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1 Introduction

Let X = (V,E) be the graph with vertex set V = {x, a, b, c, d} and edge
set E = {xa, xb, xc, xd, ab, cd}. Such a graph is called a bowtie and will
be represented throughout this paper by the notation a, b − x − c, d. The
vertex x is called the centre of the bowtie and the other vertices are called
endpoints. A decomposition of the complete graph Kn into subgraphs iso-
morphic to X is called a bowtie system of order n and denoted by BTS(n).
An elementary counting argument shows that a necessary condition for the
existence of a BTS(n) is n ≡ 1 or 9 (mod 12). In a BTS(n), if every vertex
of the complete graph Kn occurs the same number of times as the centre
of a bowtie, then the bowtie system is said to be balanced, otherwise the
system is said to be unbalanced. A necessary condition for the existence of
a balanced BTS(n) is n ≡ 1 (mod 12).

It is easy to see that, given a BTS(n), by regarding each of the two tri-
angles of every bowtie as separate entities, we have a Steiner triple system
STS(n). We call this the associated Steiner triple system of the bowtie sys-
tem. Conversely, if n ≡ 1 or 9 (mod 12), it is also true that the triangles of
every STS(n) can be amalgamated to form bowties. This is a consequence
of the fact that the block intersection graph of every Steiner triple system
is Hamiltonian, see for example [2, Section 13.6]. If n ≡ 1 (mod 12), there
exists a cyclic STS(n), see also [2, Section 7.2], and this system will have an
even number of full orbits. It is then immediate that we can amalgamate
triangles from pairs of orbits to form a balanced BTS(n). Hence the nec-
essary conditions for both BTS(n) and balanced BTS(n) given above are
also sufficient.

A configuration in a bowtie system (resp. Steiner triple system) is a
small collection of bowties (resp. triangles) which may occur in the sys-
tem. The study of configurations in STS(n) is now well established and
the whole of Chapter 13 of [2] is devoted to various results about them
and in particular includes formulae for the number of occurrences of all
possible configurations of four or fewer triangles. Those for configurations
of one, two or three triangles are functions of n. Such configurations are
called constant because the number of occurrences is independent of the
structure of the STS(n). Other configurations are variable. There are 16
non-isomorphic configurations of four triangles of which 5 are constant and
11 are variable. An important concept is that of avoidance; given any
particular configuration in a bowtie system (resp. Steiner triple system),
to determine the spectrum of n for which there exists a BTS(n) (resp.
STS(n)) which does not contain that configuration. Avoidance sets for all
configurations of four or fewer triangles in Steiner triple systems are known.
Most, particularly those for constant configurations, are easy to determine
but that for the so-called Pasch configuration (four triangles isomorphic to
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{a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}) was more challenging. It is n ≡ 1 or 3
(mod 6), n 6= 7, 13 and a complete solution appears in the two papers [7]
and [6].

In this paper we will be concerned with the avoidance sets of config-
urations of two bowties in a BTS(n). There are ten such configurations
which were determined in [4] and are illustrated in Figure 1. In this figure
each triangle of a bowtie is represented by a path on three vertices and, in
each case, one bowtie is represented by solid lines and the second by dashed
lines. The intersection of two solid lines or two dashed lines is the centre
of the bowtie and the other four points are the endpoints. The ten config-
urations are each labelled Ĉi for some value of i, 1 ≤ i ≤ 16, to reflect the
fact that the bowtie configuration with that label gives the configuration
Ci in the standard listing of configurations of four triangles in Steiner triple
systems as given in [5] or [2, Section 13.1]. Indeed it was by examining all
16 possible configurations of four triangles in a Steiner triple system and
identifying which could be obtained from two bowties that the ten possible
configurations of two bowties were obtained.

There are four equations which connect the number of occurrences of the
various configurations of two bowties and these were proved in [4]. Denoting
the number of occurrences of the configuration Ĉi by ci, the equations are
the following.

