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1 Introduction

The background to this paper is the anti-Pasch problem for Steiner triple
systems. A Steiner triple system of order v, STS(v), is a pair (V,B) where
V is a set of v elements (called points) and B is a set of 3-element subsets
of V (called blocks or triples) with the property that each 2-element subset
of V is contained in exactly one block. An STS(v) exists if and only if
v ≡ 1 or 3 (mod 6) [12], and such values are called admissible. A Pasch
configuration, also known as a quadrilateral, is a set of 3-element sets on
six points having the form

{{a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}}.

The anti-Pasch conjecture, originally made by Paul Erdős [7] in a more
general form, was that for all sufficiently large admissible v there exists
an STS(v) that contains no Pasch configurations among its blocks. The
conjecture was finally established in a series of papers [1, 9, 10, 13] culmi-
nating in [8]. So it is now known that there exists an STS(v) that contains
no Pasch configurations provided v is admissible and v 6= 7, 13. Our current
paper addresses the issue of what can be said about collections of triples
when v is not admissible.

When v is not admissible, there is no STS(v). However, there will still
be a maximum partial triple system, or optimal packing with triples, of
order v. In the current paper we determine the anti-Pasch result for such
systems. A partial triple system of order v, PTS(v), is a pair (V,B) and
is defined similarly to an STS(v), except that each 2-element subset of V
is required to be contained in at most one block. A PTS(v) = (V,B) for
which there is no set of triples B′ with |B′| > |B| and B ⊆ B′ is called a
maximal partial triple system, MPTS(v). An MPTS(v) with the largest
possible set of blocks is called a maximum maximal partial triple system,
MMPTS(v). The name is generally shortened to “maximum partial triple
system”. Such systems are also known as optimal or maximal packings
with triples, and they give rise to optimal constant weight error-correcting
codes (see [2, Section VI.40]). In a sense, these systems are as close as it is
possible to get to an STS(v) when v is not admissible.

Given an MMPTS(v) = (V,B), the set of 2-element subsets of V that
do not appear in any block of B is called the leave of the system (see [2,
page 553]). For v ≡ 1 or 3 (mod 6) an MMPTS(v) is an STS(v) and the
leave is empty. For v ≡ 0 or 2 (mod 6) an MMPTS(v) corresponds to
an STS(v + 1) in which one point has been deleted. In these cases the
leave comprises v/2 disjoint pairs. The more interesting case is v ≡ 5
(mod 6), and then it can be shown that the leave of an MMPTS(v) is a
set of four pairs {{a, b}, {b, c}, {c, d}, {d, a}}, which may be represented as
a 4-cycle (a, b, c, d). For v ≡ 4 (mod 6) an MMPTS(v) corresponds to an
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MMPTS(v + 1) from which a point of its leave has been deleted. Thus an
MMPTS(v) with v ≡ 4 (mod 6) has a leave comprising three intersecting
pairs {a, b}, {b, c}, {b, e} and a further (v − 4)/2 disjoint pairs covering the
remaining points.

We will denote an STS(v) that contains no Pasch configurations as an
APSTS(v) (anti-Pasch). Earlier papers often used the notation QFSTS(v)
(quadrilateral-free) for the same property. Similarly an APMMPTS(v)
denotes an anti-Pasch MMPTS(v). Anti-Pasch designs have a practical
application to the construction of codes for various purposes such as erasure
codes for disk arrays and regular low-density parity-check codes, see [3, 11,
15, 16] and [5, page 224].

Given an APSTS(v + 1) for v ≡ 0 or 2 (mod 6), the deletion of any
point yields an APMMPTS(v). So an APMMPTS(v) exists for any v ≡ 0
or 2 (mod 6) apart possibly for v = 6 or 12. Up to isomorphism there is one
STS(7) and two STS(13)s [14], and deletion of any single point in each case
does not destroy all the Pasch configurations, so there is no APMMPTS(6)
and no APMMPTS(12). Given an APMMPTS(v + 1) for v ≡ 4 (mod
6), the deletion of any point of its leave yields an APMMPTS(v). We
will prove that an APMMPTS(v) exists for all v ≡ 5 (mod 6) apart from
v = 11, and it immediately follows that an APMMPTS(v) exists for all
v ≡ 4 (mod 6) apart possibly from v = 10. Up to isomorphism there
are two MMPTS(11)s [4], and deletion of any single point of the leave
in each case does not destroy all the Pasch configurations, so there is no
APMMPTS(10). Hence the following result will be established.

Theorem 1.1 There exists an anti-Pasch optimal packing with triples on v
points, i.e. an APMMPTS(v), for all v except for the values v = 6, 7, 10, 11,
12 and 13.

An MMPTS(v) for v ≡ 5 (mod 6) is said to be of quintuple type if
the leave is (a, b, c, d) and the system has intersecting blocks {a, c, e} and
{b, d, e}. If these two blocks are removed from such a system and replaced
by the quintuple {a, b, c, d, e}, the resulting system is a pairwise balanced
design of order v having one block of size 5 and all remaining blocks of
size 3. Such a design is denoted by PBD(v, {3, 5∗}) and its blocks have
the property that each pair of points is contained in exactly one block.
The results given below produce APMMPTS(v)s of quintuple type for all
v ≡ 5 (mod 6) with v 6= 11. Furthermore, one of the two MMPTS(11)s
is of quintuple type, and the associated PBD(11, {3, 5∗}) has no Pasch
configurations. So we also establish the following result.

Theorem 1.2 There exists an anti-Pasch PBD(v, {3, 5∗}) for all v ≡ 5
(mod 6).
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In the next section, two constructions are presented. These enable us
to prove that for v ≡ 5 (mod 6) with v 6= 11 there exists an APMMPTS(v).
The first construction produces an APMMPTS(v) for v = 18s+ 5 or v =
18s − 1 with s ≥ 3 from three anti-Pasch Steiner triple systems. The
second construction produces an APMMPTS(v) for v = 18s + 11 with
s ≥ 4 from three APMMPTS(6s+5)s satisfying certain conditions. Starting
with a small number of APMMPTS(v)s found by computer searches, the
two constructions can be used together recursively to establish the general
result given in Theorem 1.1.

