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1 Introduction

The background to this paper is the anti-Pasch problem for Steiner triple
systems. A Steiner triple system of order v, STS(v), is a pair (V,B) where
V is a set of v elements (called points) and B is a set of 3-element subsets
of V (called blocks or triples) with the property that each 2-element subset
of V is contained in exactly one block. An STS(v) exists if and only if
v ≡ 1 or 3 (mod 6) [10], and such values are called admissible. A Pasch
configuration, also known as a quadrilateral, is a set of 3-element sets on
six points having the form

{{a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}}.

The anti-Pasch conjecture, originally made by Paul Erdős [6] in a more
general form, was that for all sufficiently large admissible v there exists an
STS(v) that contains no Pasch configurations among its blocks. The con-
jecture was finally established in a series of papers [1, 8, 9, 11] culminating
in [7]. So it is now known that there exists an STS(v) that contains no
Pasch configurations provided v is admissible and v 6= 7, 13. Such systems
are called anti-Pasch and are denoted as APSTS(v).

When v is not admissible, there is no STS(v). However, there will still
be a maximum or optimal packing with triples on v points, and there will
also be a minimum or optimal covering with triples on v points. In a
previous paper we determined the anti-Pasch result for optimal packings
[4]. In the current paper we determine the anti-Pasch result for optimal
coverings. These packings and coverings are as close as it is possible to get
to an STS(v) when v is not admissible.

Our proofs require the checking of a lot of details, so before embarking
on them, we give an overview. In broad terms, the proofs are based on es-
tablishing the existence of anti-Pasch Steiner triple systems and anti-Pasch
optimal packings that satisfy certain additional properties, essentially ex-
cluding “forbidden” blocks. These additional properties enable us to adjoin
extra blocks that do not introduce Pasch configurations, and thereby ob-
tain anti-Pasch coverings. Most of the complexity in the proofs lies in
establishing the existence of these specific anti-Pasch designs.

For v ≡ 1 or 3 (mod 6) (with v 6= 7 or 13) there exists an APSTS(v), and
anti-Pasch optimal coverings for the cases v ≡ 2 or 4 (mod 6) are easily
obtained from these as explained in Section 3. The most difficult case
appears to be v ≡ 5 (mod 6). It is easy to obtain an optimal covering by
triples in this case, by adding two additional triples to an optimal packing,
but it appears to be difficult to ensure that the resulting design avoids
Pasch configurations. However, once this case has been resolved we can
obtain, relatively easily, the result for v ≡ 0 (mod 6), and we explain this
in Section 4.
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There are two constructions presented in [4] and we show in Section
5 how these may be modified to form the basis of an inductive argument
to establish the existence of anti-Pasch optimal coverings by triples on v
points when v ≡ 5 (mod 6). The modifications require us to prove the
existence of an APSTS(v) having an additional property (called G4a) for
each admissible v apart from v = 7 or 13. In Section 5 we proceed on the
assumption that such STS(v)s exist and defer the proof of this to Section
6 where we make extensive use of some of the constructions presented in
[7] and [11].

2 Definitions and terminology

A partial triple system of order v, PTS(v), is a pair (V,B) and is defined
similarly to an STS(v), except that each 2-element subset of V is required
to be contained in at most one block. A PTS(v) = (V,B) for which there
is no PTS(v) = (V,B′) with |B′| > |B| and B ⊆ B′ is called a maximal
partial triple system, MPTS(v). An MPTS(v) with the largest possible set
of blocks is called a maximum maximal partial triple system, MMPTS(v).
The name is generally shortened to “maximum partial triple system”. Such
systems are also known as optimal or maximal packings with triples, and
they give rise to optimal constant weight error-correcting codes (see [2,
Section VI.40]).

We often have to write pairs and triples. When no confusion is likely, we
may omit brackets {} and commas. For example, we may write {a, b, c} as
abc. Thus a Pasch configuration has the form {abc, ayz, xbz, xyc}. We use
the letters AP (Anti-Pasch) to denote a design without Pasch configurations
as in APSTS(v), APPTS(v), APMMPTS(v), etc.

The leave of an MMPTS(v) is the set of pairs that are not covered
by the blocks. We will be particularly concerned with MMPTS(v) in the
case v ≡ 5 (mod 6), and then the leave comprises four pairs, having the
form {ab, bc, cd, da}. This can be represented as a graph by taking each
pair as an edge, and so the leave for v ≡ 5 (mod 6) can be expressed as
a 4-cycle (a, b, c, d). It may or may not happen that the blocks containing
the pairs ac and bd have a common third point e. When this does happen,
the MMPTS(v) is said to be of quintuple type and, by removing the two
blocks ace and bde, a PTS(v) can be formed with a hole {a, b, c, d, e}.

A covering by triples on v points, CT(v) is again a pair (V,B) and is
defined similarly to an STS(v), except that now each 2-element subset of
V is required to be contained in at least one block. A CT(v) = (V,B) for
which there is no CT(v) = (V,B′) with |B′| < |B| and B′ ⊆ B is called
a minimal covering by triples, MCT(v). An MCT(v) with the smallest
possible set of blocks is called a minimum minimal covering by triples,
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MMCT(v). The name is generally shortened to “minimum covering by
triples”. Such systems are also known as optimal coverings by triples.

The number of triples in an MMCT(v) is given by

|B| =

⌈

v

3

⌈

v − 1

2

⌉⌉

.

The excess is the multiset of pairs {x, y} with multiplicity given by
|B ∈ B : {x, y} ⊆ B| − 1. This can be represented as a multigraph by
taking each pair of the excess as an edge (with appropriate multiplicity).
Table 1 gives the structure of MMCT(v) for different values of v modulo 6,
see [2, Section VI.11.5].

v Number of triples Excess graph

1, 3 (mod 6)
v2 − v

6
Empty

0 (mod 6)
v2

6
v
2K2

2, 4 (mod 6)
v2 + 2

6
K1,3 ∪

v−4
2 K2

5 (mod 6)
v2 − v + 4

6
One edge of multiplicity 2

Table 1: The structure of optimal coverings by triples.

In Section 6 we make extensive use of m-bipartite systems first intro-
duced in [7]. These are defined in the following manner. An STS(u,−m) is
a triple (U,M,B), where U is a set of points having cardinality u, M ⊆ U
has cardinalitym, and B is a collection of triples of points with the property
that every pair of points {α, β}, with α ∈ U , β ∈ U \M appears in precisely
one triple from B, and no pairs {α, β} with α, β ∈ M appear in any triple
from B. The setM is called the hole. For u andm both admissible (the only
cases we will consider here), an STS(u,−m) is an STS(u) with an STS(m)
subsystem removed. An APSTS(u,−m) is an STS(u,−m) containing no
Pasch configurations. An STS(u,−m) is said to be m-bipartite if the points
of U \M can be partitioned into two sets X and Y , each of cardinality n
(so that u = m + 2n), in such a way that the design has no triples of the
forms {µ, x1, x2} or {µ, y1, y2} where µ ∈ M , x1, x2 ∈ X and y1, y2 ∈ Y .
An m-bipartite APSTS(u,−m) will be denoted by BAPSTS(u,−m). It is
easily seen that for admissible u = m+2n, an m-bipartite STS(u,−m) can
only exist if m ≤ n.
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Also in Section 6, use is made of group divisible designs (GDDs) and
transversal designs (TDs). For definitions and associated terminology re-
lating to these, the reader is directed to [2].

3 The cases v ≡ 2 or 4 (mod 6)

For v ≡ 2 or 4 (mod 6) and v 6= 8, 14, let S = (V,B) be an APSTS(v − 1)
with V = {0, 1, . . . , v−2} and where B contains the blocks {0, 2i−1, 2i} for
i = 1, 2, . . . , (v − 2)/2. Enlarge V by adding a new point ∞ to form V ∗ =
V ∪ {∞} and enlarge B by adding blocks to form B∗. First add the blocks
{∞, 2i− 1, 2i} for i = 2, 3, . . . , (v − 2)/2. Addition of these blocks cannot
generate a Pasch configuration since any Pasch configuration containing two
of the blocks with ∞ would imply the existence of a Pasch configuration
containing the two corresponding blocks containing the point 0. Then
add the blocks ∞01,∞02 to complete the formation of B∗. The repeated
pairs are now 0∞, 01, 02, 34, 56, . . . , (v − 3)(v − 2). So S∗ = (V ∗,B∗) is an
MMCT(v) with excess graph K1,3 ∪ (v−4

2 )K2.
To prove this MMCT(v) is anti-Pasch it suffices to consider a potential

Pasch configuration P containing either ∞01 or ∞02 (but not both). If
P contains ∞01 then, without loss of generality, the other block of P
containing ∞ is ∞34. So the blocks are either

1. ∞01,∞34, 03Z, 14Z, or

2. ∞01,∞34, 04Z, 13Z.

In the former case the third block gives Z = 4, and in the latter case the
third block gives Z = 3. So in either case we have a contradiction. In
a similar way the possibility of a Pasch configuration containing the block
∞02 can be eliminated. Hence we obtain an APMMCT(v) for all v ≡ 2 or 4
(mod 6) with the possible exceptions of v = 8 and v = 14. By computation
it is easy to show that there is no APMMCT(8), but an APMMCT(14)
does exist and is given by the following 33 blocks:

012, 014, 026, 038, 03X, 059, 07Y, 0ZW, 136, 157, 189,
1XW, 1Y Z, 235, 247, 28W, 29Z, 2XY, 34Y, 379, 3ZW, 456,
45W, 48Z, 49X, 58Y, 5XZ, 67Z, 67W, 689, 6XY, 78X, 9YW.

As a consequence we may state the following result.

Theorem 3.1 There exists an APMMCT(v) for all v ≡ 2 or 4 (mod 6)
with the single exception of v = 8.
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4 The case v ≡ 0 (mod 6)

We will show in Theorem 5.4 of Section 5 that for s ≥ 2, there ex-
ists an APPTS(6s + 5) on the point set V = {0, 1, . . . , 6s + 4}, with
leave K5 on the set F = {0, 1, 2, 3, 4}, containing blocks {0, 2i− 1, 2i} for
i = 3, 4, . . . , 3s+2, and having the additional property that adding the five
blocks 012, 013, 014, 023 and 234 does not generate a Pasch configuration.

So take such an APPTS(6s + 5). Enlarge V by adding a new point
∞ to form V ∗ = V ∪ {∞} and enlarge B by adding blocks to form B∗.
First add the blocks 012, 013 and 234. The additional property of the
APPTS(6s + 5) ensures that these do not create a Pasch configuration.
Next add the blocks {∞, 2i−1, 2i} for i = 3, 4, . . . , 3s+2. Addition of these
blocks cannot generate a Pasch configuration since any Pasch configuration
containing two of the blocks with ∞ would imply the existence of a Pasch
configuration containing the two corresponding blocks containing the point
0. Next add the blocks∞14 and∞23. Again, by referring to the triples 014
and 023, it can be seen that these additional blocks cannot generate a Pasch
configuration. Finally complete B∗ by adding the block ∞04. This cannot
lie in a Pasch configuration with∞14. If it lay in a Pasch configuration with
∞23 then the other two blocks would be either 02Z, 34Z or 03Z, 24Z. In
the former case the first block gives Z = 1 and the second block gives Z = 2,
while in the latter case the first block gives Z = 1 and the second block
gives Z = 3, a contradiction in both cases. The only remaining possibility
is that ∞04 lies in a Pasch configuration with a block {∞, 2i − 1, 2i} for
some i = 3, 4, . . . , 3s+2, and without loss of generality we can assume that
i = 3 so that the second block is ∞56. But then the remaining two blocks
would be 05Z, 46Z or 06Z, 45Z. The former case implies Z = 6 and the
latter case implies Z = 5, so in either case we have a contradiction.

So the resulting design is anti-Pasch with point set V ∗. In addition to
triples of the PTS it has blocks {∞, 2i− 1, 2i} for i = 3, 4, . . . , 3s+ 2, and
also 012, 013, 234, ∞14, ∞23 and ∞04. These cover all remaining pairs
not covered by triples of the PTS, and the repeated pairs are ∞4, 01, 23,
and {2i− 1, 2i} for i = 3, 4, . . . , 3s+ 2. So this design is an APMMCT(v)
for v = 6s+ 6 with s ≥ 2.