4c7 + c8 + c11 + c15 = n(n− 1)(n− 5)/24. (1)

c11 + c12 + 2c14 + 3c15 + 4c16 = n(n− 1)/3. (2)

c8 + c9 + 2c10 + c11 + c12 + c14 = n(n− 1)(n− 7)/12. (3)

4c3 + c8 + 2c9 + c12 = n(n− 1)(n− 7)(n− 9)/72. (4)

If the bowtie system is balanced, there is a further equation.

c7 = n(n− 1)(n− 13)/288. (5)

All configurations are variable except that Ĉ7 is constant in balanced bowtie
systems.

Avoidance sets for the three most compact configurations, Ĉ14, Ĉ15 and
Ĉ16 have already been determined in [4]. The following theorem was proved.

Theorem 1.1. For each n ≡ 1 (mod 12) there exists both a balanced and
an unbalanced BTS(n) simultaneously avoiding Ĉ14, Ĉ15 and Ĉ16. For each
n ≡ 9 (mod 12), n 6= 9 there exists a (necessarily unbalanced) BTS(n)
simultaneously avoiding Ĉ14, Ĉ15 and Ĉ16.

Thus not only can each of these three configurations be avoided for
all values of n for which both balanced BTS(n) and unbalanced BTS(n)
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Figure 1. Configurations of two bowties
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exist except for n = 9, they can all be avoided simultaneously. There are
precisely 12 non-isomorphic BTS(9)s which were enumerated in [3]. All
avoid Ĉ16, none avoid Ĉ15 and just one avoids Ĉ14. The details are in [4].

In this paper, we consider five further configurations. In particular we
show that BTS(n) avoiding three of the least compact configurations Ĉ3,
Ĉ7 and Ĉ8 do not exist if n > 13. Our main results are that for each of
the configurations Ĉ11 and Ĉ12, and for all admissible values of n, there
exists a BTS(n) avoiding that configuration, with the single exception of
Ĉ11 when n = 13. The situation for the two configurations Ĉ9 and Ĉ10

remains unresolved.

2 Avoiding Ĉ3, Ĉ7 and Ĉ8

We begin with Ĉ7. The number of bowties in a BTS(n) is n(n − 1)/12.
Hence if n > 13, there will be two bowties with a common centre. So
the only possible systems which may avoid Ĉ7 are balanced BTS(13)s, and
indeed all such systems do avoid Ĉ7, and BTS(9)s. Checking the data of
the 12 non-isomorphic BTS(9)s from [4] shows that six of these do avoid
Ĉ7 and the other six do not. We state this formally as a theorem.

Theorem 2.1. The only bowtie systems to avoid Ĉ7 are six of the twelve
non-isomorphic BTS(9)s and all balanced BTS(13)s.

Next we consider Ĉ8 and begin with some observations. First, if a, b−
x− c, d is a bowtie in a BTS(n) which has no Ĉ8 configurations, then there
are at most two bowties whose centre is a. This is because any such bowtie
must intersect the bowtie a, b − x − c, d in a further point which can only
be c or d. Similarly, there are at most two bowties whose centre is b, c or
d.

Secondly, in any BTS(n), a point x can be the centre of at most (n−1)/4
bowties. Thus if the BTS(n) has no Ĉ8 configurations and x is the centre
of less then (n − 1)/4 bowties, then it is an endpoint of at least one other
bowtie and so, by the above, there are at most two bowties whose centre
is x. As a consequence, in a BTS(n) which has no Ĉ8 configurations, each
point x is the centre of 0, 1, 2 or (n− 1)/4 bowties. Furthermore, if a point
is the centre of (n− 1)/4 bowties, then all remaining points are the centre
of at most two bowties. We can now prove the following theorem.

Theorem 2.2. A BTS(n) avoiding Ĉ8 can only exist if n ≤ 13.

