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Abstract
In [8], Quattrochi and Rinaldi introduced the idea of n−1 - isomor-

phism between Steiner systems. In this paper we study this concept
in the context of Steiner triple systems. The main result is that for
any positive integer N , there exists v0(N) such that for all admissible
v ≥ v0(N) and for each STS(v) (say S), there exists an STS(v) (say
S′) such that for some n > N , S is strictly n−1-isomorphic to S′.
We also prove that for all admissible v ≥ 13, there exist two STS(v)s
which are strictly 2−1-isomorphic.

Define the distance between two Steiner triple systems S and S′ of
the same order to be the minimum volume of a trade T which trans-
forms S into a system isomorphic to S′. We determine the distance
between any two Steiner triple systems of order 15 and, further, give a
complete classification of strictly 2−1-isomorphic and 3−1-isomorphic
pairs of STS(15)s.
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journal).
AMS classification: 05B07
Keywords: Steiner triple system; configuration; trade; n−1-isomorphism;
fractional isomorphism.

1



1 Introduction

A Steiner triple system of order v, briefly STS(v), is a pair (V,B) where
V is a set of cardinality v of elements, or points, and B is a collection of
triples, also called blocks or lines, which has the property that every pair of
distinct elements of V occurs in precisely one triple. It is well known that
an STS(v) exists if and only if v ≡ 1 or 3 (mod 6). Such values of v are
called admissible. An n-line configuration is a collection of n triples which
has the property that every pair of distinct elements occurs in at most one
triple. If C is a configuration, we denote the number of blocks by b(C), the
number of points by p(C) and the set of points by P (C). The degree of a
point is the number of triples which contain it. Two configurations C and
D are said to be isomorphic, C ∼= D, if there exists a one-to-one mapping
φ : P (C) → P (D) such that for each triple T ∈ C, φ(T ) is a triple in D. Two
STS(v)s, (V,B) and (V ′,B′) are isomorphic if B ∼= B′. Up to isomorphism,
the STS(3), STS(7) and STS(9) are unique. There are two STS(13)s, 80
STS(15)s and, as shown recently by Kaski and Österg̊ard [4], 11,084,874,829
STS(19)s. In this paper we confine our attention mainly to the 80 pairwise
non-isomorphic STS(15)s, and we refer to them by the standard numbering
as given in [2, Chapter 5].

A trade T = {T1, T2} is a pair of disjoint m-line configurations T1 and T2

which has the property that every pair of distinct elements occurs in precisely
the same number (zero or one) of triples of T1 as of T2. Traditionally, the
number of lines, m, is called the volume of the trade, denoted by vol(T ), and
the foundation of the trade, found(T ), is the set of elements covered by T1

and T2. As it will be important to distinguish between a trade T = {T1, T2}
and either of the configurations T1 and T2, the latter will be referred to as
tradeable configurations. If S = (V,B) and S ′ = (V,B′) are two Steiner triple
systems and T = {C,D} is a pair of configurations with C ⊆ B such that
S ′ is isomorphic to (V, (B \ C) ∪ D), then we say that T transforms S into
S ′. The trades T = {T1, T2} and T ′ = {T ′

1 , T ′
2} are said to be isomorphic

if there exists a one-to-one mapping φ : found(T ) → found(T ′) such that
φ({T1, T2}) = {T ′

1 , T ′
2}. It is well-known that there exist trades of volume n

only for n = 4 and n ≥ 6 [6]; for example, there is a unique trade of volume
4, called a Pasch switch. A complete list of trades of up to 9 blocks is given
in [3], from which it can be seen that every trade, {T1, T2}, of volume not
exceeding 8 has T1

∼= T2.
We will be interested in three basic questions. The first of these is as
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follows. Given two STS(v)s, S and S ′, what is the minimum volume of a
trade T which transforms S into (a system isomorphic to) S ′? Formally,
we define this to be the distance, d(S, S ′), between S and S ′. Observe that
d(S, S ′) is a metric in the usual sense. We investigate the distance problem
for STS(15)s and we note in passing that the distance between the cyclic
STS(13) and the non-cyclic STS(13) is 4.

The other questions are motivated by a paper of Quattrocchi and Ri-
naldi [8], who introduce the concept of n−1-isomorphism. Two configurations
C and D are said to be n−1-isomorphic if there are partitions C1, C2, . . . , Cn

of C and D1,D2, . . . ,Dn of D such that Ci
∼= Di for i = 1, 2, . . . , n. Two

Steiner triple systems, (V,B) and (V ′,B′), are n−1-isomorphic if B and B′ are
n−1-isomorphic. For n ≥ 2, two configurations are said to be strictly n−1-
isomorphic if they are n−1-isomorphic but not (n−1)−1-isomorphic; similarly
for Steiner triple systems. It is natural to call this concept, fractional iso-
morphism. (Note that this has a different meaning to that given in [9], in
relation to graphs.) Clearly, 1−1-isomorphism is the same as isomorphism.
However, unlike isomorphism, n−1-isomorphism is not necessarily an equiva-
lence relation if n ≥ 2; reflexivity and symmetry are always satisfied but in
general transitivity fails.