2 Constructions

Our constructions depend on the cycle structure of STS(v) and
MMPTS(v) designs. For such a design (V,B), define the double neigh-
bourhood of x, y ∈ V (with x 6= y) as

N(x, y) = {{z, w} : {x, z, w} ∈ B or {y, z, w} ∈ B, and {z, w}∩{x, y} = ∅}.

A double neighbourhood N(x, y) can be represented as a graph G(x, y) by
taking the pairs of N(x, y) as edges. In the case of an STS(v) the graph
G(x, y) is 2-regular and so it is the union of simple cycles, each of even
length at least four. We refer to these as the cycles on the pair {x, y}, or
as the {x, y} cycles. In the case of an MMPTS(v) with v ≡ 5 (mod 6), if
the pair {x, y} lies in the leave, so that the leave has the form (x, y, z, w),
then the points z and w have degree one in G(x, y), and therefore the graph
contains a path with end points z and w, which we refer to as the path on
the pair {x, y}, or as the {x, y} path. If this path has length v − 3 (i.e. it
has v − 2 vertices) then there will be no cycles on {x, y}, but if its length
is less than v − 3, there will also be cycles on {x, y}. In all cases, if there
is a cycle of length four then the corresponding four blocks form a Pasch
configuration, and so an APSTS(v) or an APMMPTS(v) cannot give rise
to a cycle of length four on a pair of points {x, y}.

For a positive integer n denote the set {0, 1, . . . , n−1} by N . If a, b ∈ N ,
define the difference d = |a − b| (mod n) to be the minimum of (a − b)
(mod n) and (b − a) (mod n), so that d ∈ {0, 1, . . . , ⌊n

2
⌋}. Now suppose

that S = (V,B) is an STS(n + 2) or an MMPTS(n + 2) on the point set
V = {A,B} ∪ N . If {A, a, b} ∈ B with a, b ∈ N then we say that A
has an associated difference d = |a − b| (mod n) in S and that d is a
difference associated with A. The set of all differences associated with A
in S is denoted by DA. Note that a block {A,B, x} does not generate a
difference. The set of all differences associated with B in S is defined in a
similar fashion and is denoted by DB.
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We will need to combine three STS(n+2)s or three MMPTS(n+2)s. For
n a positive integer and for i = 0, 1, 2, we will denote the set {0i, 1i, . . . ,
(n − 1)i} by Ni. Now suppose that for i = 0, 1, 2, Si = (Vi,Bi) is an
STS(n + 2) or an MMPTS(n + 2), where Vi = {A,B} ∪ Ni. Then the
sets of associated differences DA

i and DB
i are formed as described above

as subsets of N (not Ni), so that d ∈ DA
i if and only if there exists a

block {A, ai, bi} ∈ Bi such that |a − b| ≡ d (mod n). If DA
i ∩DA

j = ∅ and

DB
i ∩DB

j = ∅ for i, j = 0, 1, 2, with i 6= j, then we say that S0,S1,S2 have
different differences with respect to {A,B}.

We are now in a position to describe our two constructions. We will
often write triples or pairs without set brackets {} or commas when no
confusion is likely to arise.

Construction 1. Suppose that for i = 0, 1, 2, Si = (Vi,Bi) is an
APSTS(n+ 2) (so n ≡ 1 or 5 (mod 6)) on the point set Vi = {A,B} ∪Ni,
with AB0i ∈ Bi. Suppose also that S0,S1,S2 have different differences with
respect to {A,B}. Then an APMMPTS(3n+ 2), say S, can be formed on
the point set V = {A,B} ∪N0 ∪N1 ∪N2 with block set B containing the
following triples:

• Horizontal blocks : All triples from B0 ∪ B1 ∪ B2, except for the three
triples AB0i, i = 0, 1, 2.

• Vertical blocks : All triples x0y1z2 where x0 ∈ N0, y1 ∈ N1, z2 ∈ N2

and x+ y + z ≡ 0 (mod n), except for the triple 000102.

• Mixed blocks : The two triples A0001 and B0002.

The points and triples from Si will be said to be at level i, so that A
and B are common to all three levels. Note that there are no blocks of B
containing the pairs AB,A02, B01 and 0102.

We start by proving that S is an MMPTS(3n + 2). Clearly the pairs
covered by the horizontal and vertical blocks are all distinct. Each of the six
pairs appearing in the mixed blocks lies in one of the deleted triples AB00,
AB01, AB02 or 000102. So the blocks of B do not contain a repeated pair.
The total number of blocks in B is

3

(

(n+ 2)(n+ 1)

6
− 1

)

+ (n2 − 1) + 2 =
3n2 + 3n− 2

2
,

which is the number of blocks in an MMPTS(3n + 2). Hence S is an
MMPTS(3n+2) with leave (A, 02, 01, B). In fact the design is of quintuple
type since the blocks containing the pairs A01 and B02 have a common
third point, namely 00. It remains to prove that S is anti-Pasch, and to do
this we consider two cases.
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Case (a) Consider the possibility of a Pasch configuration P that does not
contain either of the mixed blocks.

If P were formed from four distinct vertical blocks, it would have the
form P = {x0y1z2, x0u1v2, w0y1v2, w0u1z2} where x+y+z ≡ 0, x+u+v ≡
0, w+ y+ v ≡ 0 and w+u+ z ≡ 0 (mod n). But since n is odd, these four
equivalences give x = w, y = u, z = v, a contradiction. So P must contain
a horizontal block.

If P contains two horizontal blocks from the same level then five of the
six points of P , and hence all six of the points of P lie at that level, con-
tradicting the fact that each Si is anti-Pasch. The remaining possibilities
are that P contains just one horizontal block, or that P has two (or three)
horizontal blocks from different levels.

If P has just one horizontal block then this cannot contain A or B since
all (non-mixed) blocks containing these points are horizontal and there
would then have to be two such blocks in P . So if the sole horizontal block
is at level 0 then P must contain blocks of the form x0y0z0 and x0u1v2.
Without loss of generality, P then has blocks y0u1w2 and z0v2w2. But
there is no horizontal or vertical block of this latter type with one point
at level 0 and two points at level 2. A similar argument applies if the sole
horizontal block is at level 1 or at level 2. Hence P cannot contain just one
horizontal block.