Proof Subtracting equation (2) from equation (1) and re-arranging terms
gives c8 = n(n − 1)(n − 13)/24 − 4c7 + c12 + 2c14 + 2c15 + 4c16. Hence
c8 ≥ n(n− 1)(n− 13)/24− 4c7.
Now let ax be the number of bowties in a BTS(n) whose centre is x. Then
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c7 =
∑

x∈V

(

ax

2

)

where V denotes the set of n points in the design. Suppose

that n > 13 and that the BTS(n) has no Ĉ8 configurations. Let m be the
maximum number of bowties centred on any point in the BTS(n). Then
from the argument above either m = 2 or m = (n − 1)/4 and all but one
point is the centre of at most two bowties.
In either case

c7 =
∑

x∈V

(

ax
2

)

≤

(

(n− 1)/4

2

)

+ (n− 1) = (n− 1)(n+ 27)/32.

Hence

c8 ≥ n(n− 1)(n− 13)/24− (n− 1)(n+ 27)/8 = (n− 1)(n2 − 16n− 81)/24.

The right hand side of this expression is strictly positive for n ≥ 21, and
the result follows. �

In order to complete the avoidance spectrum for the configuration Ĉ8,
we have the following result.

Theorem 2.3. All BTS(9)s avoid Ĉ8 but no balanced BTS(13) avoids Ĉ8.
There exist unbalanced BTS(13)s which avoid Ĉ8.

Proof Checking the data of the 12 non-isomorphic BTS(9)s from [4] shows
that all avoid Ĉ8. The fact that no balanced BTS(13) avoids Ĉ8 follows
from an exhaustive computer search of all 1,411,422 non-isomorphic systems
identified in [3]. Two unbalanced BTS(13)s on the point set {0, 1, 2, . . . , 12}
which avoid Ĉ8 are given below. In the first case the associated STS(13) is
cyclic and in the second case it is non-cyclic.

(1) 0, 4− 1− 2, 5; 0, 7− 2− 3, 6; 2, 9− 4− 3, 7;
0, 6− 8− 1, 3; 4, 5− 8− 9, 12; 1, 7− 9− 5, 6;
0, 9− 10− 6, 7; 2, 8− 10− 3, 5; 0, 5− 11− 1, 10;
2, 12− 11− 4, 6; 3, 9− 11− 7, 8; 0, 3− 12− 4, 10;
1, 6− 12− 5, 7.

(2) 1, 4− 0− 2, 7; 6, 8− 0− 9, 10; 0, 12− 3− 1, 8;
2, 6− 3− 4, 7; 2, 9− 4− 5, 8; 1, 2− 5− 3, 10;
1, 7− 9− 5, 6; 2, 8− 10− 6, 7; 0, 5− 11− 1, 6;
2, 12− 11− 4, 10; 3, 9− 11− 7, 8; 1, 10− 12− 5, 7;
4, 6− 12− 8, 9.

�

Finally in this section we consider Ĉ3. We have a parallel result to
Theorem 2.2 for the configuration Ĉ8.
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Theorem 2.4. A BTS(n) avoiding Ĉ3 can only exist if n ≤ 13.

Proof Assume that n > 13, so that from Theorem 2.2, c8 > 0. From
equation (3) c9 < n(n−1)(n−7)/12 and c8+c9+c12 ≤ n(n−1)(n−7)/12.
So by addition c8 + 2c9 + c12 < n(n − 1)(n − 7)/6. From equation (4)
4c3 = n(n − 1)(n − 7)(n − 9)/72 − (c8 + 2c9 + c12). Therefore 4c3 >
n(n−1)(n−7)(n−21)/72. Throughout this proof all inequalities are strict
and since n > 13, i.e. n ≥ 21, we have that c3 > 0. �

Again, to complete the avoidance spectrum for the configuration Ĉ3, we
have the following result.

Theorem 2.5. The avoidance spectrum of the configuration Ĉ3 is the set
{9, 13}.