The second question is related to the first. If the trade T = {T1, T2}
transforms S to S ′ and T1

∼= T2, then S and S ′ are 2−1-isomorphic. However,
as noted in [3], there are trades consisting of non-isomorphic tradeable con-
figurations. We ask the following question. For two non-isomorphic STS(v)s,
S and S ′, what is the minimum volume of a trade T , consisting of isomorphic
tradeable configurations, which transforms S into (a system isomorphic to)
S ′? Formally, we define this to be h(S, S ′). If no such trade exists, we write
h(S, S ′) = ∞. If h(S, S ′) < ∞, then S and S ′ are 2−1-isomorphic. Although
exceptions are relatively scarce, the converse is not necessarily true, as our
investigations of the h function for STS(15)s will reveal.

The third question is for what values of n do there exist two STS(v)s, S
and S ′, which are strictly n−1-isomorphic.

2 Fractional isomorphism

It was Kirkman [5] who gave the first proof that for all admissible v there
exists an STS(v). Later, Moore [7] proved that for all admissible v ≥ 13,
there exist two non-isomorphic STS(v)s; see [2, page 70]. Our next goal is to
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state and prove two existence theorems concerning n−1-isomorphic STS(v)s.

Theorem 2.1 For all admissible v ≥ 13, there exist two STS(v)s which are
strictly 2−1-isomorphic.

We conjecture that for each positive integer n, there exists v0(n) such that
for all admissible v ≥ v0(n) there exist two STS(v)s which are strictly n−1-
isomorphic. Whilst we are unable to prove this conjecture, we can establish
a weaker result in the same direction.

Theorem 2.2 For any positive integer N , there exists a positive integer
v0(N) such that for all admissible v ≥ v0(N) and for each STS(v) (say
S), there exists an STS(v) (say S ′) such that for some n > N , S is strictly
n−1-isomorphic to S ′.

Before dealing with these theorems we prove some lemmas.

Lemma 2.1 If X is a configuration, let ρ(X ) denote the (possibly empty)
set of blocks obtained by removing from X all blocks containing points of
degree 1. Suppose C and D are configurations which cover the same pairs,
and suppose also that C ∼= D. Then ρ(C) ∼= ρ(D) and ρ(C) covers the same
pairs as ρ(D).

Proof. If C contains no points of degree 1, there is nothing to prove.
Otherwise let τ : P (C) → P (D) be an isomorphism from C to D. Let A

be the set of blocks of C which contain points of degree 1. Since C and D
cover the same pairs, a block containing a point of degree 1 in one of the
configurations C and D must also occur in the other configuration. Therefore
A ⊆ C ∩ D. Then ρ(C) = C \ A and ρ(D) = D \ A. Since τ(A) = A, we
have ρ(C) ∼= ρ(D). Furthermore, since we have removed the same pairs from
C and D, the configurations ρ(C) and ρ(D) cover the same pairs.

Lemma 2.2 Suppose S and S ′ are Steiner triple systems and that n ≥ 1. If
there exists a trade {C,D} with C n−1-isomorphic to D that transforms S to
S ′, then S is (n + 1)−1-isomorphic to S ′.

Proof. This follows directly from the definitions.
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The converse of Lemma 2.2 is not true. In an attempt to identify the
reason for this, we define a pseudo-trade as a pair of configurations {C,D}
such that C and D cover the same pairs, C ∼= D, C ∩ D 6= ∅, and for any
non-empty subset A of C ∩D we have C \A 6∼= D \A. By Lemma 2.1, C and
D have no points of degree 1.

Pseudo-trades of small volume may be enumerated by methods similar
to those described in [3]. An example of a pseudo-trade is given by {C,D}
= {{012, 034, 056, 135, 146, 179, 1bc, 245, 37b, 47c, 49b}, {016, 024, 035,
125, 13b, 14c, 179, 347, 456, 49b, 7bc}}, where C ∩D = {179, 49b}. The table
below gives, for small volumes, the number of labelled pseudo-trades {C,D}
where configuration C is canonically labelled [2, page 52].

|C| ≤ 10 11 12 13
pseudo-trades {C,D} 0 8 24 168

With the definition of pseudo-trades in place we have the following result.

Lemma 2.3 Let S = (V,B) and S ′ = (V,B′) be strictly 2−1-isomorphic
Steiner triple systems. Let β = (|B| − 1)/2. Then there exist T = {C,D}
with C ∼= D and |C| ≤ β where T is either a trade or a pseudo-trade and T
transforms S to S ′.