Finally in Case (a) suppose that P contains two horizontal blocks from
different levels. Since the two horizontal blocks must intersect, they must
contain A or B. Assume first that they both contain A. If these blocks are
at levels 0 and 1, they have the form Ax0y0 and Az1w1. Then, without loss
of generality, P must contain two vertical blocks x0z1u2 and y0w1u2, where
x+ z+u ≡ 0 and y+w+u ≡ 0 (mod n). Hence the differences |x− y| and
|z − w| are equivalent modulo n. But S0 and S1 have different differences,
so this is not possible. A similar argument applies if the two horizontal
blocks are at levels 0 and 2, or at levels 1 and 2, or if A is replaced by B.

Case (b) Consider the possibility of a Pasch configuration P that contains
one of the mixed blocks. There are six subcases.

1. P contains A0001 and Ax0y0. Without loss of generality the other
two blocks are x000Z and y001Z. The fourth block gives Z 6= B, so
Z = z2, contradicting the third block since there are no blocks other
than B0002 with two points at level 0 and one at level 2.

2. P contains A0001 and Ax1y1. Without loss of generality the other
two blocks are x100Z and y101Z. The third block gives Z 6= B, so
Z = z2, contradicting the fourth block since there are no blocks with
two points at level 1 and one at level 2.
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3. P contains A0001 and Ax2y2. Without loss of generality the other
two blocks are x200Z and y201Z. The fourth block gives Z 6= B, so
Z = z0, contradicting the third block since there are no blocks other
than B0002 with two points at level 0 and one at level 2.

4. P contains B0002 and Bx0y0. Without loss of generality the other
two blocks are x000Z and y002Z. The fourth block gives Z 6= A, so
Z = z1, contradicting the third block since there are no blocks other
than A0001 with two points at level 0 and one at level 1.

5. P contains B0002 and Bx1y1. Without loss of generality the other
two blocks are x100Z and y102Z. The fourth block gives Z 6= A, so
Z = z0, contradicting the third block since there are no blocks other
than A0001 with two points at level 0 and one at level 1.

6. P contains B0002 and Bx2y2. Without loss of generality the other
two blocks are x200Z and y202Z. The third block gives Z 6= A, so
Z = z1, contradicting the fourth block since there are no blocks with
two points at level 2 and one at level 1.

It follows from the argument given in Cases (a) and (b) that the design S
produced by Construction 1 cannot contain a Pasch configuration, and so
it is an APMMPTS(3n+ 2).

In order for Construction 1 to be of any use, it is necessary to prove
that there is a ready supply of APSTS(n + 2) systems S0,S1,S2 having
different differences. We now show that this is the case.

Given a APSTS(n+ 2), any two points of the system determine cycles
Ci of even lengths ℓi through these two points. Because the system has no
Pasch configurations, ℓi cannot equal 4, so ℓi ≥ 6. Furthermore,

∑

i ℓi =
n−1. We show how to label the points of such a design with A,B, 0, 1, . . . ,
n− 1 in such a way that one block is AB0, all blocks Axy have |x− y| = 1
and all blocks Bxy have |x− y| = 3 or 5. These will be absolute differences
and not just modulo n. We start by choosing two points arbitrarily and
labelling them as A and B. Then label as 0 the third point in the block
containing A and B. Now consider any cycle C on the pair {A,B}. As
a convention we record the cycle starting with two points lying in a block
with A. Suppose that C has length ℓ. How to label the cycle depends
on whether ℓ ≡ 0 or 2 (mod 4). In each case, Table 1 gives the first four
possibilities and a general formula.

In every case, a block Axy has |x−y| = 1 and a block Bxy has |x−y| = 3
or 5. For subsequent purposes we observe that these differences are absolute
and not just modulo n. Having labelled the first cycle C1 (with length ℓ1)
in this way, choose another cycle C2 of length ℓ2, and label it in a similar
fashion but add ℓ1 to all the labels. For a third cycle ℓ1 + ℓ2 is added to
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the labels, and so on until all the cycles, and hence all the points of the
system, are labelled.

ℓ ≡ 2 (mod 4)
6-cycle: (1, 2, 5, 6, 3, 4)

10-cycle: (1, 2, 5, 6, 9, 10, 7, 8, 3, 4)
14-cycle: (1, 2, 5, 6, 9, 10, 13, 14, 11, 12, 7, 8, 3, 4)
18-cycle: (1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 15, 16, 11, 12, 7, 8, 3, 4)
ℓ-cycle: (pairs 1 + 4j, 2 + 4j for 0 ≤ j ≤ j∗, followed by

pairs 3 + 4(j∗ − j), 4 + 4(j∗ − j) for 1 ≤ j ≤ j∗),
where j∗ = (ℓ− 2)/4.

ℓ ≡ 0 (mod 4)
8-cycle: (1, 2, 7, 8, 5, 6, 3, 4)
12-cycle: (1, 2, 7, 8, 11, 12, 9, 10, 5, 6, 3, 4)
16-cycle: (1, 2, 7, 8, 11, 12, 15, 16, 13, 14, 9, 10, 5, 6, 3, 4)
20-cycle: (1, 2, 7, 8, 11, 12, 15, 16, 19, 20, 17, 18, 13, 14, 9, 10, 5, 6,

3, 4)
ℓ-cycle: (1, 2, followed by pairs 7 + 4j, 8 + 4j for 0 ≤ j ≤ j∗,

followed by pairs 5 + 4(j∗ − j), 6 + 4(j∗ − j) for
0 ≤ j ≤ j∗, followed by 3, 4),

where j∗ = (ℓ − 8)/4.

Table 1. Labelling an ℓ-cycle.

b b b b b b b b b

b

b

1

2

7

8

5 6

3

4 1

A

B

Figure 1. The case of an 8-cycle.
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Example 1. As an example, in the 8-cycle case the blocks with A and B
are

A12, B27, A78, B85, A56, B63, A34, B41.

Figure 1 shows this situation.