It remains to consider the cases s = 0 and s = 1. An APMMCT(6)
does exist and is given by the following six blocks:

012, 013, 045, 234, 235, 145.

Exhaustive searches by two independently written computer programs con-
firm that there is no APMMCT(12). Consequently we may state the fol-
lowing result.

Theorem 4.1 There exists an APMMCT(v) for all v ≡ 0 (mod 6) with
the single exception of v = 12.
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5 The case v ≡ 5 (mod 6)

Here we use two constructions taken from [4]. In each case we make some
specific choices and additional assumptions.

Construction 1 starts with an APSTS(n+2) having an additional prop-
erty and produces an APMMPTS(3n+2) for n ≡ 1 or 5 (mod 6) that itself
has additional properties. Some of these properties make it possible to
adjoin extra blocks to this design to yield an APMMCT(v) with v ≡ 5
or 17 (mod 18). Construction 2 starts with an APMMPTS(n+ 2) having
additional properties and produces an APMMPTS(3n+2) for n ≡ 3 (mod
6) that itself has additional properties. Some of these properties make it
possible to adjoin extra blocks to this design to yield an APMMCT(v) for
v ≡ 11 (mod 18). In order to cover all cases v ≡ 5, 11 and 17 (mod 18) it is
necessary to combine Construction 2 recursively with Construction 1 in or-
der to ensure the existence of “starting” systems APMMPTS(n+2) having
the required additional properties. Both constructions omit a small number
of small values of v that can be resolved by computer searches; these small
systems are given in [5]. We start by explaining the terminology employed
in these constructions.

Both constructions depend on the cycle structure of STS(v) and
MMPTS(v) designs. For such a design (V,B), define the double neigh-
bourhood of x, y ∈ V (with x 6= y) as

N(x, y) = {{z, w} : xzw ∈ B or yzw ∈ B, and {z, w} ∩ {x, y} = ∅}.

A double neighbourhood N(x, y) can be represented as a graph G(x, y) by
taking the pairs of N(x, y) as edges. In the case of an STS(v) the graph
G(x, y) is 2-regular and so it is the union of simple cycles, each of even
length at least four. We refer to these as the cycles on the pair {x, y}, or
as the {x, y}-cycles. In the case of an MMPTS(v) with v ≡ 5 (mod 6), if
the pair {x, y} lies in the leave, so that the leave has the form (x, y, z, w),
then the points z and w have degree one in G(x, y), and therefore the graph
contains a path with end points z and w, which we refer to as the path on
the pair {x, y}, or as the {x, y}-path. If this path has length v−3 (i.e. it has
v− 2 vertices) then there will be no cycles on {x, y}, but if its length is less
than v−3, there will also be cycles on {x, y}. If an STS(v) or an MMPTS(v)
contains a Pasch configuration, say {xpq, xrs, ypr, yqs}, then the graph
G(x, y) contains the 4-cycle (p, q, s, r). Conversely, if G(x, y) contains a
4-cycle, then the corresponding four blocks form a Pasch configuration.
Consequently, an APSTS(v) or an APMMPTS(v) cannot give rise to a
cycle of length four on any pair of points {x, y}.

For a positive integer n denote the set {0, 1, . . . , n−1} by N . If a, b ∈ N ,
define the difference d = |a−b| (mod n) to be the minimum of (a−b) (mod
n) and (b − a) (mod n), so that d ∈ {0, 1, . . . , ⌊n

2 ⌋}. Very occasionally it
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is convenient to refer to a difference d > n/2 (but with d < n); such a
difference is to be interpreted as n − d. Now suppose that S = (V,B) is
an STS(n + 2) or an MMPTS(n+ 2) on the point set V = {A,B} ∪N . If
{A, a, b} ∈ B with a, b ∈ N then we say that A has an associated difference
d = |a− b| (mod n) in S and that d is a difference associated with A. The
set of all differences associated with A in S is denoted by DA. Note that
a block {A,B, x} does not generate a difference. The set of all differences
associated with B in S is defined in a similar fashion and is denoted by
DB.

Constructions 1 and 2 given below start by combining three STS(n+2)s
or three MMPTS(n+ 2)s, which we now describe.

For a positive integer n denote the set {0i, 1i, . . . , (n − 1)i} by Ni for
i = 0, 1, 2. Now suppose that for i = 0, 1, 2, Si = (Vi,Bi) is an STS(n+ 2)
or an MMPTS(n+2), where Vi = {A,B}∪Ni. Then the sets of associated
differences DA

i and DB
i are formed as described above as subsets of N

(not Ni), so that (for example) d ∈ DA
i if and only if there exists a block

{A, ai, bi} ∈ Bi such that |a − b| ≡ d (mod n). If DA
i ∩ DA

j = ∅ and

DB
i ∩ DB

j = ∅ for i, j = 0, 1, 2, with i 6= j, then we say that S0,S1,S2

have different differences with respect to {A,B}. Both Constructions 1
and 2 require systems with different differences and in each case these can
be formed from a single system with a generic labelling.

A generic labelling of an APSTS(n + 2) is a labelling of its points by
A,B and the elements of N with the following properties.

(i) One block is labelled AB0,

(ii) every block labelled Axy with x, y ∈ N has |x − y| = 1 (absolute
arithmetic, not just modulo n),

(iii) every block labelled Bxy with x, y ∈ N has |x− y| = 3 or 5 (absolute
arithmetic, not just modulo n),

(iv) each {A,B}-cycle is labelled with a subset of consecutive integers
from N .

It was shown in [4] that every APSTS(n + 2) has a generic labelling.
This was established by choosing any two points to be labelled as A and
B, and then labelling the points of each {A,B}-cycle using an appro-
priate subset of N . We may conveniently refer to an individual {A,B}-
cycle (x1, y1, x2, y2, ..., xm, ym) as being generically labelled if the blocks
are Axiyi and Byixi+1, the set {xi, yi : 1 ≤ i ≤ m} is a subset of con-
secutive integers from N , and |xi − yi| = 1, |yi − xi+1| = 3 or 5, where
xm+1 is taken to be x1. Note that in a generically labelled APSTS(n+ 2),
apart from the block AB0, every block Axy or Bxy has x and y of different
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parities.

A generic labelling of an APMMPTS(n + 2) with n ≡ 3 (mod 6) is a
labelling of its points by A,B and the elements of N with the following
properties.

(i) The leave is labelled (A, 0, 1, B),

(ii) every block labelled Axy with x, y ∈ N has |x − y| = 1 (absolute
arithmetic, not just modulo n),

(iii) every block labelled Bxy with x, y ∈ N has |x − y| = 2, 3 or 5
(absolute arithmetic, not just modulo n),

(iv) the {A,B}-path and each {A,B}-cycle (if any) is labelled with a
subset of consecutive integers from N .

Again, it was shown in [4] that every APMMPTS(n+ 2) with n ≡ 3 (mod
6) has a generic labelling.

In both cases, as a convention, when an {A,B}-cycle or path is listed
as (a, b, c, . . .), we assume that A comes first, i.e. there is a block Aab, a
block Bbc, etc. We can now describe the first construction, taken from [4].

Construction 1 Suppose that for i = 0, 1, 2, Si = (Vi,Bi) is an
APSTS(n+2) (so n ≡ 1 or 5 (mod 6)) on the point set Vi = {A,B}∪Ni,
with AB0i ∈ Bi. Suppose also that S0,S1,S2 have different differences
with respect to {A,B}. Then an APMMPTS(3n+ 2), say S∗, can be
formed on the point set V ∗ = {A,B} ∪ N0 ∪ N1 ∪ N2 with block set
B∗ containing the following triples:

• Horizontal blocks : All triples from B0 ∪ B1 ∪ B2, except for the
three triples AB0i, i = 0, 1, 2.

• Vertical blocks : All triples x0y1z2 where x0 ∈ N0, y1 ∈ N1,
z2 ∈ N2 and x+ y+ z ≡ 0 (mod n), except for the triple 000102.

• Mixed blocks : The two triples A0001 and B0002.

Construction 1 was used in [4] to prove that for n ≡ 1 or 5 (mod 6) and
n ≥ 5, there exists an APMMPTS(3n+ 2) of quintuple type.

In the current paper we will assume that n ≥ 17 and that the three
systems Si are formed from a single APSTS(n+ 2), say S = (V,B), where
V = {A,B}∪N , AB0 ∈ B. In order that the resulting APMMPTS(3n+2)
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can be extended to an APMMCT(3n + 2), and that it can be used as an
ingredient in Construction 2, we make one additional assumption about S,
namely that it has a certain property G4a that we define below. Section
6 establishes that an APSTS(v) with property G4a exists for all
admissible v 6= 7, 13.

For i = 0, 1, 2, the system Si is formed from S by applying the mapping
ψi : V 7→ Vi defined by

ψ0(A) = A, ψ0(B) = B, ψ0(x) = x0,

ψ1(A) = B, ψ1(B) = A, ψ1(x) = x1,

ψ2(A) = A, ψ2(B) = B, ψ2(x) = (2x)2,

for x ∈ N and arithmetic modulo n. This ensures that S0,S1,S2 have
different differences with respect to {A,B}. In fact, DA

0 = {1}, DB
0 ⊆

{3, 5}, DB
1 = {1}, DA

1 ⊆ {3, 5}, DA
2 = {2} and DB

2 ⊆ {6, 10}. (In the case
n = 17, the difference 10 is equivalent to 7, and in the case n = 19 it is
equivalent to 9.)

Definition 5.1 If an APSTS(v) can be generically labelled (we sometimes
say relabelled) on the point set {A,B, 0, 1, . . . , v − 3} in such a way that
there are no blocks of the form 0w(w + 4) (absolute arithmetic), then we
will say that the system has property G4a. If “absolute arithmetic” can be
replaced by “arithmetic modulo v−2”, then we will say that the system has
property G4m.

Clearly G4m implies G4a. The distinction between properties G4a and
G4m is small: the latter requires G4a plus the non-existence of three pos-
sible blocks 01(v − 5), 02(v − 4) and 03(v − 3). Note that any APSTS(v)
can be generically relabelled with respect to any pair of points, so these
properties assert that the relabelling can be done in such a manner so as
to avoid blocks 0w(w + 4).

Definition 5.2 In a similar way, if an APMMPTS(v) can be generically
labelled ( relabelled) on the point set {A,B, 0, 1, . . . , v−3} with {A,B}-path
(1, 2, 0), and in such a way that there are no blocks of the form 2w(w + 4)
(absolute arithmetic), then we will say that the system has property G4a.
If “absolute arithmetic” can be replaced by “arithmetic modulo v− 2”, then
we will say that the system has property G4m.

Again, G4m implies G4a. Note that an APMMPTS(v) with property G4a
must be of quintuple type since it has an {A,B}-path of length 2: the leave
is the 4-cycle (A, 0, 1, B), and there are blocks A12 and B02. Note also that
in this definition, the forbidden blocks are of the form 2w(w+4), unlike in
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Definition 5.1 where the forbidden blocks are of the form 0w(w + 4).

In both cases, APSTS(v) and APMMPTS(v), if the relabelling to es-
tablish property G4a (or G4m) is effected by a mapping φ, then we will
say that φ is a G4a (or G4m) mapping of the system.

Theorem 5.1 For n ≡ 1 or 5 (mod 6) with n ≥ 17, the system S∗ of
order 3n + 2 produced by Construction 1 (with the specific choices and
additional assumption described above) is of quintuple type and it has prop-
erty G4m. There is a G4m mapping φ of S∗ such that if the triples AB1
and A01 are added to the relabelled system, then the resulting design is an
APMMCT(3n + 2). Furthermore, the following triples can all be added as
blocks to the relabelled system without generating any Pasch configurations:
AB0, AB1, AB2, A01, A02, B01, B12, 012.

Proof It should be clear that S∗ is of quintuple type since it has leave
(A, 02, 01, B) and two mixed blocks A0001 and B0002. We remark that
removal of these two mixed blocks gives rise to an APPTS(3n + 2) with
leave K5 on the set {A,B, 00, 01, 02}. The {A,B}-cycles of S∗ are the
{A,B}-cycles of the three systems Si, which are themselves copies of the
{A,B}-cycles of S. The points of S∗ can be relabelled generically with
respect to {A,B} using a mapping φ : V ∗ 7→ W , where W = {A,B, 0, 1,
. . . , 3n− 1}. The action of φ is defined in stages.

