

an episode that will serve as an argument to a set-SC-DN or set-CF-dest operation (see Section 5.5). It is this

intertwining of ‘‘control’’ and ‘‘data’’ that makes many user interfaces difficult to understand and specify, but our

notations represent it with ease.

5.5. Definitions of argument functions

The argument functions target-VT and waiting-VT have already been defined in the course of doing other

tasks. We still need definitions of the four argument functions target-dest, target-status, target-DN, and target-SC-

code (see Table 4). These operation arguments are determined by telephone users during dialing episodes. Because

we have used a grammar to describe dialing episodes, and because grammars can carry some extra semantics that



36

has not been presented yet, the remaining argument functions can be defined with very little additional work.

Recall that an episode is an individual, and that it is associated (through the predicate episode-member(e,s))

with a set of events. A grammar can define new episode classes as well as new event classes. Consider a grammar

with nonterminal CF status command (see Figure 15). It automatically (as part of its built-in semantics) defines a

predicate CF-status-command(s) true if and only if s is an episode whose member events are parsed exactly and

exhaustively under the nonterminal CF status command. In addition, if s is a CF status command episode and e is

its final event (is classified as belonging to event class set-CF-status), then the built-in predicate operation-

episode(e,s) holds.

Using this semantics, the argument function target-status(e,u) is defined as follows. The definition is written

using Horn clauses, regarded as a more readable notation for a restricted subset of first-order predicate logic.

status_of_cf_command(S,‘off’) :- turn_cf_off(S).
status_of_cf_command(S,‘on’) :- turn_cf_on(S).

target_status(E,U) :- set_cf_status(E), operation_episode(E,S), status_of_cf_command(S,U).

Note that Figure 15 classifies episodes of type CF status command as either turn CF off or turn CFA on. In other

words, it defines the episode predicates turn-CF-on(s) and turn-CF-off(s) used on the right of the first two Horn

clauses. These in turn are used to define the predicate status-of-CF-command(s,u), relating episodes and statuses.

target-status(e,u) is defined by a chain of unification relating the set-CF-status event to its episode, and its episode

to the status it encodes.

We shall now show how to solve the slightly harder problem of specifying the target-SC-code argument of the

set-SC-DN operation. No additional concepts or techniques are needed to define the remaining two argument

functions.

A DN or SC code is a unique individual, so two SC codes c 1 and c 2 are the same if and only if c 1 =c 2.

However, as we know, DNs and SC codes also have spellings in terms of the digits and symbols on a dialpad. The

left side of Figure 16 shows the spelling of an SC code in terms of individuals and predicates in the

telecommunications domain. The constraints on SC-code spellings (each spelling has three symbols, distinct SC

codes have distinct spellings, etc.) are in a simple partial specification not given here.

In the course of dialing a set-SC-DN command, the user enters a dialed-SC-code which is, of course, an

episode. The desired argument to the set-SC-DN operation is an SC code. So the new obstacle here is determining
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Figure 16. Formal representation of an SC code and a dialed-SC-code episode. A circle is an individual. A label
inside a circle is a unary predicate satisfied by the individual. Each arrow is labeled by a binary predicate, and
indicates that the predicate is true with the origin individual as the first argument and the destination individual as
the second argument.
_ _____________________________________________________________________________________________

which unique SC-code individual has the spelling given by the events of the dialed-SC-code episode.

Fortunately this is easy, for reasons shown graphically in Figure 16. Episodes and SC codes are both

sequences with isomorphic representations in terms of individuals and predicates. This makes a predicate match-

as-SC-codes(s,c), true only if c is an SC code and s is an episode with the same spelling, easy to obtain (we re-used a

predicate defined in a standard library concerning sequences).

Now the definition of target-SC-code(e,c) is simply this:

target_sc_code(E,C) :- set_sc_dn(E), operation_episode(E,S1),
subepisode(S2,S1), dialed_sc_code(S2), match_as_sc_codes(S2,C).