Proof The configuration Ĉ3 has ten points so all BTS(9)s avoid Ĉ3. A
balanced BTS(13) on the set Z13 which avoid Ĉ3 is the set of bowties
(i+1), (i+4)−i−(i+2), (i+7), 0 ≤ i ≤ 12, with arithmetic modulo 13. An
unbalanced BTS(13) can be obtained by replacing the bowties 1, 4−0−2, 7
and 7, 10− 6− 8, 0 with the bowties 1, 4− 0− 6, 8 and 6, 10− 7− 0, 2. �

3 Avoiding Ĉ11 and Ĉ12

The method we use to construct bowtie systems which avoid the configu-
rations Ĉ11 and Ĉ12 is similar to how we proved Theorem 1.1 on avoiding
Ĉ14, Ĉ15 and Ĉ16 and uses standard techniques involving group divisible
designs. It is however more intricate. We note that all GDDs used in this
paper exist (see [1, Section IV 4.1]). An essential component of the con-
struction is the following BTS(9) which is System (a)(I) in [3] and avoids
both Ĉ11 and Ĉ12.

1, 2− 0− 3, 6; 4, 8− 0− 5, 7; 3, 5− 4− 1, 7;
6, 7− 8− 2, 5; 5, 6− 1− 3, 8; 3, 7− 2− 4, 6.

We begin by proving the following result.

Theorem 3.1. For each n ≡ 1, 9 (mod 24), there exists a BTS(n) avoiding
Ĉ12.

Proof Take a 3-GDD of type 4t, where t = 3s or 3s+1 and s ≥ 1. Denote
the points of the ith group, 1 ≤ i ≤ t, by (i, 1), (i, 2), (i, 3) and (i, 4). Inflate
each point to two points, i.e. a point (i, j) becomes two points (i, j) and
(i, j′). Add a single new point ∞. On each inflated group of 8 points
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augmented with the ∞ point place a copy of the BTS(9) above, identifying
the points as follows.

∞ = 0, (i, 1) = 1, (i, 1′) = 3, (i, 2) = 2, (i, 2′) = 6,
(i, 3) = 4, (i, 3′) = 5, (i, 4) = 8, (i, 4′) = 7.

On each of the original blocks of the GDD, say {(i1, j1), (i2, j2), (i3, j3)},
i1 6= i2 6= i3 6= i1, place the two bowties (i2, j2), (i3, j3) − (i1, j1) − (i2, j

′

2),
(i3, j

′

3
) and (i2, j2), (i3, j

′

3
) − (i1, j

′

1
) − (i2, j

′

2
), (i3, j3). The bowties in the

resulting BTS(8t + 1) can be thought of as being of two types; (i) those
resulting from a BTS(9) which we will call BTS bowties and (ii) those
resulting from the blocks of the GDD which we will call GDD bowties. We
need to consider pairs of bowties which arise from all possibilities. There
are five cases to consider.
(1) Two GDD bowties which come from the same block of the GDD. By
the construction these form a configuration Ĉ16.
(2) Two GDD bowties which come from different blocks of the GDD. There
are four possible scenarios.

(a) If the two bowties are disjoint then they form a configuration Ĉ3.

(b) If the centres of the two bowties are the same, then they have no
further points in common and we have a configuration Ĉ7.

(c) If the centre of one of the bowties is an endpoint of the other bowtie,
then again they have no further points in common and we have a
configuration Ĉ8.

(d) If the two bowties have an endpoint in common, then they also have
a further endpoint in common and they form a configuration Ĉ10.

(3) Two BTS bowties which come from the same BTS(9). The configu-
ration they form is completely determined by the structure of the BTS(9)
and so avoids Ĉ12 (and Ĉ11).
(4) Two BTS bowties which come from different BTS(9)s. If the two
bowties are disjoint then they form a configuration Ĉ3. Otherwise they
can only intersect in the point ∞ which will be the centre of both bowties
and we have a configuration Ĉ7.
(5) A BTS bowtie and a GDD bowtie. If the two bowties are disjoint then
they form a configuration Ĉ3. If they have just one point in common then
they also avoid Ĉ12. Otherwise they have two points in common and these
points will both be endpoints of the GDD bowtie. Further the two points
will be (i, j) and (i, j′) for some i, j such that 1 ≤ i ≤ t and 1 ≤ j ≤ 4. If
either of these points is the centre of the BTS bowtie, then the other point
is an endpoint and we have a configuration Ĉ11. Otherwise both points are
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endpoints of the BTS bowtie and, because of the way in which the points
of the BTS(9) were assigned to the points ∞, (i, j) and (i, j′), they are in
different triangles. Hence we have a configuration Ĉ10. �

We now prove a parallel result for the configuration Ĉ11.