Proof. Suppose there exists a 2−1-isomorphism consisting of a partition of B
into B0 and B1 with |B1| ≤ β, a partition of B′ into B′

0 and B′
1 with |B′

1| ≤ β,
and one-to-one mappings φ0 : V → V and φ1 : V → V such that φ0(B0) = B′

0

and φ1(B1) = B′
1. Apply φ−1

0 to S ′, let B′′
1 = φ−1

0 (B′
1) and consider the pair

{B1,B′′
1}. Note that |B1| ≤ β and that (B \ B1) ∪ B′′

1
∼= B′.

Let F = B1 ∩ B′′
1 . If F = ∅ then {B1,B′′

1} is a trade which satisfies the
conditions of the lemma. So we may assume that F is non-empty. If {B1,B′′

1}
is a pseudo-trade, we are done. Otherwise there exists a non-empty set G
of maximum cardinality such that G ⊆ F and B1 \ G ∼= B′′

1 \ G. It is clear
from the definition that {B1 \ G,B′′

1 \ G} is a trade or a pseudo-trade with
the required properties.

The final lemma provides the main ingredient for the proof of Theo-
rem 2.1.

Lemma 2.4 For all admissible v ≥ 27, there exists an STS(v) which con-
tains precisely one sub-STS(13).
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Proof. For admissible v such that 27 ≤ v ≤ 63, it is straightforward to gener-
ate STS(v)s with the desired property by Stinson’s hill-climbing method [10].

For admissible v > 63 we employ a recursive construction. Let G be a {3}-
GDD of type gthu and suppose we have an STS(g +13) and an STS(h+13),
each having a unique sub-STS(13). Construct a new Steiner triple system,
S, of order tg + uh + 13 as follows. Let T be an STS(13). On each group
of size g, together with the points of T , put an STS(g + 13) such that the
sub-STS(13) coincides with T . Similarly, on each group of size h, together
with the points of T , put an STS(h+13) such that the sub-STS(13) coincides
with T .

Suppose, further, that G has at most four groups; i.e. t+u ≤ 4. We show
that the system S has a unique STS(13), namely T . To prove this, suppose
U is a sub-STS(13) of S and U 6= T . Label the groups G1, G2, . . . , Gn, where
n = 3 or 4. Let Ai be the set of points of U which lie on Gi and let A be
the set of points which are common to both U and T . Consider three cases
according to the size of A.

(i) |A| = 0. For each i, we must have |Ai| = 0, 1 or 3. (We can rule
out |Ai| = 7 and |Ai| = 9 because we know that neither STS(13) has a
sub-STS(7) or a sub-STS(9).) As there are at most four groups, U cannot
exist.

(ii) |A| = 1. Similarly we must have |Ai| = 0 or 2. Again, there are
insufficient groups for U to exist.

(iii) |A| = 3. Now we are forced to have |Ai| = 0 for all i.
Thus the construction described above preserves the property of contain-

ing a unique sub-STS(13). By a theorem of Colbourn, Hoffman and Rees [1],
there exist {3}-GDDs of the following types:

g3

g3h1, g ≡ h ≡ 0 (mod 2), h ≤ 2g

Using the construction with {3}-GDDs of these types and starter systems of
orders 27, 31, ..., 63, we can generate the desired STS(v)s for all admissible
v > 63 as follows.

First we construct a suitable STS(67) using a {3}-GDD of type 183. Then,
using {3}-GDDs of type g3h1 with g = 14 and h = 14, 18, 20, 24 and 26, we
construct suitable STS(v)s for v = 69, 73, 75, 79 and 81, respectively. Now let
k ≥ 4 and suppose that we already have suitable STS(u)s for admissible u in
the range 27 ≤ u ≤ 3k. Let an admissible v be given such that 3k < v ≤ 3k+1,
and write v = 6r + e, where e = 1 or 3. If r ≡ 0 or 1 (mod 3), put s = 2r +1
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and t = 36 + e; otherwise put s = 2r + 3 and t = 30 + e. Let g = s− 13 and
h = t− 13. Then in either case 2g − h ≥ 4r − e− 47 ≥ 0, since r ≥ 14 and
e ≤ 3. It is easily verified that 27 ≤ s, t ≤ 3k for admissible s and t; hence we
can use a {3}-GDD of type g3h1 to construct a suitable Steiner triple system
of order 3g + h + 13 = v.

Proof of Theorem 2.1. The two STS(13)s are 2−1-isomorphic because
one can be transformed into the other by a Pasch trade. For the same rea-
son, STS(15) #1 is 2−1-isomorphic to STS(15) #2. Pairs of 2−1-isomorphic
STS(v)s for v = 19, 21 and 25 are easily produced by choosing an appropriate
system and transforming it by a Pasch trade.