First we set φ(A) = A and φ(B) = B. The {A,B}-path in S∗ is
(01, 00, 02), so we set φ(00) = 2, φ(01) = 1 and φ(02) = 0, and then
the relabelled {A,B}-path is (1, 2, 0). Next put φ(x0) = x + 2 for x =
1, 2, . . . , n− 1. Up to this point in the relabelling, and amongst the blocks
fully relabelled, there are no blocks 2w(w + 4) (arithmetic modulo 3n).

Next we define φ(x1) for x = 1, 2, . . . , n − 1. These points x1 are rela-
belled as n + 2, n + 3, . . . , 2n. Consider the {A,B}-cycles of S with their
original generic labelling; if Axy is a block of S then x and y have opposite
parities because |x− y| = 1 (absolute arithmetic). Consequently the same
is true for the original labelling of S1. We choose our generic relabelling
so that φ(x1) has opposite parity to x, and we also arrange the cycles so
that the point (n − 4)1 receives the label 2n, i.e. φ((n − 4)1) = 2n. This
can be done by taking the original labelling of S1, cycling the cycles, and
adding n+ 1 to the labels. The process is best illustrated by an example,
so we do this below in Example 5.1. Having done this and since there are
no blocks of S∗ of the forms 00w0z1 or 00w1z1, there are still no blocks of
the partially relabelled system that have the form 2w(w + 4) (arithmetic
modulo 3n).

Finally we define φ(x2) for x 6= 0. These points x2 are relabelled as
2n+1, 2n+2, . . . , 3n−1. The system S2 was produced from S by applying
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the mapping ψ2 : x→ (2x)2, so we can return to a generic labelling of the
cycles of S2 by inverting this mapping. Thus we define

φ(x2) =

{

2n+ x
2 if x is even and x 6= 0,

2n+ n+x
2 if x is odd.

This completes the definition of the relabelling mapping φ. The blocks of
S∗ that contain the point 00 and do not contain A or B have the forms
00x0y0 or 00x1y2. We have already shown that in the relabelled system
there are no blocks of the form 2w(w + 4) originating from the former
type. We now show that there are none originating from the latter type.
So consider a block 00x1y2 of S∗. Then x + y ≡ 0 (mod n), and since
1 ≤ x, y ≤ n−1, we must have x+y = n. We also have n+2 ≤ φ(x1) ≤ 2n
and 2n + 1 ≤ φ(y2) ≤ 3n − 1 so the possibilities for |φ(x1) − φ(y2)| = 4
(mod 3n) are limited to the following four cases.

1. φ(x1) = 2n, φ(y2) = 2n + 4. The second equality gives y = 8 and
consequently x = n − 8. But we have φ((n − 4)1) = 2n, so φ(x1) =
φ((n − 8)1) 6= 2n, and this case is impossible.

2. φ(x1) = 2n − 1, φ(y2) = 2n + 3. The second equality gives y = 6
and consequently x = n − 6. But then both φ(x1) and x are odd, a
contradiction.

3. φ(x1) = 2n− 2, φ(y2) = 2n+2. The second equality gives y = 4 and
consequently x = n− 4. But we have φ((n − 4)1) = 2n 6= 2n− 2, so
this is impossible.

4. φ(x1) = 2n − 3, φ(y2) = 2n + 1. The second equality gives y = 2
and consequently x = n − 2. But then both φ(x1) and x are odd, a
contradiction.

It follows from this that in the relabelled copy of S∗ there are no blocks
2w(w + 4) (arithmetic modulo 3n). The relabelling is generic, so we have
DA = {1} and DB ⊆ {2, 3, 5}.

Next we check that adding the blocks AB1 and A01 to the relabelled
system gives an MMCT(3n+ 2). The leave of the relabelled copy of S∗ is
(A, 0, 1, B), so adding these two triples covers all the pairs of the leave. Fur-
thermore, there is already a block A12 in the system, so the additional two
blocks will give an excess of two copies of the pair A1. It follows that the re-
sulting design is an MMCT(3n+2). To prove it is anti-Pasch and to prove
that we can add all the blocks AB0, AB1, AB2, A01, A02, B01, B12, 012
without creating a Pasch configuration, it is simpler to consider the
APPTS(3n + 2), say P∗, obtained from S∗ by removing the two mixed
blocks A0001 and B0002, and then to consider all ten triples on F =

13



{A,B, 00, 01, 02}. No two of these triples can lie together in a Pasch con-
figuration Q, since this would imply that the six points of Q lie in the
5-element set F . So we may consider the triples individually. By symme-
try, there are just three typical cases that need to be considered, namely
the blocks AB00, A0001, and 000102. Of these, the mixed block A0001 is
already known not to generate any Pasch configurations. So this leaves just
two typical cases.

Suppose first that AB00 lies in a Pasch configuration Q with three
blocks of P∗. Then Q has one of the following forms.

1. Blocks AB00, Ax0y0, Bx0z0, 00y0z0. But these form a Pasch config-
uration in S0, a contradiction.

2. Blocks AB00, Ax1y1, Bx1z1, 00y1w2. Since z1 6= w2, these blocks
cannot form a Pasch configuration.

3. Blocks AB00, Ax2y2, Bx2z2, 00y2w1. Since z2 6= w1, these blocks
cannot form a Pasch configuration.

Now suppose that 000102 lies in a Pasch configuration Q with three
blocks of P∗. Then Q has one of the following forms.

1. Blocks 000102, 00x0y0, 01x0z2, 02y0w1. Since z2 6= w1, these blocks
cannot form a Pasch configuration.

2. Blocks 000102, 00x1y2, 01x1z1, 02y2w2. Since z1 6= w2, these blocks
cannot form a Pasch configuration.

3. Blocks 000102, 00x1y2, 01y2z0, 02x1z0. These blocks require x+ y ≡
y+z ≡ x+z ≡ 0 (mod n), which gives x = y = z = 0, a contradiction.

This completes the proof of the theorem. �

Theorem 5.1 establishes the existence of APMMCT(v) designs for v =
18s + 5 and v = 18s+ 17 when v ≥ 53. The related APMMPTS designs
also have property G4m and, with the appropriate generic labelling, certain
blocks may be added without generating a Pasch configuration. These
additional properties are required in order to deal with the case v = 18s+11.
We have also constructed such systems for v = 23, 35 and 41 by means of
computer searches and these are given in [5].

Finally, the blocks 012, 013, 014, 234 form an APMMCT(5) and, again
by a computer search, we have constructed an APMMCT(17) (but without
property G4m and the additional blocks property) and this is also given in
[5].
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Example 5.1
With reference to the preceding theorem, suppose that S has an {A,B}-
cycle (1, 2, 5, 6, 3, 4). Then S1 has an {A,B}-cycle (21, 51, 61, 31, 41, 11).
This can be generically relabelled by φ as (n+1)+(1, 2, 5, 6, 3, 4) by putting
φ(21) = n+ 2, φ(51) = n+ 3, φ(61) = n+ 6, φ(31) = n+ 7, φ(41) = n+ 4
and φ(11) = n + 5. A similar process will define φ for every {A,B}-cycle
of S1. To deal with the specification that φ((n − 4)1) = 2n, consider
the {A,B}-cycle of S1 that contains the point (n − 4)1. Suppose this is
(. . . , a1, (n − 4)1, b1, . . .) of length ℓ. By cycling the cycle it can be re-
written as (b1, . . . , a1, (n − 4)1). There will be a generic labelling of a
cycle of length ℓ on the integers 2n − ℓ + 1, 2n − ℓ + 2, . . . , 2n that can
also be written (by cycling the cycle) as (β, . . . , α, 2n). Then we define
φ(b1) = β, . . . , φ(a1) = α, φ((n− 4)1) = 2n. Note that in all cases, φ(x1)
has opposite parity to x.

We now move on to the second construction, also taken from [4].

Construction 2 Suppose that for i = 0, 1, 2, Si = (Vi,Bi) is an
APMMPTS(n+2) with n ≡ 3 (mod 6) on the point set Vi = {A,B}∪
Ni, such that S0,S1 and S2 have different differences with respect to
{A,B}, and their leaves are respectively (A, a0, b0, B), (A, c1, d1, B)
and (A, e2, f2, B). Suppose also that c − d ≡ f − e (mod n). Let δ
denote the difference |c−d| modulo n, and let g be such that g+c+e ≡
g + d+ f ≡ 0 (mod n). Assume that

(i) δ 6∈ DA
0 ∪DB

0 , and

(ii) there are no blocks g0w0(w + δ)0 ∈ B0 (where w + δ is taken
modulo n).

Then an APMMPTS(3n+ 2), say S∗, can be formed on the point set
V ∗ = {A,B}∪N0∪N1∪N2 with block set B∗ containing the following
triples:

• Horizontal blocks : All triples from B0 ∪ B1 ∪ B2.

• Vertical blocks : All triples x0y1z2 where x0 ∈ N0, y1 ∈ N1,
z2 ∈ N2 and x + y + z ≡ 0 (mod n), except for the two triples
g0c1e2 and g0d1f2.

• Mixed blocks : The four triples Ac1e2, Bd1f2, g0c1d1 and g0e2f2.

The leave of S∗ is (A, a0, b0, B), the same as that of S0.

In [4], Construction 2 was combined with Construction 1 to prove that
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for n ≡ 3 (mod 6) and n ≥ 9, there exists an APMMPTS(3n + 2) of
quintuple type and, consequently, that there exists an APMMPTS(v) for
all v ≡ 5 (mod 6) with v 6= 11.

In the current paper we will assume that n ≥ 27 and that the three
systems Si are formed from a single APMMPTS(n + 2), say S = (V,B),
where V = {A,B}∪N , with {A,B}-path (1, 2, 0), and which is generically
labelled with respect to {A,B}. We make two additional assumptions
about S.

1. S has the property G4m defined above, so there are no blocks
2w(w + 4) (arithmetic modulo n).

2. The following three triples can be added to B without generating any
Pasch configurations: AB0, AB1, A01.

We have shown in Theorem 5.1 that such a system S exists for n ≡ 3 or 15
(mod 18) when n ≥ 51, and our computational results deal with n = 33 and
n = 39. But whenever such a system S exists, we can proceed as follows.

For i = 0, 1, 2, the system Si is formed from S by applying the mappings
ψi : V 7→ Vi defined by

ψ0(A) = A, ψ0(B) = B, ψ0(x) = x0,

ψ1(A) = A, ψ1(B) = B, ψ1(x) = (4x)1,

ψ2(A) = B, ψ2(B) = A, ψ2(x) = (4x− 6)2,

for x ∈ N and arithmetic modulo n. This ensures that S0,S1,S2 have differ-
ent differences with respect to {A,B}. In fact, DA

0 = {1}, DB
0 ⊆ {2, 3, 5},

DA
1 = {4}, DB

1 ⊆ {8, 12, 20}, DA
2 ⊆ {8, 12, 20} and DB

2 = {4}. Since n ≥
27, these three systems have different differences with respect to {A,B}.
The three {A,B}-paths are (10, 20, 00), (41, 81, 01) and ((−6)2, 22, (−2)2).
So aligning these choices with the letters used in Construction 2, we have

a = 0, b = 1, c = 0, d = 4, e = −2, f = −6, g = 2, δ = 4.

The four mixed blocks are now A01(−2)2, B41(−6)2, 200141 and
20(−2)2(−6)2. From the three paths we see there are also blocks A1020,
A4181, A(−6)222, B0020, B0181 and B(−2)222.

Theorem 5.2 For n ≡ 3 (mod 6) with n ≥ 27, the system S∗ of order
3n + 2 produced by Construction 2 (with the specific choices and addi-
tional assumptions described above) is of quintuple type and it has prop-
erty G4m. There is a G4m mapping φ of S∗ such that if the triples AB1
and A01 are added to the relabelled system, then the resulting design is an
APMMCT(3n + 2). Furthermore, the following triples can all be added as
blocks to the relabelled system without generating any Pasch configurations:
AB0, AB1, A01.
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Proof It should be clear that S∗ is of quintuple type since it has leave
(A, 00, 10, B) and two horizontal blocks A1020 and B0020. We remark that
removal of these two horizontal blocks gives rise to an APPTS(3n + 2)
with leave K5 on the set {A,B, 00, 10, 20}. The {A,B}-cycles of S∗ are the
{A,B}-cycles of the three systems Si, which are themselves copies of the
{A,B}-cycles of S, together with the 6-cycle

C∗ = (41, 81, 01, (−2)2, 22, (−6)2).