Theorem 3.2. For each n ≡ 1, 9 (mod 24), there exists a BTS(n) avoiding
Ĉ11.

Proof This follows the same steps as the previous theorem. However the
way in which each inflated group of 8 points augmented with the ∞ point
is identified with the points of the BTS(9) is different. In this case it is as
follows.

∞ = 0, (i, 1) = 1, (i, 1′) = 2, (i, 2) = 3, (i, 2′) = 6,
(i, 3) = 4, (i, 3′) = 8, (i, 4) = 5, (i, 4′) = 7.

The construction of the GDD bowties is the same. Also, in the analysis
of pairs of bowties, the first four cases are the same. So we only need
to consider case (5) of a BTS bowtie and a GDD bowtie. Again, if the
two bowties are disjoint then they form a configuration Ĉ3. If they have
just one point in common then they also avoid Ĉ11. Otherwise they have
two points in common and they are (i, j) and (i, j′) as before. Because
of the way in which the points of the BTS(9) were assigned to the points
∞, (i, j) and (i, j′), no BTS bowtie has its centre at a point (i, j) (resp.
(i, j′)) and an endpoint at the point (i, j′) (resp. (i, j)). So both points
are endpoints of the BTS bowtie. If they are in the same triangle then we
have a configuration Ĉ12. If they are in different triangles then we have a
configuration Ĉ10. �

We next consider the cases n ≡ 13, 21 (mod 24). In order to deal with
bowtie systems in these residue classes avoiding Ĉ12, the following further
BTS(13) is used.

1, 4− 0− 9, 10; 2, 7− 0− 6, 8; 3, 12− 0− 5, 11;
1, 5− 2− 3, 6; 1, 8− 3− 5, 10; 2, 10− 8− 4, 5;
7, 9− 1− 10, 11; 1, 12− 6− 7, 10; 2, 4− 9− 5, 6;
4, 7− 3− 9, 11; 2, 12− 11− 4, 6; 4, 10− 12− 8, 9;
5, 12− 7− 8, 11.

This system avoids the configuration Ĉ12 and has the property that one
point, namely 0, is at the centre of three bowties and never appears as an
endpoint. We can now prove the following result.
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Theorem 3.3. For each n ≡ 13, 21 (mod 24), there exists a BTS(n) avoid-
ing Ĉ12.

Proof Take a 3-GDD of type 4t61, where t = 3s or 3s + 1 and s ≥ 1.
Proceed as in Theorem 3.1 where in addition the points of the long group
are denoted by (t + 1, j), 1 ≤ j ≤ 6. On this inflated group of 12 points
augmented with the ∞ point place a copy of the BTS(13) above, identifying
the points as follows.

∞ = 0,
(t+ 1, 1) = 1, (t+ 1, 1′) = 10, (t+ 1, 2) = 4, (t+ 1, 2′) = 9,
(t+ 1, 3) = 2, (t+ 1, 3′) = 6, (t+ 1, 4) = 7, (t+ 1, 4′) = 8,
(t+ 1, 5) = 3, (t+ 1, 5′) = 5, (t+ 1, 6) = 12, (t+ 1, 6′) = 11.

The proof now follows that of Theorem 3.1 . This proves the result for all
stated values of n except n = 21. A solution for this value is the following.