So let v ≥ 27 and let S be an STS(v) which contains a unique sub-
STS(13), T , say. Lemma 2.4 guarantees that S exists. Choose a Pasch
configuration in T which when traded transforms T into an STS(13) of the
other isomorphism type. Perform this trade thus transforming S into S ′, say.
By Lemma 2.2, S is 2−1-isomorphic to S ′, but clearly S is not isomorphic to
S ′.

Proof of Theorem 2.2. Given a positive integer N , take v0(N) so large
that for all v ≥ v0(N), the number of distinct STS(v)s, D(v), satisfies

D(v) > (v!)N N v(v−1)/6.

This is possible because D(v) = vv2(1/6+o(1)) as v →∞ (see [11]). In fact, for
large N , v0(N) ≤ N + o(N).

Now take any STS(v), say S, with v ≥ v0(N). Partition the v(v − 1)/6
blocks of S into N sets, some of which may be empty. Such a partition can
be represented by a vector of length v(v − 1)/6 with entries from 1 to N , so
that the number of possible partitions is at most N v(v−1)/6.

For each set of the partition, apply a permutation to the base set. The
number of combinations of permutations is (v!)N . Most resulting sets of
triples will not be STS(v)s but it is clear that this process can give rise to at
most (v!)NN v(v−1)/6 STS(v)s which are N−1-isomorphic to S, and any such
systems (on the same base set) will arise at least once in this manner. Hence
there must exist an STS(v), say S ′, which is not N−1-isomorphic to S. But
S ′ is certainly (v(v − 1)/6)−1-isomorphic to S. Hence there exists n > N
such that S and S ′ are strictly n−1-isomorphic.
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The computational results of this paper suggest that for v ≥ 15 there
exists a pair of STS(v)s which are strictly 3−1-isomorphic.

3 Algorithms

Other main results of this paper are two matrices, D = [di,j] and H = [hi,j],
showing relations between Steiner triple systems of order 15. The first is
the ‘distance table’ for STS(15)s, where di,j is the volume of the smallest
trade that transforms STS(15) #i into STS(15) #j, the numbers i and j
referring to the standard numbering of the 80 STS(15)s. In the second matrix,
H, the entry hi,j is the volume of the smallest trade between isomorphic
configurations which transforms STS(15) #i into STS(15) #j. We describe
two algorithms for computing [di,j] and [hi,j].

Algorithm 3.1

For b = 4, 6, 7, 8, . . ., make a list, Lb, of all possible trades and pseudo-
trades {C,D}, where C is a b-block configuration which can occur in an
STS(15).

For each STS(15), S, for each {C,D} ∈ Lb:

For each occurrence φ(C) of an isomorphic copy of C in S: transform
S to S ′, say, by the trade or pseudo-trade {φ(C), φ(D)}. Record the
designation (01 − 80) of S and S ′ as well as information about the
trade.

Algorithm 3.2

For b = 4, 6, 7, 8, . . ., for each STS(15), S, for each set C of b blocks of S:

For each trade or pseudo-trade {C,D}: record the designation of S
and S ′, the STS(15) that results from transforming S by {C,D}, as
well as information about {C,D}.

In spite of its apparent naivety, Algorithm 3.2 is the preferred option.
It turns out that Algorithm 3.1 is not practicable for dealing with b ≥ 10
because of the difficulty of constructing the list Lb. On the other hand,
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Algorithm 3.2 does not require a predetermined list and, furthermore, there
is an efficient method, described in [3], for constructing all possible trades
{C,D}, if any, from a given configuration C. Also it is clear from [3] how
to adapt the procedure to construct pseudo-trades. In fact, we used both
methods for b ≤ 9 and thereby gave ourselves extra confidence that our
computer programming was sound.

There are a number of ways to shorten the computational effort and
reduce the amount of work to a reasonable level. We mention three obser-
vations. (i) A configuration that is part of a trade or a pseudo-trade has no
points of degree one. (ii) To prove that two STS(15)s are 2−1-isomorphic,
we do not need to consider trades or pseudo-trades of volume greater than
17. This follows from the proof of Lemma 2.3. (iii) In computing the matrix
H, after examining all trades of volume less than or equal to 17, a complete
list of pairs (i, j) where hi,j > 17 is known. If in addition we know that
the smallest pseudo-trade which transforms STS(15) #i to STS(15) #j has
volume p ≤ 17, we can deduce that either hi,j ≤ 35 − p or hi,j = ∞, thus
limiting the search space.

4 Results

The two matrices D and H are presented in tabular form. For clarity, only
the upper half of the matrix is given; the other half follows by symmetry.