This is a novel specification technique, and its syntax and semantics may be difficult to grasp quickly, but it

has many promising characteristics. Languages as diverse as Jackson diagrams, Z, and Horn clauses are being

combined productively and with ease. Because of the powerful semantics of these notations, the specifier has

nothing to do beyond writing a grammar for dialing episodes and a few additional Horn clauses. A unified

representation of sequences shows that the differences between temporal sequences and stored data sequences can

sometimes be ignored.

6. Consistency analysis of the specification of a switching system
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6.1. Acyclic definitions and disjointness of event classes

Figure 10 shows that the definitions of event classes are acyclic. The definitions of new argument functions

could be added to this graph without introducing cycles. It is also necessary to prove that the event classes in the

vocabulary of each partial specification are disjoint.

The graph showing definition of event classes can always be drawn (as Figure 10 is) with no two partial

specifications having overlapping projections onto the horizontal axis. Imagine adding to such a graph a vertical

line at the left margin labeled 1, vertical lines between the n partial specifications labeled 2 to n from left to right,

and a vertical line at the right margin labeled n+1.

It may be possible to use induction on these line numbers to show that the event classes crossing each vertical

line are disjoint. This result would imply the necessary result, because the event vocabulary of each partial

specification is a subset of the event classes crossing the vertical line to its immediate left. The operations of the

central specification cross vertical line n+1.

The hypothesis is always true for line 1 because the event classes that cross it are the input event types. To

show that if the hypothesis is true for line m then it is also true for line m+1, it is sufficient to show that for each

partial specification, (1) the event classes it defines are disjoint, and (2) each event class it defines belongs to the

vocabulary of only one partial specification. The latter can be determined by inspection of the graph, while the

former is a proof obligation on individual partial specifications.

Analysis of the Jackson grammar is a good example of language-dependent analysis. First of all, it is too

complex to be checked manually with any reliability.7 In addition to showing that the defined event classes are

disjoint if the vocabulary event classes are disjoint, analysis also established other useful grammar-related

properties. The language generated by the grammar is the Kleene closure of its alphabet, which ensures that

anything the user dials can be parsed. The grammar is unambiguous and event classification requires no lookahead,

which is important in a context where the system provides immediate feedback to the user.

Sometimes the simple induction will not work. In this example, for instance, the event classes defined by

Figure 11 are not disjoint—events classified as go-active or go-inactive are also classified as activating-open or
__________________
7The real grammar is much more complex than the version used in this paper. In the absence of special tools for Jackson diagrams, it was
analyzed by Ken McMillan using his model checker [McMillan 93]. The analysis revealed many subtle errors, even in mature versions of the
grammar. A correct grammar is easy to read, but not easy to write!
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close.

We address this problem by pretending, for the sake of the induction, that Figure 11, Definitions 1, and Figure

12 are a single partial specification. It is merely necessary to show that considering these three together, disjoint

vocabulary classes imply disjoint defined classes.

Language-dependent analysis shows easily that, for the vertical lines just to the right of Definitions 1, the only

overlap in event classes is the overlap of go-active ∪ go-inactive with activating-open ∪ close. Language-

dependent analysis of Figure 12 shows that no event in go-active ∪ go-inactive belongs to any event class defined

by Figure 12. So there is no overlap between activating-open ∪ close and the event classes defined by Figure 12.

Further language-dependent analysis of Figure 12 shows that its defined event classes are disjoint, which completes

the proof.

It seems likely that the inductive proof can always be completed successfully by re-arranging the definition

graph or clustering partial specifications when necessary.

6.2. Well-defined argument functions and satisfied preconditions

This section concerns two kinds of proof obligation: ensuring that defined argument functions are well-

formed, and ensuring that expected preconditions are satisfied. In this example only the Z specification places

expected preconditions on defined event classes, and all defined argument functions are used by the Z specification.

Thus we shall focus on the Z operations, and fulfill a representative sample of these proof obligations.

The hypotheses to be proved can all be stated in first-order logic. Section 4.2 shows how to state that

argument functions are well-formed. Section 5.3 shows how to express expected preconditions in the translatable

subset of Z.