15, 9− 3− 11, 17; 17, 9− 5− 11, 15; 18, 10− 3− 14, 19;
19, 10− 5− 14, 18; 16, 12− 3− 13, 20; 20, 12− 5− 13, 16;
18, 9− 4− 11, 19; 19, 9− 8− 11, 18; 16, 10− 4− 14, 20;
20, 10− 8− 14, 16; 15, 12− 4− 13, 17; 17, 12− 8− 13, 15;
16, 9− 6− 11, 20; 20, 9− 7− 11, 16; 15, 10− 6− 14, 17;
17, 10− 7− 14, 15; 18, 12− 6− 13, 19; 19, 12− 7− 13, 18;
0, 7− 3− 1, 5; 2, 3− 6− 5, 7; 2, 7− 8− 3, 4;
6, 8− 1− 4, 7; 0, 6− 4− 2, 5; 2, 9− 12− 11, 13;
2, 13− 14− 9, 10; 12, 14− 1− 10, 13; 0, 14− 11− 1, 9;
0, 12− 10− 2, 11; 0, 19− 15− 1, 17; 2, 15− 18− 17, 19;
2, 19− 20− 15, 16; 18, 20− 1− 16, 19; 0, 18− 16− 2, 17;
1, 2− 0− 9, 13; 8, 5− 0− 20, 17.

�

Turning our attention to avoiding Ĉ11, we have shown by an exhaustive
computer search that there is no BTS(13) that avoids this configuration.
So for the residue classes 13 and 21 (mod 24) we use the modified construc-
tions given in Theorems 3.4 and 3.5. For balanced BTS(13)s the minimum
number of Ĉ11 configurations is 10 for both associated cyclic and non-cyclic
STS(13)s. For unbalanced systems with the associated cyclic STS(13), we
find that the minimum is 5, but for unbalanced systems with the associated
non-cyclic STS(13), we find that the minimum is 4 and an example is given
below.
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0, 12− 3− 1, 8; 2, 6− 3− 4, 7; 3, 5− 10− 6, 7;
2, 4− 9− 3, 11; 2, 7− 0− 5, 11; 0, 10− 9− 8, 12;
0, 8− 6− 4, 12; 1, 7− 9− 5, 6; 0, 4− 1− 10, 12;
2, 5− 1− 6, 11; 2, 11− 12− 5, 7; 2, 8− 10− 4, 11;
4, 5− 8− 7, 11.

Theorem 3.4. For each n ≡ 21 (mod 24), there exists a BTS(n) avoiding
Ĉ11.

Proof Take a 3-GDD of type 3t, where t = 4s+ 3 and s ≥ 0. Denote the
points of the ith group, 1 ≤ i ≤ t, by (i, 1), (i, 2) and (i, 3). As before inflate
each point to two points, i.e. a point (i, j) becomes two points (i, j) and
(i, j′). Add three new points ∞0, ∞1 and ∞2. On each inflated group of 6
points augmented with the three ∞ points first place a copy of the BTS(9)
at the beginning of this Section, identifying the points as follows.

∞0 = 0, ∞1 = 1, ∞2 = 2,
(i, 1) = 3, (i, 1′) = 6, (i, 2) = 4, (i, 2′) = 8,
(i, 3) = 5, (i, 3′) = 7.

The triangle {∞0,∞1,∞2} now occurs 4s+3 times. Remove the bowties
∞1,∞2−∞0−(i, 1), (i, 1′) for all i such that 2 ≤ i ≤ 4s+3 and replace them
by the bowties (2i, 1), (2i, 1′)−∞0 − (2i+1, 1), (2i+1, 1′), 1 ≤ i ≤ 2s+1.
We call these BTS⋆ bowties. The construction of the GDD bowties is as in
the previous three theorems.