The points of S∗ can be relabelled generically with respect to {A,B} using
a mapping φ : V ∗ 7→ W , where W = {A,B, 0, 1, . . . , 3n − 1}. The action
of φ is defined in stages.

First we set φ(A) = A and φ(B) = B. Then we set φ(x0) = x for
x = 0, 1, . . . , n− 1. So up to this point in the relabelling and amongst the
blocks fully relabelled there are no blocks 2w(w + 4) (arithmetic modulo
3n), and the {A,B}-path is relabelled as (1, 2, 0).

Next we relabel all points x1 apart from 01, 41, 81. The relabelling is
done generically on the {A,B}-cycles of S1 using the integers n,
n+1, . . . , 2n−4, with (−4)1 relabelled as 2n−4, i.e. φ((−4)1) = 2n−4. This
can be achieved by cycling the cycle containing the point (−4)1 in a similar
manner to that described in Example 5.1. Then we relabel the cycle C∗ in
the order shown so that it becomes (2n+1, 2n+2, 2n−1, 2n, 2n−3, 2n−2)
so, for example, φ(41) = 2n+ 1. This is a generic labelling of C∗.

Finally we relabel all the remaining points, that is all x2 apart from
22, (−6)2, (−2)2. This relabelling is also done generically on the {A,B}-
cycles of S2 using the integers 2n+3, 2n+4, . . . , 3n−1 with (−10)2 relabelled
as 3n − 1, i.e. φ((−10)2) = 3n − 1. This can be achieved by cycling the
cycle containing the point (−10)2.

The two mixed blocks 200141 and 20(−2)2(−6)2 have been relabelled
by φ as {2, 2n− 1, 2n+1} and {2, 2n, 2n− 2} respectively, neither of which
has the form 2w(w+4). The blocks containing the pairs 2081 and 2022 are
2081(−10)2 and 2022(−4)1, which have been relabelled as {2, 2n+2, 3n−1}
and {2, 2n − 3, 2n − 4}. Again, neither of these blocks has the form
2w(w+4). Finally, all remaining blocks of S∗ that contain the point 20 have
the form 20x1y2, and n ≤ φ(x1) ≤ 2n− 4, while 2n+ 3 ≤ φ(y2) ≤ 3n− 1.
So 7 ≤ (φ(y2) − φ(x1)) ≤ 2n − 1, and consequently none of these blocks
is relabelled in the form 2w(w + 4). The relabelling is generic, so we have
DA = {1} and DB ⊆ {2, 3, 5}.

Next we check that adding the blocks AB1 and A01 to the relabelled
system gives an MMCT(3n + 2). The leave of the relabelled system is
(A, 0, 1, B), so adding these two triples covers all the pairs of the leave.
Furthermore, there is already a block A12 in the system, so the additional
two blocks will give an excess of two copies of the pair A1. It follows that
the resulting design is an MMCT(3n+ 2).
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The final claim is that the triples AB0, AB1, A01 can be added to the
relabelled system without creating any Pasch configurations. This is equiv-
alent to claiming that the triples AB00, AB10, A0010 can be added to S∗

without creating any Pasch configurations. No two of these can lie to-
gether in a Pasch configuration because they have common pairs, so we
may consider these triples individually.

Suppose first that AB00 lies in a Pasch configuration Q with three
blocks of S∗. Then Q has one of the following forms.

1. Blocks AB00, A01(−2)2, B0181, 00(−2)221. Since 81 6= 21, these
blocks cannot form a Pasch configuration.

2. Blocks AB00, A01(−2)2, B(−2)222, 000102. Since 22 6= 02, these
blocks cannot form a Pasch configuration.

3. Blocks AB00, Ax0y0, Bx0z0, 00y0z0. But these form a Pasch config-
uration in S0, a contradiction.

4. Blocks AB00, Ax1y1, Bx1Z, 00y1w2. The only possibility for these
blocks to form a Pasch configuration is that Z = w2 and consequently
from Bx1w2 that x1 = 41 and w2 = (−6)2. But then from Ax1y1, we
find y1 = 81, while from 00y1w2 we find y1 = 61, a contradiction.

5. Blocks AB00, Ax2y2, Bx2Z, 00y2w1. The only possibility for these
blocks to form a Pasch configuration is that Z = w1 and consequently
from Bx2w1 that x2 = (−6)2 and w1 = 41. But then from Ax2y2, we
find y2 = 22, while from 00y2w1 we find y2 = (−4)2, a contradiction.

Now suppose that AB10 lies in a Pasch configuration Q with three
blocks of S∗. Then Q has one of the following forms.

1. Blocks AB10, A01(−2)2, B0181, 10(−2)211. Since 81 6= 11, these
blocks cannot form a Pasch configuration.

2. Blocks AB10, A01(−2)2, B(−2)222, 1001(−1)2. Since 22 6= (−1)2,
these blocks cannot form a Pasch configuration.

3. Blocks AB10, Ax0y0, Bx0z0, 10y0z0. But these form a Pasch config-
uration in S0, a contradiction.

4. Blocks AB10, Ax1y1, Bx1Z, 10y1w2. The only possibility for these
blocks to form a Pasch configuration is that Z = w2 and consequently
from Bx1w2 that x1 = 41 and w2 = (−6)2. But then from Ax1y1, we
find y1 = 81, while from 10y1w2 we find y1 = 51, a contradiction.
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5. Blocks AB10, Ax2y2, Bx2Z, 10y2w1. The only possibility for these
blocks to form a Pasch configuration is that Z = w1 and consequently
from Bx2w1 that x2 = (−6)2 and w1 = 41. But then from Ax2y2, we
find y2 = 22, while from 10y2w1 we find y2 = (−5)2, a contradiction.

Finally suppose that A0010 lies in a Pasch configuration Q with three
blocks of S∗. Then Q has one of the following forms.

1. Blocks A0010, A01(−2)2, 000102, 10(−2)211. Since 02 6= 11, these
blocks cannot form a Pasch configuration.

2. Blocks A0010, A01(−2)2, 00(−2)221, 1001(−1)2. Since 21 6= (−1)2,
these blocks cannot form a Pasch configuration.

3. Blocks A0010, Ax0y0, 00x0Z, 10y0Z, where Z = z0 or B (in fact
Z cannot be B since S∗ does not have a block containing the pair
B10). But these four blocks form a Pasch configuration in S0, a
contradiction.

4. Blocks A0010, Ax1y1, 00x1z2, 10y1z2. Then x+z ≡ 0 and 1+y+z ≡ 0
(mod n), so |x− y| ≡ 1 (mod n), giving 1 ∈ DA

1 , a contradiction.

5. Blocks A0010, Ax2y2, 00x2z1, 10y2z1. Then x+z ≡ 0 and 1+y+z ≡ 0
(mod n), so |x− y| ≡ 1 (mod n), giving 1 ∈ DA

2 , a contradiction.

It follows that the addition of the blocks AB1 and A01 to the relabelled
system gives an APMMCT(3n+2) and that the addition of a further block
AB0 does not create any Pasch configurations. �

Remark It might be thought that we could add any triple on the set
{A,B, 00, 10, 20} to S∗ without generating a Pasch configuration, but this
is not so. Consider the triple AB20. This lies in a Pasch configuration with
the blocks A4181, B0181 and 200141.

We now show how the results of Theorems 5.1 and 5.2 can be used to
establish that for s ≥ 4, there exists an APMMCT(6s+ 5). The following
lemma provides the inductive step.

Lemma 5.1 For s ≥ 4, there exists an APMMPTS(6s+5) on the point set
V = {A,B, 0, 1, . . . , 6s+ 2}, with {A,B}-path (1, 2, 0), generically labelled
with no block 2w(w + 4) (arithmetic modulo 6s+ 3), such that adding the
blocks AB1, A01 forms an APMMCT(6s+5), to which a further block AB0
may be added without creating a Pasch configuration.

Proof By computer searches we have constructed such designs for s =
4, 5, 6, 7, 10 and these are given in [5]. Theorem 5.1 establishes their exis-
tence for all s ≡ 0 or 2 (mod 3) with s ≥ 8. So suppose (inductively) that
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such designs are also known for s ≡ 1 (mod 3) when 4 ≤ s ≤ 3t + 1 and
t ≥ 3 (which is certainly true for t = 3). We show that this implies such
designs also exist for s = 3t + 4. We have 4 ≤ t + 1 ≤ 3t + 1, so by the
hypothesis or by Theorem 5.1 (depending on the value of t+ 1 modulo 3),
there is such a design on 6(t + 1) + 5 = 6t + 11 points. Consequently, by
Theorem 5.2 there is such a design on 3(6t+9)+ 2 = 18t+29 points. But
18t+ 29 = 6(3t+ 4) + 5, and so the result follows by induction. �

We can now state the following definitive anti-Pasch result for optimal
coverings in the case v ≡ 5 (mod 6).

Theorem 5.3 There exists an APMMCT(v) for all v ≡ 5 (mod 6) with
the single exception of v = 11.

Proof The result for v = 6s+5 with s ≥ 4 follows from Lemma 5.1. The
case s = 0 is given by the blocks 012, 013, 014, 234. The cases s = 2 and s =
3 follow from computer searches and the designs are given in [5]. Finally,
since there is no APMMPTS(11) [4], there cannot be an APMMCT(11).

�

By judicious relabelling of the systems produced by Theorem 5.1 and
5.2 we can obtain the following result mentioned in Section 4.

Theorem 5.4 For s ≥ 2 there exists an APPTS(6s + 5) on the point
set V = {0, 1, . . . , 6s + 4} with leave K5 on the set F = {0, 1, 2, 3, 4},
containing blocks {0, 2i − 1, 2i} for i = 3, 4, . . . , 3s + 2, and having the
additional property that adding the five blocks 012, 013, 014, 023 and 234
does not generate a Pasch configuration.

Proof For s ≥ 8 and s 6= 10, take a system produced by Theorem 5.1
or Theorem 5.2 and form the associated APPTS(6s+ 5) on the point set
W = {A,B, 0, 1, . . . , 6s+ 4} with leave K5 on the set F = {A,B, 0, 1, 2}.
For each s = 3, 4, 5, 6, 7, 10 a computer search has produced an
APPTS(6s+5) on the point set W with leave K5 on F (given in [5]). In all
these cases, the generic labelling ensures that there are blocks {A, 2i−1, 2i}
for i = 2, 3, . . . , 3s+1, and we can add the blocks A12, B02, AB0, AB1 and
A01 without generating a Pasch configuration. So now apply the mapping
χ :W 7→ V given by

χ(A) = 0, χ(B) = 2, χ(0) = 3, χ(1) = 1, χ(2) = 4, and

χ(x) = x+ 2 for x = 3, 4, . . . , 6s+ 2.

The resulting relabelled system satisfies the conditions required. This deals
with every case except for s = 2. In this case an appropriate APPTS(17)
has been found by a computer search and is given in [5]. �
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Remark Here we list the small cases obtained by computer searches
that are used in this Section, all of which are given in [5]. For v =
23, 29, 35, 41, 47 and 65 we give APPTS(v)s that yield APMMCT(v)s and
associated APMMPTS(v)s with property G4m and the property that cer-
tain additional blocks can be added without creating a Pasch configuration.
For v = 17 we give the APPTS(17) that gives the system required by The-
orem 5.4 and which also yields an APMMCT(17).

6 APSTS(v) with property G4a

Our aim in this section is to prove that for every admissible v, apart from
v = 7, 13, there is an APSTS(v) with property G4a. In fact the same is
true with “G4a” replaced by “G4m” and this requires virtually no extra
effort in the proof, so we prove the stronger version. However, the proof is
lengthy and breaks into a large number of cases. We will make use of the
fact that there is an APSTS(v) for all admissible v apart from v = 7, 13.
We also use some small systems with property G4m found by computer
searches as detailed below in Lemma 6.1.

Lemma 6.1 There exists an APSTS(v) with property G4m for v = 19, 31,
37, 49, 61 and 85.

Proof These systems are given in [5]. �

We split this section into two subsections, the first dealing with the
case v ≡ 3 (mod 6), and the second dealing with v ≡ 1 (mod 6). In the
second subsection we make use of some of the constructions presented in
[7] and [11]. These are reviewed and then extended in our Theorems 6.2,
6.4 and 6.5. With the aid of these, the case v ≡ 1 (mod 6) is completed in
a sequence of lemmas. Table 2 should help to convince the reader that our
results do indeed cover all admissible v apart from v = 7 and v = 13.