Using the overall structure of the definition graph (Figure 10) and local, language-dependent reasoning, we

can enumerate the possible ‘‘full classifications’’ of events. For example, Table 5 shows all the ways that an event

could belong to one of the four operation classes close, open, hold, and complete-conf. Each line is a different full

classification: it enumerates a maximal set of event classes that an individual event might belong to simultaneously.

If a defined event class appears in Table 5, then the column in which it appears shows the partial specification that

defines it.
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_ ________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________
input Figure 9 Figure Definitions Figure Definitions

event type plus definitions 11 1 12 2_ ______________________________________________________________________________________________________________
go-onhook onhook-with-target close

press-speaker speaker-with-target close_ ______________________________________________________________________________________________________________
go-offhook activating-open open

select activating-open open

select select-when-active select-when-active-and-held canceling-free open

select select-when-active select-when-active-and-held normal-select open

select select-when-active select-when-active-and-free open

press-speaker speaker-with-target activating-open open_ ______________________________________________________________________________________________________________
press-conf conf-when-talking preop-hold hold

press-trans trans-when-talking preop-hold hold

press-hold hold-when-talking hold_ ______________________________________________________________________________________________________________
select select-when-active select-when-active-and-held complete-conf_ _______________________________________________________________________________________________________________ _______________________________________________________________________________________________________________ 
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Table 5

A table of full classifications provides the cases for a proof by case analysis. Each input event type is

associated with certain guaranteed preconditions. Each definition of a new event class also guarantees certain

preconditions on events in the class. The interesting properties of a defined event class can be expressed in first-

order logic, using its definition and the semantics of the language in which it is expressed. For each full

classification (line in the table), in first-order logic, the conjunction of all the guaranteed preconditions must imply

the hypotheses applicable to the operation event class.

In the following examples, e is bound to the event whose precondition we are concerned about, t is bound to

the telephone which is the source of e, and p is bound to the pause immediately preceding e. It is easy to prove,

from the guaranteed preconditions on input and from Figure 9 plus definitions, the following global theorem:

∀ e (∃ v target-VT(e,v) ⇒ ∃ !v target-VT(e,v)) ∧
∀ e ∀ v (target-VT(e,v) ⇒ VT(v))

From now on we will use this theorem, and not worry about the uniqueness or type of target arguments.

From Table 4, the expected precondition on the operation hold is:

∃ v (target-VT(e,v) ∧ talking(v,p))

In the definitions augmenting Figure 9, this precondition is guaranteed by the definitions of event classes conf-

when-talking, trans-when-talking, and hold-when-talking. Thus the expected precondition is guaranteed by all full

classifications of hold events.

From Table 4, the expected precondition on the operation open is:
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∃ v (target-VT(e,v) ∧ closed(v,p))

The definition of open(e) in Definitions 2 guarantees this precondition. This case is easy by design. There are

several equivalent ways of defining open(e), and we simply chose the form that made the expected precondition

easiest to prove.

From Table 4, the expected precondition on the operation close is:

∃ v (target-VT(e,v) ∧ opened(v,p))

Both the onhook-with-target and speaker-with-target classes have this guaranteed precondition in the definitions

augmenting Figure 9:

∃ v (target-VT(e,v) ∧ selected(v,p))

The definition of close has the guaranteed precondition ¬ no-audio(p) in Figure 11. These guaranteed preconditions

alone do not imply the expected precondition, but combined with Figure 9 they do imply it.

Finally, we consider the expected precondition of complete-conf operations:

∃ v target-VT(e,v) ∧
∃ !w waiting-VT(e,w) ∧
∃ v ∃ w (target-VT(e,v) ∧ waiting-VT(e,w) ⇒ held(v,p) ∧ v≠w ∧ VT-attached(v,t,p) ∧ VT-attached(w,t,p))

VT-attached(v,t,p) means that VT v is physically attached to telephone t; it is one of the ‘‘configuration’’ state

components constrained by the Z specification. The definition of select-when-active-and-held in Definitions 1

guarantees that:

∃ v (target-VT(e,v) ∧ held(v,p))

It is a guaranteed precondition of complete-conf in Figure 12 that:

∃ !w waiting-VT(e,w) ∧
∃ v ∃ w (target-VT(e,v) ∧ waiting-VT(e,w) ⇒ v≠w)

Finally, it is necessary to show that v and w are attached to the same telephone. This reasoning is not extensive or

difficult, but it depends on the separate application of Figure 12 to each telephone. Since we omitted the

formalization of separate application, we are also omitting this reasoning.

