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1 Introduction and Enumeration Results

The necessary and sufficient condition for the existence of a Steiner quadruple
system of order v (SQS(v)), namely v ≡ 2 or 4 (mod 6), was established
by Hanani [14] in 1960 and is now well known. Such a v will be called
admissible. In comparison, the problem of determining those values of v for
which cyclic Steiner quadruple systems exist is still unresolved. A survey of
results on Steiner quadruple systems was given by Lindner and Rosa [18] in
1978. However, at that time no infinite families of cyclic Steiner quadruple
systems were known. A great deal of the work on the subject has been
developed recently, much of it in response to some of the questions posed in
Lindner and Rosa’s paper.

It is an aim of this paper to provide a unified account of this work, present
some of the conjectures which have been made, and discuss some of the
problems which remain. We will denote a cyclic Steiner quadruple system of
order v by CSQS(v) and represent it in the usual way as the union of 4-block
orbits under the action of the cyclic group Cv = 〈i→ i+ 1 (mod v)〉. Orbits
will be called full, half or quarter respectively according as the. number of
distinct 4-blocks which they contain is v, v/2 or v/4,

Firstly, enumeration results have been obtained for all admissible v ≤ 22.
In the table below n(v) denotes the number of distinct CSQS(v) and N(v)
the number of non-isomorphic CSQS(v).

v n(v) N(v) Reference
8 0 0 Guregova and Rosa [13]

10 1 1 Barrau [1]
14 0 0 Guregova and Rosa [13]
16 0 0 Guregova and Rosa [13]
20 152 29 Phelps [20]
22 210 21 Diener [6]
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2 Methods of construction for CSQS(v)

The first infinite families of CSQS(v) were constructed by Phelps [19]. By
exploiting the structure of the groups PGL(2, qk) the following theorems were
obtained.

Phelps Theorem 1: If there exists an SQS(q + 1) with q a prime power
then there exists a CSQS(q2 + 1) containing the SQS(q + 1) as a subdesign.

Theorem 2: If there exists a CSQS(q+1) with q a prime power then there
exists a CSQS(qk + 1) for all k > 0.

In [2], Cho gave a doubling construction for certain CSQS(v).

Cho Theorem 1: If there exists a CSQS(v) with v ≡ 2 or 10 (mod 12)
then there exists a CSQS(2v). Moreover if the CSQS(v) comprises n orbits
then there exists at least 2n pairwise distinct CSQS(2v).

The basis of Cho’s construction is as follows:

(a) From each full orbit in the CSQS(v), choose any block, say {w, x, y, z},
0 ≤ w < x < y < z < v. Form the orbits under C2v of the blocks
{w, x, y, z}, {w, x, y+v, z+v}, {w, y, x+v, z+v} and {w, z, x+v, y+v}.

(b) From each half orbit in the CSQS(v), choose any block, say
{w, x, w + v/2, x+ v/2}, 0 ≤ w < x < w + v/2. Form the orbits under
C2v of the blocks {w, x, w+v/2, x+v/2} and {w, x+v/2, x+v, w+3v/2}.

(c) The orbits formed in (a) and (b) are all full and the CSQS(2v) is
completed by adjoining all half orbits and the quarter orbit of 4-blocks
under C2v.

A problem with Cho’s construction is that it can not be re-applied because
the CSQS(2v) contains the quarter orbit. In [4], Colbourn and Colbourn de-
vised a method which in certain circumstances overcomes the problem. The
basic idea is to omit part of the cyclic Steiner quadruple system, including
the quarter orbit, apply Cho’s construction to the remainder and then com-
plete the doubled system with another appropriate cyclic Steiner quadruple
system. To formalize the discussion we need some further definitions.

From any given 4-block w, x, y, z, 0 ≤ w < x < y < z < v, a cyclically
ordered difference quadruple 〈x− w, y − x, z − y, w − z + v〉 may be formed
which is characteristic of the orbit from which the 4-block is drawn, Similarly
a cyclically ordered difference triple may be formed from a 3-block. Then,
since each 4-block contains four 3-blocks, each difference quadruple gives rise
to four difference triples. If m|v, define an m-beheaded CSQS(v), denoted
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by CSQS(v,−m), as a collection of 4-block orbits with the property that any
3-block whose difference triple entries have a common factor v/m does not
occur in the system but all other 3-blocks occur exactly once. We note that
in this definition it is not in fact necessary for v to be admissible. However,
the significance of the definition is that if there exists a CSQS(v,−m) and a
CSQS(m) then there exists a CSQS(v).

The main result in [4] is:
Colbourn and Colbourn Theorem 1: If there exists a CSQS(2v,−2m)
with v ≡ m (mod 2) then there exists a CSQS(4v,−4m).

The theorem is of great importance and has wide ranging applications
which are dealt with in Section 4.

Finally in this section we announce that we have recently obtained prod-
uct constructions for cyciic Steiner quadruple systems which with an appro-
priate parameter and minimal modification yield the constructions of Cho
and of Colbourn and Colbourn.

In [12], the following results are proved:
Grannell and Griggs Theorem 1: If there exists a CSQS(u) and a
CSQS(v), the latter being composed entirely of full orbits then there exists a
CSQS(uv,−2u).

Theorem 2: If there exists a CSQS(u) and a CSQS(v,−m) with v ≡ m
(mod 2) and the latter being composed entirely of full orbits then there exists
a CSQS(uv,−um).