6.1 The case v ≡ 3 (mod 6)

Theorem 6.1 For every v ≡ 3 (mod 6), there exists an APSTS(v) on
the point set V = {A,B} ∪ {0, 1, . . . , v − 3}, with a block AB0, and that
can be generically labelled with respect to A,B, so that there are no blocks
0w(w+4) (arithmetic modulo v− 2). In other words, for every v ≡ 3 (mod
6), there exists an APSTS(v) with property G4m.

Proof Take v = 6s + 3. The proof breaks into two cases depending on
whether or not 7 | (2s+ 1). Provided 2s+ 1 is not divisible by 7, the Bose
construction gives an APSTS(v) and we show it has the desired properties.
When 2s+ 1 has a factor 7 we adopt a different approach.
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Residue Class Lemmas Notes
v ≡ 3 (mod 6) Theorem 6.1
v ≡ 7 (mod 18) Lemma 6.2 Except v = 7, 61, 97

Lemma 6.1 v = 61
Lemma 6.3 v = 97

v ≡ 1 (mod 18) Lemma 6.1 v = 19, 37
Lemma 6.4 v ≥ 55, v 6≡ 91 (mod 108)
Lemma 6.5 v ≡ 91 (mod 108)

v ≡ 13 (mod 18) Lemma 6.1 v = 31
Lemma 6.6 v ≡ 31 (mod 72), v ≥ 103
Lemma 6.1 v = 85
Lemma 6.7 v ≡ 13 (mod 72), v ≥ 157, v 6= 13.
Lemma 6.8 v ≡ 67 (mod 72)
Lemma 6.1 v = 49
Lemma 6.9 v ≡ 49 (mod 72), v ≥ 121

Table 2: APSTS(v) with property G4m

The Bose construction for an STS(6s+ 3) has point set 0i, 1i, . . . , (2s)i
for i = 0, 1, 2. The blocks are of two types:

1. triples xiyi(
x+y
2 )i+1, (x 6= y) where (x+ y)/2 is taken modulo 2s+ 1

and subscript arithmetic modulo 3,

2. triples x0x1x2.

In particular, 000102 is a block. Provided 2s + 1 is not divisible by 7, the
Bose system is anti-Pasch [3, Chapter 13]. The {02, 01}-cycles are all of
length 6 and have the form

Cx =
(

x1, (−x)1, (−
x

2
)2, (−

x

4
)0, (

x

4
)0, (

x

2
)2

)

, x = 1, 2, . . . , s.

We relabel using a mapping φ, first putting φ(02) = A, φ(01) = B
and φ(00) = 0. Then we relabel all the remaining points with the integers
1, 2, . . . , 6s by generically labelling each cycle Cx and doing it in such a way
so as to avoid labelling any block 0w(w + 4) (arithmetic modulo 6s + 1).
For s 6= 2 this can be done as follows.

The base labelling of Cx is taken as (3, 4, 1, 2, 5, 6) in the order shown
and we add a constant λx to each of these base labels so, for example,
φ(x1) = 3 + λx, φ((−x)1) = 4 + λx, etc. The values of λx are taken from
{0, 6, 12, . . . , 6(s− 1)} and λx 6= λy unless x = y. This ensures that all the
points of all the cycles are labelled uniquely and all the integers 1, 2, . . . , 6s
are used as labels. Thus φ provides a generic labelling. We show that for
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s 6= 2 it is possible to choose the values of λx to avoid labelling any block
0w(w + 4).

In the case s = 1 there is only one cycle and checking the required
property is straightforward. The case s = 2 is treated separately. The
case s = 3 gives 2s+ 1 = 7 and the Bose system has Pasch configurations.
So the first non-trivial case is s = 4 (giving 2s + 1 = 9) when we take
λ1 = 0, λ2 = 6, λ3 = 12 and λ4 = 18. In other words, the relabelling is as
follows.

φ : (11, 81, 42, 20, 70, 52) → (3, 4, 1, 2, 5, 6)
φ : (21, 71, 82, 40, 50, 12) → (9, 10, 7, 8, 11, 12)
φ : (31, 61, 32, 60, 30, 62) → (15, 16, 13, 14, 17, 18)
φ : (41, 51, 72, 80, 10, 22) → (21, 22, 19, 20, 23, 24)

The pairs occurring in blocks with 00 are {12, 82} → {12, 7}, {22, 72} →
{24, 19}, {32, 62} → {13, 18}, {42, 52} → {1, 6}, {11, 20} → {3, 2},
{21, 40} → {9, 8}, {31, 60} → {15, 14}, {41, 80} → {21, 20}, {51, 10} →
{22, 23}, {61, 30} → {16, 17}, {71, 50} → {10, 11}, and {81, 70} → {4, 5}. It
is easily checked that in this generic labelling there are no blocks 0w(w+4)
in the relabelled system.

For s = 5 (giving 2s + 1 = 11) the Bose system can be relabelled by
taking λ1 = 0, λ2 = 6, λ3 = 18, λ4 = 12 and λ5 = 24, and this provides
a generically labelled system and avoids the creation of blocks 0w(w + 4).
Another way of expressing these choices of λx is to say that we take the
cycles in the order C1, C2, C4, C3, C5.

We next consider s ≥ 6. Recall that φ(00) = 0 and the blocks containing
00 (apart from the triple 000102) are of the forms

00z2(−z)2, z = 1, 2, . . . , s, and 00z1(2z)0, z = 1, 2, . . . , 2s.

A block of the form 0z2(−z)2 arises from points within a single cycle,
and in this cycle there is just one pair z2(−z)2, which is relabelled with
difference |φ(z2) − φ((−z)2)| = |1 − 6| = 5. So whatever the choice of λx,
there are no blocks 00z2(−z)2 relabelled as 0w(w + 4).

Given a block of the form 00z1(2z)0, the points z1 and (2z)0 could both
occur in a single cycle, or occur in different cycles.

Within a single cycle Cx, two points are of the form z1 and two are
of the form w0. Thus there are four pairs of points of the form z1w0. In
the relabelling, the differences |φ(z1) − φ(w0)| are |3 − 2| = 1, |3 − 5| =
2, |4− 2| = 2 and |4− 5| = 1. So relabelling the points of Cx cannot relabel
a block 00z1(2z)0 as 0w(w + 4) whatever the value of λx.

There remains the possibility that a block 00z1(2z)0 might be relabelled
as 0w(w + 4) because z1 and (2z)0 are in different cycles, say Cx and Cy .
Clearly this cannot happen if |λx − λy| > 6. So the problem reduces to
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choosing the values of λx to avoid this happening. In other words, in what
order should the cycles be written? Consider the case when λy = λx + 6
(mod 6s) and suppose initially that λx 6= 6(s − 1). Then Cx is relabelled
λx + (3, 4, 1, 2, 5, 6) and Cy is relabelled λx + (9, 10, 7, 8, 11, 12). The pairs
z1w0 that are relabelled with a difference of 4 are (−x)1(−

y
4 )0 and y1(

x
4 )0.

If (−x)1(−
y
4 )0 = (−x)1(−2x)0 then y ≡ 8x (mod 2s+ 1), and if y1(

x
4 )0 =

y1(2y)0 then x ≡ 8y (mod 2s+1). In the exceptional case when λx = 6(s−1)
and λy = 0, Cx is relabelled (6s − 3, 6s− 2, 6s− 5, 6s− 4, 6s − 1, 6s) and
Cy is relabelled (3, 4, 1, 2, 5, 6), and no z1w0 pairs are relabelled with a
difference of 4 (mod 6s+1). It follows that we can avoid relabelling blocks
as 0w(w+4) if we ensure that whenever λy = λx+6 (mod 6s) then y 6≡ 8x
and x 6≡ 8y (mod 2s+ 1).

An easy way to check a potential sequencing . . . , Cx, Cy, . . . is to write
down the sequence . . . , x, y, . . . and underneath each value z record 8z (mod
2s+ 1). If we obtain the pattern

. . . , x, y, . . .

. . . , a, b, . . .

with either x = b or y = a, then the proposed sequencing is invalid. If the
sequence avoids this pattern, then it is valid.

To prove that this can be done for sufficiently large s, form a complete
graph on vertices 1, 2, . . . , s. Delete each edge xy when either y ≡ 8x or
x ≡ 8y (mod 2s+1). Call the resulting graph G. At most 2 edges incident
with each vertex have been deleted, so G has minimum degree at least
s− 3. If s− 3 ≥ s/2 then G has a Hamiltonian cycle H = (µ1, µ2, . . . , µs).
Finally, put λµi

= 6(i− 1), and we are done when s ≥ 6.
There remains the exceptional case s = 2 (2s + 1 = 5, 6s + 1 = 13)

when we do not use the base labelling method. Instead we relabel C1 and
C2 generically as follows.

φ : (11, 41, 22, 10, 40, 32) → (1, 2, 5, 6, 3, 4)
φ : (21, 31, 42, 20, 30, 12) → (10, 9, 12, 11, 8, 7)

The pairs occurring in blocks with 00 are {12, 42} → {7, 12}, {22, 32} →
{5, 4}, {11, 20} → {1, 11}, {21, 40} → {10, 3}, {31, 10} → {9, 6}, and
{41, 30} → {2, 8}. None of the differences equals 4 (mod 13).

So the conclusion is that the Bose construction produces an
APSTS(6s + 3) when 2s + 1 is not divisible by 7, and this system can
be represented with point set V = {A,B, 0, 1, . . . , 6s} in such a way that
AB0 is a block, the {A,B}-cycles are generically labelled, and there are
no blocks 0w(w+4) (arithmetic modulo 6s+1). We also remark that any
Bose system has a parallel class (i.e. a set of triples covering each point of
the system precisely once) given by the triples x0x1x2.
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Next consider the case when v ≡ 3 (mod 6) is divisible by 7. We can
then write v = 7u where u ≡ 3 (mod 6). The construction of an APSTS(v)
proceeds inductively, starting with the case v = 21. A cyclic APSTS(21)
is given by the starter blocks {0, 1, 3}, {0, 4, 12}, {0, 6, 11}, {0, 7, 14}. This
gives rise to a 3-bipartite APSTS(21,−3) with hole {0, 7, 14} and bipar-
tition X = {1, 2, 4, 8, 9, 11, 15, 16, 18}, Y = {3, 5, 6, 10, 12, 13, 17, 19, 20}.
(The definition of m-bipartite systems was given in Section 2.) For later
reference, note that there are three 6-cycles on the pair {0, 7}, namely
(1, 3, 15, 5, 4, 12), (2, 20, 16, 10, 8, 17) and (6, 11, 19, 18, 13, 9).

We relabel the hole as {A,B, 0} and then generically label the cycles on
A,B using {1, 2, . . . , 18}. When this is done, the points ofX will be labelled
with odd integers and the points of Y with even integers (or vice-versa) and
the blocks containing the point labelled 0 will contain (in addition to 0) one
even integer and one odd integer, so no block will be of the form 0w(w+4)
(absolute arithmetic). To give an explicit relabelling, denote this by φ, and
put φ(0) = A, φ(7) = B and φ(14) = 0. In the original labelling the cycles
on {0, 7} are (1, 3, 15, 5, 4, 12), (2, 20, 16, 10, 8, 17) and (9, 13, 18, 19, 11, 6).
Relabel generically as follows

x 1 3 15 5 4 12 2 20 16 10 8 17 9 13 18 19 11 6

φ(x) 1 2 5 6 3 4 7 8 11 12 9 10 13 14 17 18 15 16

The original point 14 appears with the original pairs {1, 10}, {2, 6}, {3, 9},
{4, 20}, {5, 18}, {8, 19}, {11, 12}, {13, 16} and {15, 17}. These are rela-
belled under φ as {1, 12}, {7, 16}, {2, 13}, {3, 8}, {6, 17}, {9, 18}, {15, 4},
{14, 11} and {5, 10}. None of these give rise to a difference of 4 in absolute
arithmetic as all the differences are odd; in fact none give a difference of 4
in arithmetic modulo 19. It is important to note that this APSTS(21) also
has a parallel class obtained from the starter block {0, 7, 14} in its original
presentation.