7. Related work

This work is related to research in a number of different areas. Most obviously, it is related to other linguistic
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frameworks for multiparadigm specification such as the LOTOS/Act One combination [IOS89] and Statemate

[Harel et al. 90].

Both of these efforts provide fixed compositions of fixed sets of languages. This means that their range of

expressiveness is somewhat narrower than we are able to use. For instance, Statemate incorporates no language with

the expressive power of Z, and neither effort makes grammars available.

Several schemes for homogeneous composition—composition of partial specifications written in the same

language—also focus on event classes. For example, in all of CSP [Hoare 85], CCS [Milner 89], and LOTOS

[IOS89], a process or partial specification has a vocabulary of event classes that it constrains. Events in the

vocabularies of several processes or partial specifications can only occur when allowed under the constraints

imposed by all of them.

Assuming that event classes in these languages correspond to input event types in our technique, our technique

composes guaranteed preconditions on the input event types in a similar but simpler way (CSP, CCS, and LOTOS

all have information hiding and nondeterministic internal choice, which makes their semantics richer than the trace

semantics of our representation of concurrency [Zave & Jackson 93]). But these languages cannot express directly

the layered recognition of meaning and context that event classification provides. In these languages, the state of

one process can influence whether an event in the vocabulary of another process occurs, but it cannot help the other

process interpret the event.

Assuming that event classes in these languages correspond to operation event types in our technique, then the

single-language specification is easier to write but not very realistic. This point is illustrated by a specification of a

switching system in Timed CSP [Kay & Reed 93]. The alphabet of primitive event types in this specification has

members such as i.lift.j.tag, meaning that telephone i lifts the handset to answer the call of telephone j with unique

identifier tag. There is no question that postulating such a rich alphabet makes the specifier’s job easier, but there

are many questions about the validity of doing so. Kay and Reed’s treatment tells us nothing about how such

semantically rich events are observed or recognized, or what happens when an actual input event does not fit

successfully into the classification scheme. A telephone specification in LOTOS [Boumezbeur & Logrippo 93] is

similar in this respect.

Statecharts also have composable modules via the feature called ‘‘and’’ decomposition,8 but their semantics is
__________________
8Note that our use of Statecharts avoids this feature. In our technique, decomposition into partial specifications plays the same role as the ‘‘and’’
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very different from event constraint in CSP, CCS, or LOTOS. In Statecharts, external events stimulate the

concurrent modules to broadcast internal events to each other. Internal events can stimulate the broadcast of other

internal events, and so on.

Internal events depend on the current states of the modules that emit them, so their purpose as an

intraspecification interaction device is exactly the same as defined event classes. They are even more powerful than

defined event classes in the sense that they are not restricted to an acyclic pattern of interaction. At the same time,

their semantics is operational, nondeterministic, and complex. Many papers have been written on the subject of

transition semantics in Statecharts, the best-known being written by Harel and Pnueli [Harel 87, Harel et al. 87,

Pnueli & Shalev 89]. These papers present different versions of the transition semantics, and address such problems

as infinite loops of internal events, ambiguities about when state changes occur, and the relationship of internal time

to external time.

Defined event classes, in contrast, are a purely declarative technique implying no operational mechanism. A

single external event can belong to many classes, which gives us plentiful information about its meaning and

context, but it is still a single, atomic, externally observable event. It is true that specifications with defined event

classes can be implemented using a Statechart-like mechanism, but the crucial distinction is that event classes have

many valid implementation mechanisms other than broadcast of internal events.

Several simple specifications of switching systems have been written entirely in Z. The specification by

Woodcock and Loomes [Woodcock & Loomes 88] has some structure that is reminiscent of event classification.