We will define a generic labelling of an APSTS(n+2) to be a labelling
of its points by A,B and the elements of N with the following properties.

(i) One block is labelled AB0,

(ii) every block labelled Axy with x, y ∈ N has |x − y| = 1 (absolute
value, not just modulo n),

(iii) every block labelled Bxy with x, y ∈ N has |x− y| = 3 or 5 (absolute
values, not just modulo n),

(iv) each {A,B} cycle is labelled with a subset of consecutive integers
from N .

We have just shown that every APSTS(n+ 2) has a generic labelling.
Using a generic labelling, any APSTS(n+2) can be represented on the

point set {A,B, 00, 10, . . . , (n − 1)0}, with a block AB00, D
A
0

= {1} and
DB

0
⊆ {3, 5}. Let S0 denote such a system. By reversing the roles of A

and B in a generic labelling, we can represent any APSTS(n + 2) on the
point set {A,B, 01, 11, . . . , (n − 1)1} with a block AB01, D

A
1
⊆ {3, 5} and

DB
1
= {1}. Let S1 denote such a system. By applying the mapping x → 2x

(mod n) (with A and B fixed) to a generic labelling we can represent any
APSTS(n + 2) on the point set {A,B, 02, 12, . . . , (n − 1)2} with a block
AB02, D

A
2

= {2} and DB
2

⊆ {6, 10}. Let S2 denote such a system. If
n ≥ 17, the differences 1, 2, 3, 5 are distinct modulo n so DA

i ∩DA
j = ∅ for

i 6= j, and the differences 1, 3, 5, 6, 10 are distinct modulo n so DB
i ∩DB

j = ∅
for i 6= j. Hence S0,S1 and S2 have different differences, and these systems
may be used in Construction 1.

Example 2. As an example for n = 17, there is a APSTS(19) with a
pair of points giving a 10-cycle and a 6-cycle. This system can be used to
generate Si for each i = 0, 1, 2. In S0 take the cycles as

(10, 20, 50, 60, 90, 100, 70, 80, 30, 40) and (110, 120, 150, 160, 130, 140).
In S1 take the cycles as

(21, 51, 61, 91, 101, 71, 81, 31, 41, 11) and (121, 151, 161, 131, 141, 111).
In S2 take the cycles as

(22, 42, 102, 122, 12, 32, 142, 162, 62, 82) and (52, 72, 132, 152, 92, 112).

Since there exists a APSTS(v) for every admissible v ≥ 19, we may now
state the following result.
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Theorem 2.1 If v ≡ 5 or 17 (mod 18) and v ≥ 17 then there exists an
anti-Pasch MMPTS(v) of quintuple type.

Proof. For v = 17, 23, 35 and 41 the result follows from a computer search
and the designs are given in [6]. For s ≥ 3, Construction 1 may be employed
using an APSTS(6s + 1) to give an APMMPTS(18s − 1), and using an
APSTS(6s+ 3) to give an APMMPTS(18s+ 5).

Remark. Construction 1 cannot be used to give an APMMPTS(v) for
v = 17, 23, 35 or 41 because there is no APSTS(7), no APSTS(13), and
the procedure described for obtaining three APSTS(v)s having different
differences requires v ≥ 19, and it therefore fails for v = 9, 15.

Construction 2. Suppose that for i = 0, 1, 2, Si = (Vi,Bi) is an
APMMPTS(n+ 2) with n ≡ 3 (mod 6) on the point set Vi = {A,B} ∪Ni,
such that S0,S1 and S2 have different differences with respect to {A,B},
and their leaves are respectively (A, a0, b0, B), (A, c1, d1, B) and (A, e2,
f2, B). Suppose also that c−d ≡ f−e (mod n). Let δ denote the difference
|c− d| modulo n, and let g be such that g+ c+ e ≡ g+ d+ f ≡ 0 (mod n).
Assume that

(i) δ 6∈ DA
0
∪DB

0
, and

(ii) there are no blocks g0x0(x + δ)0 ∈ B0 (where x + δ is taken modulo
n).

Then an APMMPTS(3n+ 2), say S, can be formed on the point set V =
{A,B} ∪N0 ∪N1 ∪N2 with block set B containing the following triples:

• Horizontal blocks : All triples from B0 ∪ B1 ∪ B2.

• Vertical blocks : All triples x0y1z2 where x0 ∈ N0, y1 ∈ N1, z2 ∈ N2

and x + y + z ≡ 0 (mod n), except for the two triples g0c1e2 and
g0d1f2.

• Mixed blocks : The four triples Ac1e2, Bd1f2, g0c1d1 and g0e2f2.

The points and triples from Si will be said to be at level i, so that A
and B are common to all three levels. Note that there are no blocks of B
containing the pairs AB,Aa0, Bb0 and a0b0.

We start by proving that S is an MMPTS(3n + 2). Clearly the pairs
covered by the horizontal and vertical blocks are all distinct. Each of the
12 pairs appearing in the mixed blocks either lies in the leave of S1 or S2,
or in one of the deleted triples g0c1e2, g0d1f2. So the blocks of B do not
contain a repeated pair. The total number of blocks in B is

3

(

(n+ 2)(n+ 1)− 8

6

)

+ (n2 − 2) + 4 =
3n2 + 3n− 2

2
,
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which is the number of blocks in an MMPTS(3n + 2). Hence S is an
MMPTS(3n + 2) with leave (A, a0, b0, B). It remains to prove that S is
anti-Pasch, and to do this we consider two cases.

Case (a) Consider the possibility of a Pasch configuration P that does not
contain any of the four mixed blocks.

The argument that eliminates this possibility is identical with that given
for the corresponding case in Construction 1.

Case (b) Consider the possibility of a Pasch configuration P that contains
one of the mixed blocks. Altogether there are thirteen subcases and to
save endlessly writing “(mod n)” we state once that all the congruences are
taken modulo n. Consider first a possible Pasch configuration P containing
the point A. There are three possibilities for the two blocks containing A.