Now suppose (inductively) that v = 7u where u ≡ 3 (mod 6) and that we
have an APSTS(u) with a parallel class P . We can assume u ≥ 9. Denote
the blocks of the parallel class P as {x1, x2, x3} for x = 0, 1, . . . , u/3 − 1.
All other blocks of the APSTS(u) will have the form {xp, yq, zr} where
x, y, z are distinct from one another and where p, q, r ∈ {1, 2, 3}. We will
call such a block vertical and order the points in such a block by requiring
x < y < z.

Next we inflate by a factor 7, replacing each point xp by seven points
xap for a = 0, 1, . . . , 6. (We will refer to xp as the projection of the points
xap, and that xap projects to the point xp.) Thus each block of the parallel
class is replaced by a set of 21 points on which we will place a copy of
our APSTS(21); the blocks from these will be called horizontal, and points
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xap will be said to be at level x. For each vertical block {xp, yq, zr} (with

x < y < z), form the blocks {xap, y
b
q, z

a+b
r } for a, b ∈ {0, 1, . . . , 6} with

a + b taken modulo 7. We claim that the resulting set of blocks forms
an APSTS(7u) having a parallel class. That it forms an STS(7u) is fairly
obvious since every pair of points lies in some block and the number of
blocks is

70
u

3
+ 49

(

u(u− 1)

6
−
u

3

)

=
7u(7u− 1)

6
.

It is also easy to see that there is a parallel class formed from the parallel
classes of the STS(21)s. To see that there are no Pasch configurations,
first observe that any Pasch configuration cannot contain two horizontal
blocks because if these come from different STS(21)s then the blocks do
not intersect, while if they are the same STS(21), then all six points of
the Pasch configuration must come from that STS(21), but this is anti-
Pasch. Next suppose that there is a Pasch configuration containing just
one horizontal block {xap, x

b
q, x

c
r}. Without loss of generality the other three

blocks have the form {xap, y
d
s , z

e
t }, {x

b
q, y

d
s ,W} and {xcr, z

e
t ,W}, where x, y, z

are distinct from one another. If p = q then both xap and xbq project to

the same point xp. So, from the second and third blocks, W = zft for
some f , but this contradicts the fourth block since it cannot have two
points at the same level z. A similar contradiction applies if p = r or
if q = r. So the only possibility for a Pasch configuration containing a
horizontal block is if {p, q, r} = {1, 2, 3}. But then projecting each point
xαρ to xρ in the original APSTS(u) gives a Pasch configuration in that
design, again a contradiction. Finally suppose that there are four vertical
blocks forming a Pasch configuration: {xap, y

b
q, z

c
r}, {x

a
p, i

d
s, j

e
t }, {y

b
q, i

d
s, k

f
w},

{zcr, j
e
t , k

f
w} where without loss of generality, x < y < z, and x, i, j are

distinct, y, i, k are distinct and z, j, k are distinct. If is = zr then jt = yq
and consequently kw = xp. But then c ≡ a + b, d ≡ a + e, d ≡ b + f and
c ≡ e + f (mod 7). These give a = f, b = e, c = d and the four blocks
are identical and so do not form a Pasch configuration. If is 6= zr then
jt 6= yq and kw 6= xp, so the six points xp, yq, zr, is, jt, kw are all distinct
and projecting each point xαρ to xρ in the original APSTS(u) again gives a
Pasch configuration in that design, a contradiction.

To show that the resulting APSTS(v) can be relabelled as required,
first consider the blocks of the APSTS(u) that contain the point 01. Apart
from the block 010203, these are all of the form 01xpyq where we can assume
0 < x < y. In the APSTS(v), consider the cycles on the pair {001, 0

1
1}. For

0 < x < y there are blocks 001x
a
py

b
q where a + b ≡ 0 (mod 7), and there

are also blocks 011x
c
py

d
q where c + d ≡ 6 (mod 7). These result in a 14-

cycle on the pair {001, 0
1
1}, namely (x0p, y

0
q , x

6
p, y

1
q , x

5
p, y

2
q , . . . , x

1
p, y

6
q). There

are (u − 3)/2 such 14-cycles. Assuming that the APSTS(21) described
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above is placed on the points 0ap (a = 0, 1, . . . , 6; p = 1, 2, 3) in such a way
that A,B, 0 correspond respectively to 001, 0

1
1, 0

2
1 then, as explained earlier,

within this APSTS(21) there are three 6-cycles on the pair {001, 0
1
1}. So

altogether, the (u − 3)/2 14-cycles and the three 6-cycles comprise all the
cycles on the pair {001, 0

1
1}.

We now relabel all the points of the APSTS(v) generically by the map-
ping ψ defined as follows. First put ψ(001) = A,ψ(011) = B,ψ(021) = 0,
and then label the remaining 18 points 0ap by ψ so that this system is now
identical with the APSTS(21) given above. This ensures that there is a
block AB0 and that no block on the points A,B, 0, 1, . . . , 18 of the form
0w(w + 4) (arithmetic modulo v − 2). Then define ψ on the remaining
points by taking each 14-cycle separately and applying a generic labelling
to it, obtained by adding an appropriate constant λxp

to the base labelling
(1, 2, 5, 6, 9, 10, 13, 14, 11, 12, 7, 8, 3, 4). The complete labelling is given in
the following table

z = x0p y0q x6p y1q x5p y2q x4p y3q x3p y4q x2p y5q x1p y6q

ψ(z) = λxp
+ 1 2 5 6 9 10 13 14 11 12 7 8 3 4

Now consider the blocks containing the point 0 = ψ(021) but excluding
those containing points A,B, 1, 2, . . . , 18. Before relabelling these had the
form 021x

a
py

b
q where a + b ≡ 5 (mod 7). But then ψ(xap), ψ(y

b
q) have op-

posite parities; indeed from the table above when a + b ≡ 5 (mod 7),
|ψ(xap)−ψ(y

b
q)| = 1, 7 or 9. So in the relabelled system, there are no blocks

of the form 0w(w + 4) (arithmetic modulo v − 2). �

This completes the case v ≡ 3 (mod 6).

6.2 The case v ≡ 1 (mod 6)

As previously indicated, to deal with v ≡ 1 (mod 6) we make use of
some of the constructions presented in [7] and [11]. We start with The-
orem 2.3 of [11], which shows that from an APSTS(u) (u 6= 3, 21, 33), an
APSTS(3(u − 1) + 1) may be constructed. Briefly summarized, the proof
relies on a construction involving three copies of an APSTS(u) intersecting
in a common point with a special form of Latin square (a Kotzig square)
placed across the three systems. We show how this construction can be
used to produce systems having property G4m.

Theorem 6.2 Suppose that there exists an APSTS(u) = (U,B) (u 6= 3, 21,
33) with the property that it can be generically labelled on the point set
{A,B, 0, 1, . . . , u − 3} with block AB0 and no block 0w(w + 4) (absolute
arithmetic), i.e. having property G4a. Then there exists an APSTS(v)
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with v = 3(u − 1) + 1 = 3u − 2 that can be generically relabelled on the
point set V = {A,B, 0, 1, . . . , v−3} with block AB0 and no block 0w(w+4)
(arithmetic modulo v − 2), i.e. having property G4m.

Proof Take three isomorphic copies of the APSTS(u), Si = (Ui,Bi) (i =
0, 1, 2), where Ui ∩ Uj = {α} for i 6= j. Place the generically labelled copy
of S0 so that the common point α of the three systems does not correspond
to A,B or 0. The generic labelling partitions the points 1, 2, . . . , u− 3 into
two sets X0 = {1, 3, . . . , u − 4} and Y0 = {2, 4, . . . , u − 3}. The fact that
all blocks 0wz with w, z ∈ X0 ∪ Y0 have |w − z| 6= 4 implies that there are
no such blocks with |w − z| ≡ 4 (mod v − 2).

Apart from blocks lying in S0, all the remaining blocks that contain
A,B or 0 will contain a point from U1 and a point from U2. So the generic
labelling may be extended to the APSTS(3(u−1)+1) by labelling the points
of U1 (other than α) with X1 = {u− 2, u, . . . , v − 4} and the points of U2

(other than α) with Y2 = {u−1, u+1, . . . , v−3}. But then any block 0x1y2
with x1 ∈ X1 and y2 ∈ Y2 will have |x1 − y2| ≡ 1 (mod 2), so there are no
blocks of the form 0w(w+4) in absolute arithmetic. Moreover, the greatest
possible absolute value of |x1 − y2| is (v − 3) − (u − 2) = 2u − 3 < v − 6,
so we cannot have |x1 − y2| ≡ 4 (mod v − 2). Consequently there are no
blocks of the form 0w(w + 4) with arithmetic modulo v − 2. �

Lemma 6.2 If v ≡ 7 (mod 18) and v 6= 7, 61, 97 then there exists an
APSTS(v) with property G4m.

Proof For s ≥ 0, Theorem 6.1 guarantees the existence of an
APSTS(6s + 3) with property G4a. Then Theorem 6.2 gives an
APSTS(3(6s+2)+ 1) with property G4m, apart from s = 0, 3, 5. Thus we
obtain an APSTS(v) for v = 18s+ 7 apart from v = 7, v = 61 and v = 97.

�

Remark The exceptional case v = 97 will be dealt with in Lemma 6.3.
The exceptional case v = 61 is covered by Lemma 6.1.

In [7] there is a construction involving m-bipartite systems. These were
defined in Section 2 and they prove useful to us here, particularly when
m = 3, but also in some other cases. We will make use of BAPSTS(u,−m)
designs given in [7] for (u,−m) = (19,−3), (31,−3), (31,−7), (43,−3),
(49,−7), (49,−13), (55,−13), (61,−19), (67,−7), (67,−13), (75,−19),
(85,−13), (139,−19), and (1260s + 901,−3) for s ≥ 0. We also use
(u,−m) = (37,−3) and the corresponding design is given in [5].

The argument given in the proof of Theorem 6.1 that a BAPSTS(21,−3)
gives rise to an APSTS(21) with property G4a is easily generalized to show
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that any BAPSTS(v,−3) gives rise to an APSTS(v) having property G4a.

Theorem 6.3 Suppose that S is a 3-bipartite APSTS(v,−3) on the point
set {A,B, 0, 1, . . . , v − 3} with hole {A,B, 0}. Then the resulting STS(v)
with block AB0 is anti-Pasch and it can be generically labelled with respect
to the pair {A,B} such that it has no block 0w(w+4) (absolute arithmetic),
i.e. it has property G4a.

Proof Let X and Y denote the bipartition of {1, 2, . . . , v − 3}. Adding
the block AB0 cannot produce a Pasch configuration because three blocks
would then have the form AB0, Ax1y1 and Bx1y2, where x1 ∈ X and
y1, y2 ∈ Y , thus forcing the fourth block 0y1y2 and so contradicting the
bipartition. So the resulting STS(v) is certainly anti-Pasch. Generically
labelling the system with respect to {A,B} gives even-length cycles of
the form (x1, y1, x2, y2, . . .) (with xi ∈ X, yi ∈ Y ) and we may take X =
{1, 3, . . . , v − 4}, Y = {2, 4, . . . , v − 3}. But then any block 0xiyj has
|xi − yj | ≡ 1 (mod 2), so there are no blocks of the form 0w(w + 4) with
absolute arithmetic. �

Remark The theorem above cannot be applied easily to Bose systems,
hence the complicated argument of Theorem 6.1. For example the Bose
STS(45) with the block 000102 removed is an APSTS(45,−3), but it is not
3-bipartite. To see this note that (working modulo 15) there are blocks
0231121, 0112162, 026230, 0130120, 0212092, 019231. Consequently on the
pair {02, 01} there is a 6-cycle (31, 121, 62, 30, 120, 92), and (multiplying by
2) another 6-cycle on the same pair, (61, 91, 122, 60, 90, 32). There is also
a block 003160, and if the system were 3-bipartite with bipartition {X,Y }
then we could take 31 ∈ X and 60 ∈ Y . But then the two 6-cycles would
give {31, 62, 120, 90, 61, 122} ⊆ X . However, there is a block 0061120 that
contradicts this possibility.