In Table 4.1, the entry (i, j), i ≤ j, indicates di,j, the volume of the
smallest trade that transforms STS(15) #i to STS(15) #j. We do not
distinguish between trades with isomorphic configurations and trades with
non-isomorphic configurations. Numbers 10, 11, ..., 19 are represented by
lower-case letters a, b, ..., j, respectively. We find that any STS(15) can
be transformed into any other STS(15) by a trade of at most 19 blocks.
Also 19 blocks are necessary only for the pairs {STS(15) #01, STS(15) #62}
and {STS(15) #01, STS(15) #71}. Eighteen blocks suffice for the rest. If
STS(15) #01 is excluded, then 17 blocks are sufficient, and sometimes nec-
essary.

Table 4.2 has the same format as Table 4.1 except that each trade consists
of a pair of isomorphic configurations. The entry (i, j), i ≤ j, indicates
hi,j, the volume of the smallest such trade that transforms STS(15) #i to
STS(15) #j. A dot indicates that no such trade exists: hi,j = ∞. The same
scheme as above is used for representing two-digit numbers, and entries that
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differ from the corresponding values in Table 4.1 are underlined. (Observe
that values 4, 6, 7 and 8 occur at precisely the same locations in both tables.)
There are only two values greater than 17: h06,31 = 20, represented by the
letter k in the table, and h07,25 = 24, represented by the letter o.

Let ν be the smallest n such that every pair of STS(15)s is n−1-isomorphic.
Lemma 2.3 and the existence of pairs (i, j) where hi,j = ∞ and di,j > 17,
at (01, 71) for example, implies that ν ≥ 3. However, from the infor-
mation in Table 4.2 it is easy to deduce that ν ≤ 4. The table shows
that STS(15) #11 is 2−1-isomorphic to every other STS(15) except possi-
bly STS(15) #01. Therefore it follows from Proposition 6 of [8] that for
2 ≤ i < j ≤ 80, STS(15) #i is 4−1-isomorphic to STS(15) #j. In a similar
manner we can show that STS(15) #01 is 4−1-isomorphic to STS(15) #j for
2 ≤ j ≤ 80 by identifying a system STS(15) #k which is 2−1-isomorphic to
both STS(15) #01 and STS(15) #j.

Table 4.2 shows that all except 537 pairs of STS(15)s are 2−1-isomorphic.
However, to ascertain the full extent of 2−1-isomorphism we must also deter-
mine 2−1-isomorphic pairs of STS(15)s which are not indicated by Table 4.2.
Their existence is possible because the converse of Lemma 2.2 is false. It
suffices, by Lemma 2.3, to look for pseudo-trades of volume not greater than
17. In fact, for given i, j, all we need to do is allow common blocks in the
search for C,D with the smallest |C| such that C and D cover the same pairs,
C ∼= D and {C,D} transforms STS(15) #i to STS(15) #j. If C ∩D is empty,
{C,D} is a trade; otherwise it is clear that {C,D} is a pseudo-trade. More-
over, we can assume that |C \D| ≥ 9; for otherwise {C \D,D\C} is a trade of
volume at most 8 and therefore {C \D ∼= D\C}. A complete search produces
a further six 2−1-isomorphic pairs. Specifically, let ei,j denote the smallest
volume of a pseudo-trade, if any, that transforms STS(15) #i to STS(15) #j.
Then we have the following values for pairs (i, j) where i < j and hi,j = ∞.

i, j 05, 30 05, 34 12, 71 16, 29 19, 67 19, 72
ei,j 15 15 15 15 17 16

It is also worth mentioning that in the only two cases where 17 < hi,j < ∞
we have e06,31 = e07,25 = 11.

Thus 2−1-isomorphism accounts for all except 537 − 6 = 531 pairs of
STS(15)s. To establish a 3−1-isomorphism for the remaining pairs, three
approaches may be used. Let S and S ′ be STS(15)s which are not 2−1-
isomorphic. (i) As in the proof of Proposition 6 of [8], it is sufficient to find
an STS(15), S ′′, and trades, {C,D} and {E ,F}, where C ∼= D and E ∼= F ,
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such that {C,D} transforms S ′′ to S, {E ,F} transforms S ′′ to S ′ and either
C ⋂ E = ∅, or C ⊆ E , or E ⊆ C. (ii) We find a trade that consists of 2−1-
isomorphic configurations, possibly the one which was used to establish the
value of the corresponding entry in Table 4.1, and then apply Lemma 2.2.
(iii) We find a trade, {C,D} that transforms S to S ′ and a set of blocks X
of S disjoint from C such that C ∪ X is 2−1-isomorphic to D ∪ X .

The second approach is particularly effective. Elementary computation
shows that every trade of volume at most 12 consists of a pair of 2−1-
isomorphic configurations. This accounts for every pair where there is a
value of c or less in Table 4.1. Further, with a little more computation we
can use the same method to establish the required 2−1-isomorphism for the
trades corresponding to entries in Table 4.1 with values d, e, f and g. Hence
for pairs {i, j} where there is one of these letters in Table 4.1 and a dot in
Table 4.2, we have that STS(15) #i is 3−1-isomorphic to STS(15) #j.