1. Ac1e2, Ax0y0. Without loss of generality the other two blocks are
x0c1Z and y0e2Z. The third block shows that Z 6= B. Examining
the third block gives two possibilities. If Z = d1 then x0 = g0 and
the fourth block is y0d1e2, which gives y+d+e ≡ 0, so that |x−y| ≡
|g + d + e| ≡ |e − f | ≡ δ. Thus the block Ax0y0 gives δ ∈ DA

0
, a

contradiction. The other possibility is that Z = z2, in which case the
fourth block is y0e2z2, which implies that y0 = g0 and z2 = f2. Then
the third block gives x + c + z ≡ 0, so that |x − y| ≡ |g + c + f | ≡
|c − d| ≡ δ. Thus also in this case the block Ax0y0 gives δ ∈ DA

0
, a

contradiction.

2. Ac1e2, Ax1y1. Without loss of generality the other two blocks are
x1c1Z and y1e2Z. The fourth block shows that Z 6= B and so Z = z0,
where y+e+z ≡ 0. Then the third block gives z0 = g0, so y+e+g ≡ 0
and hence y1 = c1, a contradiction.

3. Ac1e2, Ax2y2. Without loss of generality the other two blocks are
x2c1Z and y2e2Z. The third block shows that Z 6= B and so Z =
z0, where x + c + z ≡ 0. Then the fourth block gives z0 = g0, so
x+ c+ g ≡ 0 and hence x2 = e2, a contradiction.

Consider next a possible Pasch configuration P containing the point B.
There are three possibilities for the two blocks containing B.

4. Bd1f2, Bx0y0. Without loss of generality the other two blocks are
x0d1Z and y0f2Z. The third block shows that Z 6= A. Examining
the third block gives two possibilities. If Z = c1 then x0 = g0 and
the fourth block is y0c1f2, which gives y+ c+f ≡ 0, so that |x−y| ≡
|g + f + c| ≡ |c − d| ≡ δ. Thus the block Bx0y0 gives δ ∈ DB

0
, a

contradiction. The other possibility is that Z = z2, in which case the
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fourth block is y0f2z2, which implies that y0 = g0 and z2 = e2. Then
the third block gives x + d + z ≡ 0, so that |x − y| ≡ |g + d + e| ≡
|e − f | ≡ δ. Thus also in this case the block Bx0y0 gives δ ∈ DB

0
, a

contradiction.

5. Bd1f2, Bx1y1. Without loss of generality the other two blocks are
x1d1Z and y1f2Z. The fourth block shows that Z 6= A and so Z = z0,
where y+f+z ≡ 0. Then the third block gives z0 = g0, so y+f+g ≡ 0
and hence y1 = d1, a contradiction.

6. Bd1f2, Bx2y2. Without loss of generality the other two blocks are
x2d1Z and y2f2Z. The third block shows that Z 6= A and so Z =
z0, where x + d + z ≡ 0. Then the fourth block gives z0 = g0, so
x+ d+ g ≡ 0 and hence x2 = f2, a contradiction.

It follows from the arguments above that there can be no Pasch con-
figurations involving either of the two mixed blocks containing A and B
if condition (i) is satisfied. So we next examine the possibility of a Pasch
configuration containing one of the other two mixed blocks. First we deal
with the case of a possible Pasch configuration P containing both of these
mixed blocks.

7. Suppose that P has blocks g0c1d1, g0e2f2. The pair c1e2 lies in a
triple with A and the pair d1f2 lies in a triple with B. So suppose
the other two blocks of P are c1f2Z and d1e2Z. Then Z = z0 and
c+f+z ≡ d+e+z ≡ 0. This gives c−d ≡ e−f , but we already have
c− d ≡ f − e, and since n is odd these give c = d, a contradiction.

Next consider a possible Pasch configuration P containing just the one
mixed block g0c1d1. Without loss of generality there are three possibilities.

8. Suppose that P has blocks g0c1d1, g0x0y0, x0c1Z, y0d1Z. The third
block shows that Z 6= A,B and since Z 6= d1, we must have Z = z2.
So the third and fourth blocks give x ≡ −(c + z) and y ≡ −(d + z).
Now the second block may be written as g0(−(c + z))0(−(d + z))0
which has the form g0w0(w+δ)0 because |c+z−(d+z)| = |c−d| ≡ δ.
But this contradicts the supposition (ii) that there are no such blocks.

9. Suppose that P has blocks g0c1d1, g0x1y2, x1c1Z, y2d1Z. The fourth
block shows that Z 6= A,B and so Z = z0. But then the third block
gives z0 = g0 and x1 = d1, a contradiction.

10. Suppose that P has blocks g0c1d1, g0x1y2, x1d1Z, y2c1Z. The fourth
block shows that Z 6= A,B and so Z = z0. But then the third block
gives z0 = g0 and x1 = c1, a contradiction.
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Finally, consider a possible Pasch configuration P containing just the one
mixed block g0e2f2. Without loss of generality there are three possibilities.

11. Suppose that P has blocks g0e2f2, g0x0y0, x0e2Z, y0f2Z. The third
block shows that Z 6= A,B and since Z 6= f2, we must have Z = z1.
So the third and fourth blocks give x ≡ −(e + z) and y ≡ −(f + z)
Now the second block may be written as g0(−(e + z))0(−(f + z))0
which has the form g0w0(w+δ)0 because |e+z−(f+z)| = |e−f | ≡ δ.
But this contradicts the supposition (ii) that there are no such blocks.

12. Suppose that P has blocks g0e2f2, g0x1y2, x1e2Z, y2f2Z. The third
block shows that Z 6= A,B and so Z = z0. But then the fourth block
gives z0 = g0 and y2 = e2, a contradiction.

13. Suppose that P has blocks g0e2f2, g0x1y2, x1f2Z, y2e2Z. The third
block shows that Z 6= A,B and so Z = z0. But then the fourth block
gives z0 = g0 and y2 = f2, a contradiction.

It follows from Cases (a) and (b) that the design S produced by Construc-
tion 2 cannot contain a Pasch configuration, and so it is an
APMMPTS(3n+ 2).

In order for Construction 2 to be of any use, it is necessary to prove
that there is a ready supply of APMMPTS(n+2) systems S0,S1,S2 having
the appropriate properties. We will show that this is the case, but we will
do so in stages.