We need to discuss Theorem 2.1 of [7] in order to make further progress.
For n = 3 or n ≥ 5, an APSTS(2n+m) and a BAPSTS(2n+m,−m) are
combined with an APSTS(u) to produce an APSTS(n(u − 1) +m). The
result relies on the following construction that is explained in more detail
in [7]. An N2 − TD(3, n) is a transversal design having three groups of
size n and no Pasch configurations amongst its triples. Such a design is
equivalent to a Latin square of order n that has no 2 × 2 subsquares, and
these exist for n = 3 and n ≥ 5. For other undefined terms, see [2].
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Construction 3 Take an APSTS(u) and delete a point, say ∞, to
obtain a 3-GDD of type 2(u−1)/2, say G, with groups {xi, yi} for i =
1, 2, . . . , (u − 1)/2. Replace each point xi by n points x1i , x

2
i , . . . , x

n
i ,

and do likewise for each yi. Then use an N2-TD(3, n) to produce a 3-
GDD of type (2n)(u−1)/2, say G∗. Denote the groups of this design by
G1, G2, . . . , G(u−1)/2, so thatGi = Xi∪Yi, whereXi = {x1i , x

2
i , . . . , x

n
i }

and Yi = {y1i , y
2
i , . . . , y

n
i }. Next, take m new points to form a set

M = {∞1,∞2, . . . , ∞m}, say. Place a copy of the APSTS(2n + m)
onto the points of M ∪X1 ∪ Y1. Then, for each i = 2, 3, . . . , (u− 1)/2,
place a copy of the BAPSTS(2n+m,−m) onto the points ofM∪Xi∪Yi
so that the labelling partition corresponds to M , Xi and Yi. As shown
in [7], the resulting set of blocks forms an APSTS(n(u − 1) +m) on

the point set M ∪ (
⋃(u−1)/2

i=1 Gi).

We will call the triples of G∗ vertical triples, and the triples of the
APSTS(2n+m) and the BAPSTS(2n+m,−m) horizontal triples. Points
and triples from the same copy of the BAPSTS(2n+m,−m) will be said
to be on the same level ; those from the APSTS(2n+m) will be said to be
from the top level. We will refer to a point z of G as being the projection
of any one of the n points z1, z2, . . . , zn which replaced it in forming G∗.

Theorem 6.4 If in Construction 3 (with n ≥ 3 and n 6= 4) the
APSTS(2n + m) employed at the top level has property G4a, and if u is
admissible with u 6= 3, 7 or 13, then the construction can be performed in
such a manner that the resulting APSTS(n(u− 1)+m) has property G4m.

Proof Place the APSTS(2n + m) with property G4a onto
M ∪ X1 ∪ Y1 so that the points A,B, 0 lie together in X1. Then all the
points of M ∪X1 ∪ Y1 are labelled, and within the top level, there are no
blocks 0w(w + 4) with absolute arithmetic, and consequently none with
arithmetic modulo n(u− 1)+m− 2. It remains to label the points at each
level i > 1.

Consider a block of G that contains the point x1. (Note that A,B and
0 correspond to xp1, x

q
1 and xr1 for some p, q, r.) Such a block will contain

points from two different levels, say i, j, where i, j > 1. There are four
different possible forms for such a block, namely x1xixj , x1xiyj, x1yixj
and x1yiyj. For i > 1, every xi and every yi will appear in one and only
one block that contains x1. If there is a block x1xixj (i, j > 1 and i 6= j),
then any cycle outside the top level on two points xp1, x

q
1 that contains a

point from Xi will alternate points of Xi and Xj . So the points of each such
a cycle can be labelled generically in such a way that Xi is labelled with
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odd integers and Xj is labelled with even integers. A similar observation
applies to the other three possible forms of vertical blocks containing x1.

By taking in turn each block of G that contains the point x1, all

the points of
⋃(u−1)/2

i=2 Gi can be labelled with the integers {2n +m − 2,
2n+m− 1, . . . , n(u− 1)+m− 3}. Because A,B and 0 correspond to some
xp1, x

q
1 and xr1, the labelling can be arranged to be generic with respect to

A,B and any vertical triple 0wz will then have |w− z| ≡ 1 (mod 2), so the
design has property G4a. To see that it has property G4m, observe that
for any vertical block 0wz, the greatest possible absolute value of |w − z|
is (n(u− 1) +m− 3)− (2n+m− 2) < (n(u− 1) +m− 2)− 4,

since 2n+m > 6. �

Lemma 6.1 deals with the exceptional case v = 61 of Lemma 6.2. We
next deal with the remaining exception.

Lemma 6.3 There exists an APSTS(v) with property G4m for v = 97.

Proof Apply Theorem 6.4 with n = 12,m = 1 and u = 9. This requires
an APSTS(25) with property G4a, which was given by Lemma 6.2 and
which can be used at the top level in the construction. It also (trivially)
gives a BAPSTS(25,−1) needed for the other levels. Thus we obtain an
APSTS(97) with property G4m. �

Lemma 6.4 If v ≡ 1 (mod 18) and v 6≡ 91 (mod 108), then there exists
an APSTS(v) with property G4m.

Proof If v ≡ 1 (mod 18) then v ≡ 1, 19 or 37 (mod 54).
An APSTS(54s+ 1) with property G4m can be obtained for s ≥ 3 by

applying Theorem 6.4 with n = 9,m = 1 and u = 6s + 1 (s ≥ 3). This
requires an APSTS(19) with property G4a, which was given by Lemma
6.1 and which can be used at the top level in the construction. It also
(trivially) gives a BAPSTS(19,−1) needed for the other levels. This leaves
s = 1 and s = 2, i.e. v = 55 and v = 109, unresolved.

The case v = 55 can be dealt with using Theorem 6.2 by taking u = 19.
We have an APSTS(19) with property G4a, and thus an APSTS(55) is
obtained having property G4m. The case v = 109 can also be dealt with
using Theorem 6.2 by taking u = 37. We have an APSTS(37) with property
G4a from Lemma 6.1, and thus an APSTS(109) is obtained having property
G4m.

An APSTS(54s+ 19) with property G4m for s ≥ 1 can be obtained by
applying Theorem 6.4 with n = 9,m = 1 and u = 6s+3 (s ≥ 1). Again this
requires an APSTS(19) with property G4a, and Lemma 6.1 not only gives
this and a BAPSTS(19,−1), but also covers the case s = 0 (i.e. v = 19).
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Finally, if v ≡ 37 (mod 54), then v ≡ 37 or 91 (mod 108). Again
applying Theorem 6.4 with n = 18,m = 1 and u = 6s + 3 (s ≥ 1), an
APSTS(108s + 37) with property G4m may be obtained for s ≥ 1. This
requires an APSTS(37) with property G4a, and Lemma 6.1 not only gives
this and a BAPSTS(37,−1), but also covers the case s = 0 (i.e. v = 37).

�

In Theorem 4.1 of [11] an APSTS(m + 2) and an APSTS(n + 2) are
combined to produce an APSTS(mn + 2). The associated construction is
described below and was originally due to Lu [12].

Construction 4 Let Sm = (Zm ∪ {a, b},A) be an APSTS(m + 2)
with {a, b, 0} ∈ A, and let Sn = (Zn ∪ {a, b},B) be a APSTS(n + 2)
with {a, b, 0} ∈ B. To avoid trivialities we assume that m,n ≥ 7. The
double neighbourhood of a, b in Sm is given by

N(a, b) = {{x, y} : axy ∈ A or bxy ∈ A, and {x, y} ∩ {a, b} = ∅}.

Thus N(a, b) is a set of pairs on Zm\{0} with every element appearing
in two pairs. Each pair can then be ordered so that each element is
the first element of one pair, and the second element of another; call
this set of ordered pairs Q(a, b).

An APSTS(mn + 2), Smn, is constructed on the point set (Zm ×
Zn) ∪ {a, b} with triples of the following four types where x1, x2, x3 ∈
Zm and y1, y2, y3 ∈ Zn.

(i) {(0, y1), (0, y2), (0, y3)} whenever {y1, y2, y3} ∈ B, and
{ℓ, (0, y2), (0, y3)} whenever {ℓ, y2, y3} ∈ B and ℓ ∈ {a, b}, and
{a, b, (0, 0)}.

(ii) {(x1, y1), (x1, y2), (x2, y3)} where (x1, x2) ∈ Q(a, b), y1 6= y2, and
y1 + y2 ≡ 2y3 (mod n).

(iii) {ℓ, (x1, y1), (x2, y1)} where ℓ ∈ {a, b} and {ℓ, x1, x2} ∈ A.

(iv) {(x1, y1), (x2, y2), (x3, y3)} where {x1, x2, x3} ∈ A, x1 < x2 < x3
and y1 + y2 + y3 ≡ 0 (mod n).

Theorem 6.5 If m,n ≥ 7 and both the systems Sm and Sn have property
G4a, then the system Smn is an APSTS(mn+ 2) with property G4m.

Proof Note that the type (i) blocks form a copy of Sn on the point set
{a, b, (0, 0), (0, 1), . . . , (0, n− 1)}.
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We will assume that Sm is generically labelled with respect to the
pair {a, b} with property G4a and likewise that Sn is generically labelled
with respect to the pair {a, b} with property G4a. We relabel the system
Smn on the point set {A,B, 0, 1, . . . ,mn − 1} using a mapping
φ : (Zm × Zn) ∪ {a, b} 7→ Zmn ∪ {A,B} that is defined as follows.

First define φ(a) = A, φ(b) = B and φ((0, y)) = y for y ∈ Zn; in
particular φ((0, 0)) = 0. Then any cycle of the relabelled system Sφ

mn that
contains a block Ay1y2 or By1y2 with 0 ≤ y1, y2 ≤ n − 1 will lie in a
generically labelled {A,B}-cycle of that system. Moreover, because Sn has
no blocks of the form 0w(w + 4) (absolute arithmetic), there are no blocks
of Sφ

mn of the form 0w(w + 4) with 1 ≤ w < w + 4 ≤ n− 1.
We next define φ((x, y)) for 1 ≤ x ≤ m − 1, 0 ≤ y ≤ n − 1. As a

preliminary item, define ψ : Zn 7→ Zn by putting ψ(y) = y except for the
two cases y = (n + 1)/2 or y = (n+ 3)/2, when we define ψ((n + 1)/2) =
(n+3)/2 and ψ((n+3)/2) = (n+1)/2. Then ψ is a bijection on Zn and it
has the key property that if y 6= 0, then |ψ(y)−ψ(n−y)| ≥ 2. Now consider
the generic labelling of Sm, and suppose that C = (x1, x2, . . . , xk) is any
{a, b}-cycle in Sm. Then for each y ∈ Zn the type (iii) blocks give rise to
an {a, b}-cycle Cy in Smn, given by Cy = ((x1, y), (x2, y), . . . , (xk, y)). For
x ∈ Zm \ {0} and y ∈ Zn, define

φ((x, y)) = x+ (n− 1) + (m− 1)ψ(y).

This provides a generic labelling for Cy and consequently φ provides a
generic labelling for Smn: every point of (Zm × Zn) ∪ {a, b} is labelled by
φ and every {a, b}-cycle is generically labelled.

None of the type (ii) and type (iii) blocks contain the point (0, 0). So
apart from type (i) blocks that have already been considered, the only other
blocks that contain the point (0, 0) are type (iv) and these have the form
{(0, 0), (x1, y), (x2, n−y)} where {0, x1, x2} ∈ A with 0 < x1 < x2, and y ∈
Zn (with the gloss that if y = 0 then n−y is taken as 0). In such a block put
δ = |φ((x1, y))−φ((x2, y))| = |(x1−x2)+(m−1)(ψ(y)−ψ(n−y))|. If y = 0
then δ = |x1−x2| = x2−x1 6= 4. If y 6= 0 then 2 ≤ |ψ(y)−ψ(n−y)| ≤ n−2,
and |x1−x2| ≤ m−2. So 2(m−1)−(m−2) ≤ δ ≤ (m−2)+(m−1)(n−2).
Consequently δ 6≡ 4 (mod mn). It follows that the generic labelling of Smn

given by φ has property G4m. �

Equipped with the preceding results we can now show that for v ≡ 1
(mod 6) with v ≥ 19 there exits an APSTS(v) with property G4a. We
first split the argument into cases modulo 18. We have already covered
v = 18s+ 7. In the case v = 18s+ 1, all that remains is v = 108s+ 91, so
we deal with this next.

Lemma 6.5 If v ≡ 91 (mod 108) then there exists an APSTS(v) with
property G4m.
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Proof If v ≡ 91 (mod 108) then v has one of the following seven forms
modulo 756. We explain in each case how an APSTS(v) with property
G4m may be obtained.