Of the remaining 39 cases, where the value in Table 4.1 is h, i or j,
3−1-isomorphic pairs have been found; four by method (i): (01, j), j =
33, 64, 76, 79; a further 33 pairs by method (ii): (01, j), j = 36, 37, 38,
41, 44, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 58, 60, 61, 63, 65, 66, 67, 68, 69,
70, 71, 72, 74, 75, 77, as well as (02, 77), (03, 80) and (16, 80); and two pairs
by method (iii): (01, 43) and (01, 62).

Thus we have proved the following.

Theorem 4.1 Any two Steiner triple systems of order 15 are 3−1-isomorphic.

Two particular cases of the final 39, namely (01, 43) and (01, 62), re-
quired considerable amounts of computer time, mainly because methods (i)
and (ii) failed to produce the desired results. So it is appropriate to give
details of these 3−1-isomorphisms.
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In the first case we have:

STS(15) #43: 012 034 057 06a 08c 09d 0be 135 146 17c 189 1ae
1bd 236 247 258 29a 2bc 2de 37d 38b 39e 3ac 459
48e 4ab 4cd 56b 5ad 5ce 67e 68d 69c 78a 79b;

extended trade: (06a 08c 09d 135 17c 189 1ae 247 29a 39e
3ac 459 4cd 5ad 5ce 68d 69c 78a 146,

069 08a 0cd 139 15a 178 1ce 249 27a 35c
3ae 45d 47c 59e 68c 6ad 89d 9ac 146) = (C,D);

C1: 08c 09d 29a 39e 4cd 5ad 68d 69c 78a,
D1: 069 08a 139 15a 178 249 68c 6ad 89d,
C2: 06a 135 17c 189 1ae 247 3ac 459 5ce 146,
D2: 0cd 1ce 27a 35c 3ae 45d 47c 59e 9ac 146.

In the second case we have:

STS(15) #62: 012 034 057 068 09b 0ad 0ce 135 146 17a 18b 19e
1cd 236 245 27b 28c 29d 2ae 37c 38d 39a 3be 47d
48e 49c 4ab 569 58a 5bc 5de 67e 6ac 6bd 789;

extended trade: (012 034 09b 0ad 0ce 17a 19e 1cd 29d 37c
39a 3be 49c 4ab 5bc 5de 67e 6ac 6bd 245,

01e 02d 03c 04b 09a 129 17c 1ad 349 37e
3ab 4ac 5bd 5ce 67a 6be 6cd 9bc 9de 245) = (C,D);

C1: 09b 19e 1cd 29d 3be 49c 5bc 67e 6ac 6bd,
D1: 01e 02d 03c 09a 1ad 4ac 5ce 67a 6be 6cd,
C2: 012 034 0ad 0ce 17a 37c 39a 4ab 5de 245,
D2: 04b 129 17c 349 37e 3ab 5bd 9bc 9de 245.

In each case one can verify that the extended trade transforms the given
STS(15) into STS(15) #01.
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Table 4.1: di,j, the distance between STS(15)s, part I

0000000001111111111222222222233333333334 4444444445555555555666666666677777777778

1234567890123456789012345678901234567890 1234567890123456789012345678901234567890

01 04688ccaccdccae7deefffgeedffgggghggiihgg hgiiiigiiighhghhihghhjiiiihiiijhgiiiigif

02 044488688a886a6aacccccccacccdcdedefgfdd eeggffefffeeedeefedfefefffefffgfeffehegf

03 04486487a7648478cbbbba98aabcbcdddefddc ceeeeedeeecdccddedddefeeefeefefeeefegefh

04 044844474446886a8998886998a8acbccedba bcedcdccddcccbcccbadcccdcdcddcddecdcecef