We need to prove that a bowtie system constructed in this way avoids
configuration Ĉ11. The proof for the five cases involving just BTS bowties
and GDD bowties is as in Theorem 3.2. So any putative configuration
Ĉ11 must contain a BTS⋆ bowtie. We show that this is impossible. A
configuration Ĉ11 consists of two bowties isomorphic to c, y − x − b, z and
a, z − y − d, e. The centre of every BTS⋆ bowtie is ∞0; however this point
never occurs as the endpoint of any bowtie. So y 6= ∞0. Now suppose that
x = ∞0 and that c, y − x − b, z is a BTS⋆ bowtie. Then without loss of
generality y = (2i, 1) and z = (2i+1, 1) for some i such that 1 ≤ i ≤ 2s+1,
say i = q. Therefore the bowtie a, z − y − d, e is a GDD bowtie and either
d or e = (2q + 1, 1′) = b which means that we do not have a configuration
Ĉ11. �

We note that, by using a 3-GDD of type 3t where t = 4s + 1, s ≥ 1,
the above theorem can also be used to provide an alternative proof of the
existence of a BTS(n) avoiding Ĉ11 for the residue class 9 (mod 24).

A BTS(21) avoiding Ĉ11 from the above theorem is given below. This
will be needed in the proof of the final theorem. It has the crucial property
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that one point, again namely 0, is at the centre of five bowties and never
appears as an endpoint.

1, 2− 0− 3, 6; 4, 8− 0− 5, 7; 10, 14− 0− 11, 13;
16, 20− 0− 17, 19; 9, 12− 0− 15, 18;
3, 5− 4− 1, 7; 9, 11− 10− 1, 13; 15, 17− 16− 1, 19;
6, 7− 8− 2, 5; 12, 13− 14− 2, 11; 18, 19− 20− 2, 17;
5, 6− 1− 3, 8; 11, 12− 1− 9, 14; 17, 18− 1− 15, 20;
3, 7− 2− 4, 6; 9, 13− 2− 10, 12; 15, 19− 2− 16, 18;
9, 15− 3− 12, 18; 10, 17− 3− 14, 19; 11, 16− 3− 13, 20;
9, 18− 6− 12, 15; 10, 19− 6− 14, 17; 11, 20− 6− 13, 16;
10, 16− 4− 14, 20; 11, 15− 4− 13, 18; 9, 17− 4− 12, 19;
10, 20− 8− 14, 16; 11, 18− 8− 13, 15; 9, 19− 8− 12, 17;
11, 17− 5− 13, 19; 9, 16− 5− 12, 20; 10, 15− 5− 14, 18;
11, 19− 7− 13, 17; 9, 20− 7− 12, 16; 10, 18− 7− 14, 15.

Theorem 3.5. For each n ≡ 13 (mod 24), except for n = 13, there exists
a BTS(n) avoiding Ĉ11.

Proof Take a 3-GDD of type 4t101, where t = 3s+2, s ≥ 1. Proceed as in
Theorem 3.2 where the points of the long group are denoted by (t + 1, j),
1 ≤ j ≤ 10. On this inflated group of 20 points augmented with the ∞
point place a copy of the BTS(21) above, identifying the points as follows.

∞ = 0,
(t+ 1, 1) = 1, (t+ 1, 1′) = 2, (t+ 1, 2) = 3, (t+ 1, 2′) = 6,
(t+ 1, 3) = 4, (t+ 1, 3′) = 8, (t+ 1, 4) = 5, (t+ 1, 4′) = 7,
(t+ 1, 5) = 10, (t+ 1, 5′) = 14, (t+ 1, 6) = 11, (t+ 1, 6′) = 13,
(t+ 1, 7) = 16, (t+ 1, 7′) = 20, (t+ 1, 8) = 17, (t+ 1, 8′) = 19,
(t+ 1, 9) = 9, (t+ 1, 9′) = 12, (t+ 1, 10) = 15, (t+ 1, 10′) = 18.