1. v = 756s + 91. We proceed in two steps. First, in Theorem 6.4,
take n = 14,m = 3 and u = 18s + 3 (s ≥ 1) to produce an
APSTS(14(18s + 2) + 3) = APSTS(252s + 31) with property G4m.
This requires a BAPSTS(31,−3) (given in [7]) and an APSTS(31)
with property G4a (given by Theorem 6.3). So for s ≥ 0 we have
an APSTS(252s+ 31) with property G4a. Then apply Theorem 6.2
with u = 252s+ 31 (s ≥ 0) to produce an APSTS(3(252s+ 30) + 1)
= APSTS(756s+ 91) with property G4m.

2. v = 756s+199 = 14(54s+14)+3. In Theorem 6.4, take n = 14,m = 3
and u = 54s+15 (s ≥ 0). This requires a BAPSTS(31,−3) (given in
[7]) and an APSTS(31) with property G4a (given by Theorem 6.3).

3. v = 756s+307 = 21(36s+14)+13. In Theorem 6.4, take n = 21,m =
13 and u = 36s + 15 (s ≥ 0). This requires a BAPSTS(55,−13)
(given in [7]) and an APSTS(55) with property G4a. Theorem 6.2
with u = 19 gives an APSTS(55) with property G4m.

4. v = 756s+ 415 = 7(108s+ 59) + 2. Here we use Theorem 6.5 with
m = 7 and n = 108s+ 59. These choices require an APSTS(9) and
an APSTS(108s + 61) both with property G4a. The latter lies in
the class v ≡ 7 (mod 18) and so by Lemmas 6.1 and 6.2 we have
already established the existence of an APSTS(108s+61) with prop-
erty G4a. The former is guaranteed by Theorem 6.1, but to give a
specific example, here are the blocks of an APSTS(9) with property
G4m:

AB0, A12, A34, A56, B14, B25, B36, 016, 023, 045, 135, 264.

The cycle on {A,B} is (1, 2, 5, 6, 3, 4), and the pairs appearing in
blocks also containing the point 0 have differences 1 or 2 (mod 7).

5. v = 756s+523 = 21(36s+24)+19. In Theorem 6.4, take n = 21,m =
19 and u = 36s+25 (s ≥ 0). This requires a BAPSTS(61,−19) (given
in [7]) and an APSTS(61) with property G4a (given by Lemma 6.1).

6. v = 756s+631 = 7(108s+90)+1. In Theorem 6.4, take n = 7,m = 1
and u = 108s+91 (s ≥ 0). This requires an APSTS(15) with property
G4a, which is guaranteed by Theorem 6.1, and which automatically
gives a BAPSTS(15,−1).
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7. v = 756s+ 739 = 3(252s+ 246) + 1. Here we use Theorem 6.2 with
u = 252s+ 247. This requires an APSTS(252s+ 247) with property
G4a. To get this, note that 252s+ 247 = 7(36s + 35) + 2 and then
apply Theorem 6.5 with m = 7 and n = 36s + 35. These choices
require an APSTS(9) and an APSTS(36s + 37) both with property
G4a. The latter lies in one of the following classes modulo 108: v ≡ 1,
v ≡ 37, v ≡ 73. So in Lemma 6.4 we have already established the
existence of an APSTS(36s+37) with property G4a. The APSTS(9)
with property G4a is guaranteed by Theorem 6.1. �

Next we turn our attention to the remaining case of v ≡ 13 (mod 18).
We split the argument into four cases modulo 72, namely v ≡ 13, 31, 49, 67.
We start with the easiest of these.

Lemma 6.6 If v ≡ 31 (mod 72) then there exists an APSTS(v) with prop-
erty G4m.

Proof If v = 72s + 31 = 12(6s + 2) + 7, then apply Theorem 6.4 with
n = 12,m = 7 and u = 6s + 3 (s ≥ 1). This requires a BAPSTS(31,−7)
(given in [7]) and an APSTS(31) with property G4a. The latter is given
by Lemma 6.1, which also deals with the case s = 0 (i.e. v = 31). �

Lemma 6.7 If v ≡ 13 (mod 72) and v 6= 13 then there exists an APSTS(v)
with property G4m.

Proof We start by recalling from Lemma 6.1 that there exist APSTS(v)s
with property G4m for v = 49 and for v = 85.

If v ≡ 13 (mod 72) then v has one of the following three forms modulo
216.

1. v = 216s + 13 = 18(12s) + 13. In Theorem 6.4 take n = 18,m =
13 and u = 12s + 1 (s ≥ 2). This requires a BAPSTS(49,−13)
(given in [7]), and an APSTS(49) with property G4a. The remain-
ing case s = 1 corresponds to v = 229. To deal with this case,
use Theorem 6.4 with n = 27,m = 13 and u = 9. This gives an
APSTS(27(8) + 13)=APSTS(229) with property G4m provided we
have a BAPSTS(67,−13) and an APSTS(67) with property G4a. But
a BAPSTS(67,−13) is given in [7], and an APSTS(67) with property
G4m can be obtained from Theorem 6.4 by taking n = 8,m = 3 and
u = 9 and using the BAPSTS(19,−3) from [7] and the APSTS(19)
with property G4a that follows from Theorem 6.3.

2. v = 216s+85 = 36(6s+2)+13. In Theorem 6.4 take n = 36,m = 13
and u = 6s + 3 (s ≥ 1). These choices require a BAPSTS(85,−13)
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(given in [7]), and an APSTS(85) with property G4a. The case s = 0
corresponds to v = 85.

3. v = 216s+157 = 18(12s+8)+13. In Theorem 6.4 take n = 18,m = 13
and u = 12s+ 9 (s ≥ 0). These choices require a BAPSTS(49,−13)
(given in [7]), and an APSTS(49) with property G4a. �

Lemma 6.8 If v ≡ 67 (mod 72) then there exists an APSTS(v) with prop-
erty G4m.

Proof We start by recalling that an APSTS(49) with property G4m is
given by Lemma 6.1 and a BAPSTS(37,−3) is given in [5].

If v ≡ 67 (mod 72) then v has one of the following two forms modulo
144.

1. v = 144s+67 = 8(18s+8)+3. Apply Theorem 6.4 with n = 8,m = 3
and u = 18s+ 9 (s ≥ 0). This requires a BAPSTS(19,−3) (given in
[7]) and an APSTS(19) with property G4a (given by Theorem 6.3).

2. v = 144s+ 139. We split this case into five subcases modulo 720, as
follows.

(a) v = 720s + 139 = 60(12s + 2) + 19. Apply Theorem 6.4 with
n = 60,m = 19 and u = 12s + 3 (s ≥ 1). This requires
a BAPSTS(139,−19) (given in [7]) and an APSTS(139) with
property G4a. The latter can be formed (with property G4m)
by applying Theorem 6.4 with n = 17,m = 3 and u = 9. This
requires a BAPSTS(37,−3), and an APSTS(37) with property
G4a (given by Theorem 6.3). The case s = 0 corresponds to this
APSTS(139).

(b) v = 720s + 283 = 20(36s + 14) + 3. Apply Theorem 6.4 with
n = 20,m = 3 and u = 36s + 15 (s ≥ 0). This requires a
BAPSTS(43,−3) (given in [7]) and an APSTS(43) with property
G4a (given by Theorem 6.3).

(c) v = 720s + 427 = 30(24s + 14) + 7. Apply Theorem 6.4 with
n = 30,m = 7 and u = 24s + 15 (s ≥ 0). This requires a
BAPSTS(67,−7) (given in [7]) and an APSTS(67) with property
G4a. The latter is given by case 1 above.

(d) v = 720s + 571 = 15(48s + 38) + 1. Apply Theorem 6.4 with
n = 15,m = 1 and u = 48s + 39 (s ≥ 0). This requires an
APSTS(31) with property G4a, which is given in Lemma 6.6,
and which automatically gives a BAPSTS(31,−1).
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(e) v = 720s + 715. We split this subcase into seven subsubcases
modulo 5040, as follows.

i. v = 5040s+ 715 = 7(720s+ 102) + 1. Apply Theorem 6.4
with n = 7,m = 1 and u = 720s + 103 (s ≥ 0). This
requires an APSTS(15) with property G4a, which is guar-
anteed by Theorem 6.1, and which automatically gives a
BAPSTS(15,−1).

ii. v = 5040s+ 1435 = 21(240s+ 68) + 7. Apply Theorem 6.4
with n = 21,m = 7 and u = 240s+69 (s ≥ 0). This requires
a BAPSTS(49,−7) (given in [7]) and an APSTS(49) with
property G4a.

iii. v = 5040s+2155 = 21(240s+102)+13. Apply Theorem 6.4
with n = 21,m = 13 and u = 240s+ 103 (s ≥ 0). This re-
quires a BAPSTS(55,−13) (given in [7]) and an APSTS(55)
with property G4a (guaranteed by Lemma 6.4).

iv. v = 5040s+2875 = 28(180s+102)+19. Apply Theorem 6.4
with n = 28,m = 19 and u = 180s+ 103 (s ≥ 0). This re-
quires a BAPSTS(75,−19) (given in [7]) and an APSTS(75)
with property G4a (guaranteed by Theorem 6.1).

v. v = 5040s + 3595 = (630s + 449)8 + 3. Apply Theorem
6.4 with n = 630s + 449,m = 3 and u = 9 (s ≥ 0). This
requires a BAPSTS(1260s+ 901,−3) (given in [7]) and an
APSTS(1260s+ 901) with property G4a that follows from
Theorem 6.3.

vi. v = 5040s + 4315 = 14(360s + 308) + 3. Apply Theorem
6.4 with n = 14,m = 3 and u = 360s+ 309 (s ≥ 0). This
requires a BAPSTS(31,−3) (given in [7]) and an APSTS(31)
with property G4a that follows from Theorem 6.3.

vii. v = 5040s + 5035 = 7(720s + 719) + 2. Apply Theorem
6.5 with m = 7, n = 720s + 719. These choices require an
APSTS(9) and an APSTS(720s+ 721) both with property
G4a. The latter lies in the class v ≡ 1 (mod 18) and we have
already established the existence of an APSTS(720s+ 721)
with property G4a in Lemma 6.4. The former is guaranteed
by Theorem 6.1. �

The final case left to consider is v ≡ 49 (mod 72).

Lemma 6.9 If v ≡ 49 (mod 72) then there exists an APSTS(v) with prop-
erty G4m.
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Proof First recall that an APSTS(49) with property G4m is given by
Lemma 6.1. If v ≡ 49 (mod 72) then v has one of the following two forms
modulo 144.

1. v = 144s+49 = 24(6s+2)+1. Apply Theorem 6.4 with n = 24,m = 1
and u = 6s+ 3 (s ≥ 1). This requires an APSTS(49) with property
G4a, which automatically gives a BAPSTS(49,−1). The case s = 0
corresponds to v = 49.

2. v = 144s+ 121. We split this case into two subcases modulo 288, as
follows.

(a) v = 288s + 121 = (36s + 15)8 + 1. Apply Theorem 6.4 with
n = 36s + 15,m = 1 and u = 9 (s ≥ 0). This requires an
APSTS(72s+31) with property G4a. This has been constructed
in Lemma 6.6 and it gives a BAPSTS(72s+ 31,−1).

(b) v = 288s + 265 = (36s + 33)8 + 1. Apply Theorem 6.4 with
n = 36s + 33,m = 1 and u = 9 (s ≥ 0). This requires an
APSTS(72s+67) with property G4a. This has been constructed
in Lemma 6.8 and it gives a BAPSTS(72s+ 67,−1). �

Concluding remarks

1. First we list the small cases obtained by computer searches that are
used in Section 6, all of which are given in [5]. These comprise
APSTS(v)s with property G4m for v = 19, 31, 37, 49, 61 and 85, and
a BAPSTS(37,−3).

2. The covering designs in this paper are minimum coverings. It may
be possible for larger (non-minimum) coverings to retain the anti-
Pasch property, and some of our constructions may be of some use in
this respect. An interesting question is how large a covering design,
without repeated blocks, can be before a Pasch configuration is forced.

3. We thank the referees for their helpful comments and careful reading
of this paper, which has enabled us to improve the presentation of
what is a long and complicated argument with many technical details.
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