The operation Lift (go-offhook) is the disjunction of the operations LiftFree and LiftSuspend, which describe the

response to different cases and are distinguished by different explicit preconditions. However, the relationship

between observable input events and case analysis is not treated systematically. For example, Answer operations are

also stimulated by lift events, but the Answer operation is not related formally to the Lift operation.

Daniel Jackson’s Z specification of a switching system [JacksonD 95] is decomposed into two views which

can be thought of as partial specifications. The composed, synchronized operations of these two views are like

defined event classes in that they represent interpreted events rather than raw input events. Unlike our technique,

this organization is symmetric: either view can influence the other. The example is just one illustration of a

__________________
decomposition in Statecharts.
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powerful and flexible technique for organizing Z specifications.

We have mentioned four single-paradigm specifications of switching systems, written in Z, LOTOS, and

Timed CSP. The following four comparisons apply equally to all of them.

(1) All of these systems are extremely simple compared to the switching system we have specified using our

technique. Their systems offer ordinary telephone service, primitive telephones, and at most one or two other

features. We have specified a switching system that controls modern, time-multiplexing telephones and offers

twelve other features. This is an order-of-magnitude difference in complexity.

(2) All of the single-paradigm specifications lack a rigorous and systematic treatment of ‘‘user interface’’

issues. They do not distinguish input event types from operation event types, they do not distinguish guaranteed

preconditions from expected preconditions, etc. Systematic and rigorous treatment of these issues is one of the

major purposes of our technique.

(3) We believe that none of these single-paradigm specifications could be extended to a switching system of

realistic complexity. All the real switching systems we know of must parse digit sequences to extract commands

controlling a wide variety of features, and must perform the parsing with well-engineered error handling. It is

obvious to us that the only reasonable specification of a parser is a grammar. Thus a realistic switching specification

must be multiparadigm, and must be built on a foundation for multiparadigm specification that has grammars on the

list of allowable specification languages.

(4) The two Z specifications could be enhanced straightforwardly using our technique. We could accept their

operations as operation event types, and supply non-Z specifications to provide a rigorous mapping from input event

types to operation event types.

8. Advantages and disadvantages of the technique

The primary advantage of this technique is the ability to specify complex systems formally. When several

paradigms are used to specify the aspects of a problem for which they are best suited, larger problems can be solved

satisfactorily.

Another important advantage is the assistance given by the organization of the specification in determining

consistency, which extends straightforwardly to assistance in formal reasoning for other purposes. It is not just that
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the organization overcomes the alleged disadvantages of using multiple paradigms—it is a tool that may be missing

in single-paradigm specification. Imagine, for instance, that we had written the entire specification in Z. The fact

that it would be written in a single language is certainly no guarantee against inconsistency. And a monolithic

specification might have no clear internal boundaries upon which to base a consistency argument.

The primary disadvantage of this technique is the need to understand the semantics of many specification

languages in terms of first-order logic. The telecommunications example has shown how this disadvantage can be

limited and managed. Because of the properties of Z, for instance, only a tiny subset of its syntax need be

translatable into first-order logic. The use of a grammar in the multiparadigm specification is even easier, despite

the fact that a grammar would also be impossible to translate into first-order logic. The grammar has no shared state

components and imposes no expected preconditions. All it does is define event classes and episode classes which

are subclasses of the classes already in its vocabulary. Thus its logical overlap with the rest of the specification is

negligible, and all its proof obligations can be satisfied by analyzing the grammar directly.

Another disadvantage of this technique is the burden on specifiers of decomposing their problems into aspects

suitable for various languages, and of understanding the semantic machinery through which the aspects interact.

This disadvantage is alleviated by the likelihood that many different specifications within an application area can use

the same general paradigm decomposition. If this conjecture proves true, then the boundaries between paradigms

will become familiar and the interfaces can be explained in application-dependent terms. At this point it will

become possible for specifiers to specialize in particular aspects of the application and in particular specification

languages, without knowing many details about the rest of the specification.
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