The proof now follows that of Theorem 3.2 . This proves the result for all
stated values of n except n = 37. A solution for this value is the following.
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16, 34− 0− 17, 35; 18, 36− 0− 1, 19; 8, 26− 0− 9, 27;
10, 28− 0− 11, 29; 12, 30− 0− 13, 31; 14, 32− 0− 15, 33;
2, 20− 0− 7, 25; 3, 21− 0− 4, 22; 5, 23− 0− 6, 24;
7, 18− 6− 36, 1; 25, 36− 24− 18, 19; 24, 1− 7− 19, 36;
6, 19− 25− 1, 18; 9, 8− 1− 26, 27; 27, 8− 19− 26, 9;
7, 5− 2− 23, 25; 25, 5− 20− 23, 7; 14, 13− 3− 31, 32;
32, 13− 21− 31, 14; 15, 11− 4− 29, 33; 33, 11− 22− 29, 15;
12, 10− 6− 28, 30; 30, 10− 24− 28, 12; 11, 10− 1− 28, 29;
29, 10− 19− 28, 11; 15, 13− 2− 31, 33; 33, 13− 20− 31, 15;
6, 5− 3− 23, 24; 24, 5− 21− 23, 6; 12, 8− 4− 26, 30;
30, 8− 22− 26, 12; 14, 9− 7− 27, 32; 32, 9− 25− 27, 14;
13, 12− 1− 30, 31; 31, 12− 19− 30, 13; 11, 9− 2− 27, 29;
29, 9− 20− 27, 11; 7, 4− 3− 22, 25; 25, 4− 21− 22, 7;
15, 10− 5− 28, 33; 33, 10− 23− 28, 15; 14, 8− 6− 26, 32;
32, 8− 24− 26, 14; 15, 14− 1− 32, 33; 33, 14− 19− 32, 15;
6, 4− 2− 22, 24; 24, 4− 20− 22, 6; 11, 8− 3− 26, 29;
29, 8− 21− 26, 11; 12, 9− 5− 27, 30; 30, 9− 23− 27, 12;
13, 10− 7− 28, 31; 31, 10− 25− 28, 13; 18, 17− 16− 35, 36;
36, 17− 34− 35, 18; 2, 3− 1− 21, 16; 20, 21− 19− 3, 34;
19, 16− 2− 34, 21; 1, 34− 20− 16, 3; 10, 14− 4− 32, 16;
28, 32− 22− 14, 34; 22, 16− 10− 34, 32; 4, 34− 28− 16, 14;
8, 13− 5− 31, 16; 26, 31− 23− 13, 34; 23, 16− 8− 34, 31;
5, 34− 26− 16, 13; 9, 15− 6− 33, 16; 27, 33− 24− 15, 34;
24, 16− 9− 34, 33; 6, 34− 27− 16, 15; 11, 12− 7− 30, 16;
29, 30− 25− 12, 34; 25, 16− 11− 34, 30; 7, 34− 29− 16, 12;
4, 5− 1− 23, 17; 22, 23− 19− 5, 35; 19, 17− 4− 35, 23;
1, 35− 22− 17, 5; 12, 14− 2− 32, 17; 30, 32− 20− 14, 35;
20, 17− 12− 35, 32; 2, 35− 30− 17, 14; 9, 10− 3− 28, 17;
27, 28− 21− 10, 35; 21, 17− 9− 35, 28; 3, 35− 27− 17, 10;
11, 13− 6− 31, 17; 29, 31− 24− 13, 35; 24, 17− 11− 35, 31;
6, 35− 29− 17, 13; 8, 15− 7− 33, 17; 26, 33− 25− 15, 35;
25, 17− 8− 35, 33; 7, 35− 26− 17, 15; 8, 10− 2− 28, 18;
26, 28− 20− 10, 36; 20, 18− 8− 36, 28; 2, 36− 26− 18, 10;
12, 15− 3− 33, 18; 30, 33− 21− 15, 36; 21, 18− 12− 36, 33;
3, 36− 30− 18, 15; 9, 13− 4− 31, 18; 27, 31− 22− 13, 36;
22, 18− 9− 36, 31; 4, 36− 27− 18, 13; 11, 14− 5− 32, 18;
29, 32− 23− 14, 36; 23, 18− 11− 36, 32; 5, 36− 29− 18, 14. �

Finally, we again note that, by using a 3-GDD of type 4t101 where
t = 3s, s ≥ 1, the above theorem can also be used to provide an alternative
proof of the existence of a BTS(n) avoiding Ĉ11 for the residue class 21
(mod 24).
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