Given an APMMPTS(n + 2) with n ≡ 3 (mod 6) and with the leave
(X,α, β, Y ), the pair {X,Y } determines a path of even length p (i.e. having
an odd number of vertices) having the form (β, . . . , α). If p < n − 1 there
will also be cycles Ci having even lengths ℓi on the pair {X,Y }. Because
the system has no Pasch configurations, ℓi cannot equal 4, so ℓi ≥ 6.
Furthermore, p+

∑

i ℓi = n− 1. Note that the design is of quintuple type
if and only if the path is of length p = 2, in which case the path is (β, γ, α)
where γ is the point forming blocks Xβγ and Y αγ.

Our earlier definition of a generic labelling of an APSTS(n+ 2) can be
modified for APMMPTS(n+2)s with n ≡ 3 (mod 6) and leave (X,α, β, Y ).
A generic labelling of such an APMMPTS(n+2) is a labelling of its points
by A,B and the elements of N with the following properties.

(i) The leave is labelled (A, 0, 1, B),

(ii) every block labelled Axy with x, y ∈ N has |x − y| = 1 (absolute
value, not just modulo n),

(iii) every block labelled Bxy with x, y ∈ N has |x − y| = 2, 3 or 5
(absolute values, not just modulo n),
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(iv) the {A,B} path and each {A,B} cycle (if any) is labelled with a
subset of consecutive integers from N .

Every APMMPTS(n + 2) with n ≡ 3 (mod 6) has a generic labelling.
To see this consider first the path. How to label this depends whether its
length p has p ≡ 0 or 2 (mod 4). In each case Table 2 gives the first four
cases and a general formula. As a convention we record the path starting
with two points lying in a block with A, so the first point represents β and
the last point represents α.

p ≡ 2 (mod 4)
p = 2: (1, 2, 0)
p = 6: (1, 2, 5, 6, 4, 3, 0)
p = 10: (1, 2, 5, 6, 9, 10, 8, 7, 4, 3, 0)
p = 14: (1, 2, 5, 6, 9, 10, 13, 14, 12, 11, 8, 7, 4, 3, 0)
p ≡ 2: (pairs 1 + 4j, 2 + 4j for 0 ≤ j ≤ j∗, followed by

pairs 4(j∗ − j), 4(j∗ − j)− 1 for 0 ≤ j ≤ j∗ − 1,
followed by 0),

where j∗ = (p− 2)/4.

p ≡ 0 (mod 4)
p = 4: (1, 2, 4, 3, 0)
p = 8: (1, 2, 5, 6, 8, 7, 4, 3, 0)
p = 12: (1, 2, 5, 6, 9, 10, 12, 11, 8, 7, 4, 3, 0)
p = 16: (1, 2, 5, 6, 9, 10, 13, 14, 16, 15, 12, 11, 8, 7, 4, 3, 0)
p ≡ 0: (pairs 1 + 4j, 2 + 4j for 0 ≤ j ≤ j∗, followed by

pairs 4 + 4(j∗ − j), 3 + 4(j∗ − j) for 0 ≤ j ≤ j∗,
followed by 0),

where j∗ = (p− 4)/4.

Table 2. Labelling the path.

Every block Axy in the path has |x − y| = 1, and every block Bxy in
the path has |x − y| = 2 or 3. The cycles (if any) can then be labelled as
described previously in connection with Construction 1, adding an appro-
priate constant to all the labels for each cycle so that every block Axy in
every cycle has |x−y| = 1 and every block Bxy in every cycle has |x−y| = 3
or 5. Thus in the complete labelling, the leave is labelled (A, 0, 1, B) and
every block Axy has |x− y| = 1 and every block Bxy has |x− y| = 2, 3 or
5, so that DA = {1} and DB ⊆ {2, 3, 5}. Furthermore the path and each
cycle is labelled with a subset of consecutive integers from N .

Now suppose that we have an APMMPTS(n+ 2) with n ≡ 3 (mod 6)
that is generically labelled and has the additional property, which we call
property G, that there is some point g 6= A,B for which there are no blocks
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{g, x, x+4}. Form a copy S0 of this system by appending the suffix 0 to all
the points other than A and B. Form S1 by applying the mapping x → 4x
(mod n) (with A and B fixed) to any generically labelled APMMPTS(n+2)
and then appending the suffix 1 to all the points other than A and B. The
leave of S1 is then (A, 01, 41, B) so, in the notation of Construction 2, c = 0
and d = 4. Form S2 from any generically labelled APMMPTS(n + 2) as
follows. First exchange A and B; this can be achieved by taking the first
two points in the path and in each cycle to be in a block with B, the second
and third points with A, and so on. Then apply the mapping x → 4x+ λ
(mod n) (with A and B fixed and λ a constant specified below), finally
append the suffix 2 to all the points other than A and B. The constant
λ is chosen as follows. The leave of S2 is (A, (4 + λ)2, λ2, B) so, in the
notation of Construction 2, e ≡ 4 + λ and f ≡ λ. We wish to have blocks
g0c1e2 and g0d1f2, so we require g + c + e ≡ g + d + f ≡ 0, and this can
be achieved by setting λ ≡ −(g + 4) (mod n). This choice gives e ≡ −g
and f ≡ −(g + 4). Again in the notation of Construction 2, δ = 4. As
regards the sets of differences associated with A and B, we have DA

0
= {1},

DB
0
⊆ {2, 3, 5}, DA

1
= {4}, DB

1
⊆ {8, 12, 20}, DA

2
⊆ {8, 12, 20}, DB

2
= {4}.

If n ≥ 27, the differences 1, 2, 3, 4, 5, 8, 12, 20 are all distinct modulo n, and
then the systems S0,S1 and S2 have different differences with respect to
{A,B}, δ 6∈ DA

0
∪DB

0
, and there are no blocks g0x0(x + δ)0. So the three

labelled systems are suitable for use in Construction 2.
There still remains the difficulty of finding an APMMPTS(n+ 2) with

n ≡ 3 (mod 6) that can be generically labelled in such a way that it has
property G. For small values of n ≥ 27 these are easy to find using a com-
puter and a hill-climbing algorithm. We will prove that any system produced
by Construction 1 has this property, and that an additional condition on
the ingredients will ensure that some systems produced by Construction 2
also have this property. In preparation for this we give the following rather
trivial but useful lemma.