05 04446477468868a9bb8988aaab8bcccdedcc ccddcdcdddcdcccddcbdcddddecddcedccddfcef

06 0486647774c8488999999889898aabcccbb bcccccbcccccbbcccbccacacccdccccddccddddf

07 08977b678a48abbcac9abbbaaaccdecdcd dcccecceddcfeddedddccfdddededdeecedfdccf

08 0448744444488bb776477797aa9abdba9 9cbbbcbbcbaba9abbbabcbaccccccbcccbcaecdf

09 0447444874849944466647778899cb99 9bba9b9ababa9a9aa97a99aaabbbb9bcdaa8ccde

10 04444487477994644777747989acaa9 9baa9b9bbbaba99ab99aaaabababbabbb9b9dabe

11 04774c77446666774474747798b988 8a889b89999a98aa988a897aa9aaa8aab989aaac

12 0777ab86466444488476788aadb88 8bba9b9abbaa999bb87a9a9aababbabbdaa8dcde

13 04484477bb7747886879989beab9 9aaabbabbbabaa9cbaaabbacbccbcccccbbbdddd

14 07667b7bb7764888989a9aaeba9 9cccbcbbcbaca9babaabbccccccccadcecdbdcef

15 084447997777477877aab8aaab 9aaabcaab9baaaab99aaba7ababbaabbb9aadcce

16 068ccddaa97bbbcbcdbcdfddb cedededeeecdcbddeeddfedeeefeeefefefdgffh

17 0477bb9a77779aaa99bacbbb baaabacbbbaccbbcacaaccacccbdbacccbcddccd

18 074a97777747a7977bbb99a bcba9ba9ab9aa9aaab8a9a9ababbb8abcabbdaef

19 0668999977a79799aacb99 9baaab8bb9bbaaccbaaa9a4acbbbbabbababcaac

20 086777777779744aac9aa abba99a999989899a84869989bb998aabaaaabce

21 0498889888a8aa499844 4a998848889a77a9a7ab67899aa9a99aa8a9bbbd

22 0899989a9a8888bb977 79baaa7a99884488848944a79999aa9ababbbadd

23 04444477447497b988 88a76868899988a89687b87a8888978ab877aabd

24 04444764444a7a968 88878868889768989877b8889888979ab874a9bc

25 044444766468b886 6a779889888888698877b9799a9a98a9ba97baad

26 04447477787b986 6a998a88a88986888889b9899aaa97a9b997babe

27 0474747794b888 68779a88869888896679a948998887988677aaac

28 0777744878668 8aa96886886786889947a9778998a478a897b8cc

29 0874478aca88 6ba788999897899a8969a668a9a9a8abbb7aaacd

30 0444684b886 68448888999868889879aa77888a8798b879977d

31 0777a8a899 9b778b8baaba9999a9a9caaaa8bab99a8697c88c

32 06487a968 68848868688766889847a64886899478884877ac

33 0487a888 887866886674768786778994888884888897a99b

34 089a688 889786868867668686749977688864888888a8bc

35 08b474 4b86787798774898a899a6669a977899a7bb98bd

36 08896 8a44888989879a9999abcb7a98b8a99bc8aab88c

37 0bab 94ba886988ab98998ac9cbaa977abaa9899bbb9c

38 047 78884777746668648888b99877744688a98a968c

39 04 7998448444687776848898a967977687778698bb

40 0 49684774778877777488999887969989a488b98b
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Table 4.1: di,j, the distance between STS(15)s, part II

4444444445555555555666666666677777777778

1234567890123456789012345678901234567890

41 09884747747874767788988878888868a79899ab

42 0886686678896688886b9b9644888964a6b88b9

43 04898898979aa989abcba988a8ba9bb8abb74c

44 0688689747987998ac87988899879a979947c

45 0747646687477788b798448878678869888c

46 044488887686766a9887466866647889ab9

47 0447697478878898687886889774898a9b

48 0477887667788b98847686688879a99bb

49 077686774888aa984676866477688ab8

50 068877766a8aa6874677686888966ab

51 0444444876b797466767789899a4bc

52 047647747c7987888644688a7a8ab

53 04747488848478868777a99887bd

54 0464466778766867888878a97ac

55 074766a4b987664666886888bc

56 07477b7a767846644aa9887bc

57 0486978666687887688a87ba

58 098778798679977978998bc

59 04a966688687888a8babcc

60 0ba9966676446694778ba

61 07a4b9baaabbccdddddf

62 09689997869ba898bcd

63 09a9888798b97a9aca

64 08688878a99aabaac

65 06464664898997aa

66 04468776a89889a

67 0466746a8969cb

68 04747898999cb

69 08649a8a68bc

70 0488884a6ba

71 068a7788ca

72 08a6b68c9

73 0a9ba886

74 0898668

75 0a4aac

76 0b9dc

77 0bbb

78 08b

79 0c

80 0
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Table 4.2: hi,j for pairs of STS(15)s, part I

0000000001111111111222222222233333333334 4444444445555555555666666666677777777778

1234567890123456789012345678901234567890 1234567890123456789012345678901234567890

01 04688.ca.e.c...7..............g......... .......................................f

02 044488688c886a6aa.c..ccca..cee......... ................................eh......

03 04486487a7648478cbcccca8c.bcce........ ..e.................f...........e.......

04 044844474446886a8aa8886aa8c8bcbe..gbb d...ded....dcdfh.fcdc..e..d......f.c....

05 04446477468868ab.c8a88bba.8bc..e.f.. .c.ef...d.............e......d..ch....g.

06 0486647774c8488acbbbb88c8k8cc....bb .cccfcchd.c..ce.ebcg..ecdf...c.d..c.e...