Lemma 2.1 Suppose that S is a generically labelled APMMPTS(n + 2)
with n ≡ 3 (mod 6). Then there exists a point g 6= A,B for which there
are no blocks {g, x, x + 4}, if and only if there exists a point h for which
there are two blocks {h, z, z + 4} and {h,w,w + 4} (z 6= w and arithmetic
modulo n).

Proof. The point set of S has n points other than A and B, and conse-
quently n pairs {x, x + 4}. None of these pairs appear in a triple with A
or B because 4 6∈ DA ∪DB. If two such pairs appear with a point h then
h 6= A,B, and so there must exist a point g 6= A,B for which there are no
blocks {g, x, x+4}. Conversely if there is a point g 6= A,B for which there
are no blocks {g, x, x + 4}, then some point h must occur in blocks with
two distinct pairs {z, z + 4} and {w,w + 4}.
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Define property H for a generically labelled APMMPTS(n + 2) by the
requirement that there should exist a point h for which there are two blocks
{h, z, z+4} and {h,w,w+4} (z 6= w and arithmetic modulo n). The lemma
shows that properties G and H are equivalent. The lemma is useful because
property H is easier to establish than property G. It is advantageous to
consider a stronger requirement than property H in which the points z and
w are well away from n − 1. So we define property H* for a generically
labelled APMMPTS(n + 2) by the requirement that there should exist a
point h for which there are two blocks {h, z, z + 4} and {h,w,w + 4} with
z 6= w and 0 ≤ z, w ≤ n − 5. Property H* ensures that the differences of
four between z and z +4, and between w and w+4, are absolute, and not
just modulo n. Clearly property H* implies property G.

We now explain how an APMMPTS(3n+2) produced by Construction
1 can be generically labelled by A,B, 0, 1, . . . , 3n − 1 in such a way that
it has property H*, i.e. there is a point h for which there are two blocks
{h, z, z + 4} and {h,w,w + 4} with z 6= w and 0 ≤ z, w ≤ 3n − 5. Any
system produced by Construction 1 comes with the (non-generic) labelling
inherited from that construction, but here we specify a relabelling. Obvi-
ously no relabelling will create Pasch configurations. But the relabelling
will result in the vertical blocks x0y1z2 no longer satisfying the condition
x + y + z ≡ 0 (mod n). A system produced by Construction 1 will be of
quintuple type. The relabelling is done in stages.

The original labelling of the constructed system has the {A,B} path
(01, 00, 02), and has the {A,B} cycles of system S0 labelled with 10, 20, . . . ,
(n − 1)0. Note that the differences given by the original labellings are
absolute (not modulo n). In the relabelling, the points A and B retain their
original labels. The path is relabelled as (1, 2, 0) so that 01 is relabelled 1,
00 is relabelled 2, and 02 is relabelled 0. For the {A,B} cycles of system S0,
drop the suffix 0 and add 2 to all the labels, so that the cycles (and hence the
points 10, 20, . . . (n−1)0) are now labelled by 3, 4, . . . , n+1. This relabelling
does not affect the differences since these are absolute differences. So, up
to this point in the argument, the differences generated by the path and
relabelled cycles on A are all 1, and those on B are all 2, 3 or 5. Now pick
two distinct points from 3, 4, . . . , n+1 with an absolute difference of 4, say
z and z + 4. These lie in a block with some other point already relabelled
(not A or B), say h.

Next, the {A,B} cycles (and hence the points) of system S1, originally
labelled with 11, 21, . . . , (n − 1)1, are relabelled with n + 2, n + 3, . . . , 2n,
but we carry out the relabelling by the generic method described above so
that the differences on A are all 1 and those on B are all 3 or 5 (again,
absolute values).

Now consider the triple containing the pair of points already relabelled
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as h and 2n. This triple is one of the original vertical triples from the
construction. So there is some point from S2, say u2, that forms a block
with the points now relabelled as h and 2n. Assume for the moment that
u2 6= 02 so that u2 lies in one of the original {A,B} cycles of S2. These
cycles (and hence the points) of S2, originally labelled with 12, 22, . . . ,
(n − 1)2, will be relabelled with 2n + 1, 2n + 2, . . . , 3n − 1, but we again
carry out the relabelling by the generic method described above so that
the differences on A are all 1 and those on B are all 3 or 5 (again, absolute
values). Moreover, it is possible to arrange that the point u2 is relabelled
as 2n+4. To achieve this, take the cycle containing u2 as the first cycle to
be relabelled. Let ℓ denote the length of this cycle, so that it is relabelled
with 2n + 1, 2n + 2, . . . , 2n + ℓ. Thus one of the points in this cycle is
relabelled as 2n+ 4, and we can ensure that this point is u2 by taking an
appropriate equivalent form for listing the cycle (see Example 3 below for
an example of what we mean by this). Such a relabelling results in a block
{h,w,w + 4} with w = 2n.

In the exceptional case when u2 = 02, there will be a point v2 that
forms a block with the points now relabelled as h and 2n− 1, and v2 6= 02.
So in this case we relabel the points 12, 22, . . . , (n − 1)2, as before, but
now arrange for v2 to receive the label 2n + 3. This results in a block
{h,w,w + 4} with w = 2n− 1.

The constructed system is now labelled with a generic labelling, with
DA = {1} and DB ⊆ {2, 3, 5}, and we have two distinct blocks of the
form {h, z, z+4} and {h,w,w+4}. Consequently there must exist a point
g 6= A,B for which there is no block labelled {g, x, x+ 4}. This system, as
now labelled, is suitable for use in an application of Construction 2 (with n
now replaced by 3n). It is also useful to note that the two blocks {h, z, z+4}
and {h,w,w + 4} have 0 ≤ z, w ≤ 3n− 5, i.e the system has property H*.
As explained below, this will enable a system produced by such an applica-
tion of Construction 2 to be itself used in a reapplication of Construction 2.

Example 3. To clarify the relabelling of system S2 described above, sup-
pose that u2 lies in the 6-cycle (. . . , x2, u2, y2, . . .). Note that the “standard
form” for a 6-cycle given earlier is (1, 2, 5, 6, 3, 4).

If the block containing the pair {x2, u2} is Ax2u2, take the cycle in the
equivalent form (y2, . . . , x2, u2). Then relabel:

y2 → 2n+ 1, . . . , x2 → 2n+ 3, u2 → 2n+ 4,

so that the cycle is now (2n+1, 2n+2, 2n+5, 2n+6, 2n+3, 2n+4). Thus
u2 is relabelled as 2n + 4 and the differences on A are 1 and those on B
are 3 or 5 (actually 3 in this example).

If the block containing the pair {x2, u2} is Bx2u2, first reverse the
cycle to get the equivalent form (. . . , y2, u2, x2, . . .), and then write it as
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(x2, . . . , y2, u2). Then relabel:

x2 → 2n+ 1, . . . , y2 → 2n+ 3, u2 → 2n+ 4,

so that the cycle is again (2n + 1, 2n + 2, 2n + 5, 2n + 6, 2n + 3, 2n + 4).
Thus u2 is relabelled as 2n+4 and the differences on A are 1 and those on
B are 3 or 5 (actually 3 in this example).

It should be clear from this example that it is possible to relabel the
points 12, 22, . . . , (n− 1)2 of system S2 with the labels 2n+ 1, 2n+ 2, . . . ,
3n − 1 in such a way that the {A,B} cycles are labelled with subsets
of consecutive integers, the differences on A are 1, those on B are 3 or
5, and any specified point x2 can be relabelled with any specified label
y ∈ {2n+ 1, 2n+ 2, . . . , 3n− 1}.

Next we show that some systems produced by Construction 2 can also
be given a generic relabelling with property H*. So suppose that S has
been produced using the constituent APMMPTS(n + 2) designs S0, S1

and S2, and suppose also that S0 has property H*. Observe that the
{A,B} path and cycles of S0 are retained in S. Hence S, with its original
labelling contains two blocks {h0, z0, (z + 4)0} and {h0, w0, (w + 4)0} with
0 ≤ z, w ≤ n − 5. In the relabelling, A and B retain their original labels
and each point x0 of S0 is relabelled as x. We then have two blocks of S
labelled as {h, z, z + 4} and {h,w,w + 4}, and 0 ≤ z, w ≤ 3n − 5. The
relabelling does not affect the differences on the {A,B} path and cycles
since these are absolute differences. So, up to this point in the argument,
the differences generated by the path and relabelled cycles on A are all 1,
and those on B are all 2, 3 or 5.

We now relabel all the remaining cycles by the generic method described
above, using labels n, n+1, . . . , 3n−1, so that the differences on A are all 1
and the differences on B are all 3 or 5 (again, absolute values). The result
is that S is generically labelled and has property H*. Consequently the
relabelled system S is suitable for use in a reapplication of Construction
2, taking the role of the new system S0; the system resulting from such a
reapplication may again be reused, and so on.

We can summarise the results of this section as follows.

• Every APMMPTS(3n+2) (n ≡ 1 or 5 (mod 6), n ≥ 17) produced by
Construction 1 is of quintuple type and it can be generically labelled
in such a way that it has property H*.

• If there is an APMMPTS(n + 2) (n ≡ 3 (mod 6), n ≥ 27) that can
be generically labelled in such a way that it has property H*, then
Construction 2 can be applied to yield an APMMPTS(3n + 2) that
can also be generically labelled in such a way that it has property H*.
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If the APMMPTS(n+2) is of quintuple type, then so is the resulting
APMMPTS(3n+ 2).

3 Recursion

We now show how the results of the previous section can be used to establish
that there exists an APMMPTS(6s + 5) for all s 6= 1. The case s = 0 is
trivial. Computer searches based on a hill-climbing algorithm deal with
the values 2 ≤ s ≤ 7 and s = 10. By this method, we have constructed
APMMPTS(6s+ 5) designs of quintuple type

(a) for s = 2 and 3, and

(b) for s = 4, 5, 6, 7 and 10, and these designs can be generically labelled
to have property H*.

These designs are available from the authors [6]. The cases s = 8 and
9 are resolved by Construction 1, using APSTS(19)s and APSTS(21)s re-
spectively. As noted in the previous section, the resulting APMMPTS(53)
and APMMPTS(59) designs are of quintuple type and can be generically
labelled to have property H*.

Having established the result for 4 ≤ s ≤ 10, the following lemma
provides the inductive step.

Lemma 3.1 If there exists an APMMPTS(6s + 5) of quintuple type that
can be generically labelled to have property H* for each value s satisfying
4 ≤ s ≤ M , where M ≥ 10, then there exists an APMMPTS(6(M +1)+5)
of quintuple type that can be generically labelled to have property H*.

Proof. The proof fall into two cases: if M ≡ 0 (mod 3) then Construction
2 is applied inductively, otherwise Construction 1 is applied directly.

So suppose first that M = 3t. Then t ≥ 4 so, by the hypothesis, there
is an APMMPTS(6t+5) of quintuple type that can be generically labelled
to have property H*. Applying Construction 2 with n = 6t + 3 gives an
APMMPTS(6(M+1)+5) of quintuple type that can be generically labelled
to have property H*.

Next suppose that M = 3t + 1. Then t ≥ 3 and there exists an
APSTS(6t + 7). Applying Construction 1 with n = 6t + 5 gives an
APMMPTS(6(M + 1) + 5) of quintuple type that can be generically la-
belled to have property H*. Similarly if M = 3t+ 2 then t ≥ 3 and there
exists an APSTS(6t + 9). Applying Construction 1 with n = 6t + 7 gives
an APMMPTS(6(M + 1) + 5) of quintuple type that can be generically
labelled to have property H*.

Corollary 3.1 follows immediately from the Lemma 3.1.
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Corollary 3.1 There exists an APMMPTS(6s + 5) of quintuple type for
all s 6= 1.

As explained in the Introduction, this result establishes the truth of
Theorems 1.1 and 1.2.
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