07 08a77.678.48a..f..o...b.......c... ....f...............c.....d.....c...eccf

08 0448744444488..7764777a7abb.c.caa b.ccccbdd.cbcacb.cab..ccd....bd..fec....

09 044744487484aa444666477788bb.daa ac.bbbabbbbaaadada7baaaacddbcbdd.bb8cf..

10 04444487477aa4644777747a8ab.bbb acdbabcbbbcbaaadca9bacabccabcaccd.bbec..

11 04774c774466667744747477a8ea88 8a88ab8babbba8abb88a8a7cacaac8cabb8bcbgc

12 0777cb86466444488476788ae.c88 8h.cbbacbcbaaaccc87c9ccbce..fb.d.cc8....

13 04484477cc774788687998eb.b.a ba.edbad.badabdddcac..acbfcgdc.h.c.b.d..

14 07667.7cf7764888989bab....e a..d....g..dac..cdaccccc...e.b.....ff...

15 084447aa7777477877aab8abab aaaaccbacabcccaccbbac.7.cabcgabb.daagd..

16 068cc....b7......dbc..... .......................f................

17 0477fc9a7777abea99.ecd.. eaaafaffeba.....b.eaffacfd.db.c..de....d

18 074aa7777747a7977.b.bba fcbabbaaacbaabbaab8a.a9cbabbc8ac.acc....

19 0668ba9977b797bcc..b.b gbccac8eeacbcad.daca9c4ccc.fcab.a.abcaa.

20 08677777777a744aacbaa acgbaaaba.b8a8aaa8486da8acbac8aabaaaac.f

21 04a888a888c8aa4a.844 4b.a884888aa77aca7ac678aacbababcc8a.cf..

22 08aaa8acae8888dda77 7bdbaa7baa884488848a44a7bbaabaaacde.cb..

23 04444477447497ba88 88a768688a9988a8a687.87b8888978ab877aa..

24 04444764444a7aa68 8887886888a768989877b888a888b79ab874a9c.

25 044444766468d886 6a779889888888698877.a799a9aa8a9ba97caae

26 04447477787.986 6a998a88a88986888889.a899baa97a9ca97cc..

27 04747477a4c888 68779a88869888896679e948998887988677aaaf

28 0777744878668 8aa9688688678688a947c97789a8a478a897b8..

29 0874478aca88 6cc788a998978aaa8a69c668aba9b8abd.7aaa.g

30 0444684e886 684488889a9868889879cb77888a8798b879977d

31 0777c8a8aa ab778b8cbabaaa99baa9.caac8cbb99a8697e88e

32 06487a968 6884886868876688a847c6488689a478884877cd

33 0487b888 887866886674768786778a94888884888897ab9b

34 089b688 88a78686886766868674e977688864888888a8c.

35 08e474 4b867877987748a8a899f6669a9778a9a7dc98..

36 088a6 8a4488898a879a9999accb7a98b8a99bc8aab88c

37 0bab d4ea886a88bb98a98aca..aa977bbaa98bdeb.9.

38 047 78884777746668648888eba877744688a98aa68f

39 04 7aa84484446877768488.8a9679776877786b8..

40 0 4a684774778877777488aaa887a69989a488ba8.
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Table 4.2: hi,j for pairs of STS(15)s, part II

4444444445555555555666666666677777777778

1234567890123456789012345678901234567890

41 0b884747747874767788c88878888868a7989a.b

42 0886686678896688886.cb9644888964d6c88cc

43 0489889897aaa98aab.fa988b8ba9be8ccc74f

44 0688689747987998bd8798889987aaa79947e

45 0747646687477788c7a8448878678869888.

46 044488887686766a9887466866647889acb

47 04476a74788788c868788688a7748a8abe

48 0477887667788d98847686688879a99..

49 077686774888aaa84676866477688ad8

50 068877766a8.a6874677686888b66af

51 0444444876b7974667677898a9a4d.

52 047647747d7a87888644688a7a8ab

53 04747488848478868777a9a887bd

54 0464466778766867888878a97a.

55 074766b4b987664666886888d.

56 07477c7a767846644ba9887..

57 0486e78666687887688a87ca

58 0a87787a8679a77a78a98d.

59 04c966688687888a8bbb..

60 0baa966676446694778ca

61 07.4dcbaad.bd....d..

62 09689997869da898b..

63 09ba888798ca7a9aca

64 08688878a99acbaae

65 06464664898ba7d.

66 04468776a89889a

67 0466746a8a69cb

68 047478a8999ce

69 08649a8a68cc

70 0488884a6ea

71 068a7788ca

72 08a6b68d9

73 0aada886

74 0898668

75 0a4aa.

76 0bc..

77 0b..

78 08b

79 0.

80 0
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