Theorem 3: If there exists a CSQS(u), a CSQS(2u) and a CSQS(v) with
v ≡ 2 or 10 (mod 12) then there exists a CSQS(uv).

Theorem 4: If there exists a CSQS(u), a CSQS(2u) and a CSQS(v,−m)
with v,m ≡ 0 (mod 2) and the latter being composed entirely of full and
half orbits then there exists a CSQS(uv,−um).

Theorems 3 and 4 with u = 2 in effect give Cho’s and Colbourn and
Colbourn’s constructions respectively.

3 R-cyclic and S-cyclic Steiner quadruple sys-

tems

CSQS(v) which admit additional automorphisms are also of interest partic-
ularly those which are stabilized by the mapping i → v − i, i.e. which are
also reverse Steiner quadruple systems. We will call these R-cyclic Steiner
quadruple systems and denote them by RCSQS(v). An easy argument shows
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that no RCSQS(v) may contain a half orbit and hence that v ≡ 2, 4, 10 or 20
(mod 24) is a necessary condition. It has been conjectured that this is also
sufficient, but little work appears to have been done on RCSQS(v).

Of more importance both from an historical point of view and because of
their use with Colbourn and Colbourn’s construction are symmetric cyclic or
S-cyclic Steiner quadruple systems, denoted by SCSQS(v). These are defined
as CSQS(v) in which each orbit contributing to the system is stabilized by
the mapping i→ v− i. The present authors [9] and Diener [7] independently
obtained the following results on the structure of SCSQS(v).

Grannell and Griggs/Diener Theorem 1: If there exists an SCSQS(v)
then v = 2n or 4n where the prime factors of n are all ≡ 1 or 5 (mod 12).
Moreover, if m is even and m|v then the SCSQS(v) contains an SCSQS(m)
as a subdesign.

We conjecture that the necessary condition given in the theorem is also
sufficient. Until recently, most known CSQS(v) were also S-cyclic. However,
a non S-cyclic CSQS(26) is given (although with a misprint) in a paper by
Fitting [8] of 1915.

Constructional techniques for SCSQS(v) have been investigated in two
papers [16], [17] by Köhler. The basis for this work is as follows: For a given
v, not necessarily admissible, define a graph H∗(v) where the set of vertices
is

{{x, y, z} : x, y, z ∈ {1, 2, . . . , v− 3} \ {v/2}, x, y, z unequal, x+ y+ z = v}

and the set of edges is defined by the relation (which it is easily verified is
both irreflexive and symmetric) that {x, y, z} is joined to {x′, y′, z′} if there is
some ordering X, Y, Z of x, y, z such that {x′, y′, z′} = {X,X+Y, v−2X−Y }.
In the case where v ≡ 2, 4, 10 or 20 (mod 24) careful analysis of the difference
quadruples and the difference triples they contain leads to the graph H∗(v)
where each vertex represents two difference triples and each edge represents
a difference quadruple. Hence

Köhler Theorem 1: There exists an SCSQS(v) if and only if H∗(v)
contains a 1-factor.
(This result is in fact slightly stronger than that given originally by Köhler
[16] and is due to Diener [7]. The basic idea of the work goes back to Fitting
[8].

Köhler proceeds to prove various properties of the graph H∗(v). In par-
ticular it is not necessarily connected. In the case where v = 2p with p a
prime ≡ 1 or 5 (mod 12), H∗(v) consists of two components. In one of these
components, H∗2 (v), the elements of each set which comprises a vertex are
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all even and in the other component, H∗1 (v), at least one element (and there-
fore precisely two elements) of each set comprising a vertex are odd. Now
it can be verified that a 1-factor of H∗1 (v) may be obtained by selecting the
set of difference quadruples 〈a, b, a, v − (2a+ b)〉 with a = 1, 3, . . . , (v − 8)/2
and b = 2, 4, . . . , (v − 2a− 4)/2. In addition the graph H∗2 (v), which is also
denoted by H(v) in [16], can easily be seen to be isomorphic to the graph
H∗(p) which leads to:

Theorem 2: There exists an SCSQS(2p) with p a prime ≡ 1 or 5 (mod
12) if and only if H∗(p) contains a 1-factor.

When p ≡ 5 (mod 12), Köhler proceeds further with the analysis. By
using the group 〈i → ai + b (mod p)〉 with a, b ∈ GF (p), a 6= 0, in order
to reduce the number of orbits required, another graph B(p) is obtained as
follows:
Let F = GF (p) \ {0, 1, (p− 1)/2, p− 2, p− 1}. If α ∈ F define

ᾱ = {α, 1/α,−α/(α + 1),−α− 1,−1/α− 1, α/(α + 1)− 1}.

Then it follows that for α, β ∈ F either ᾱ = β̄ or ᾱ ∩ β̄ = ∅. Take as the set
of vertices of B(p), the set {ᾱ : α ∈ F} and join ᾱ and β̄ by an edge if there
exists α ∈ ᾱ and β ∈ β̄ with α = β + 1 or α = β − 1. The following two
theorems are proved.

Theorem 3: If B(p) contains a 1-factor then there exists an SCSQS(2p).

Theorem 4: If B(p) is bridgeless with p ≡ 53 or 77 (mod 120) then there
exists an SCSQS(2p).

These results enabled Köhler to construct SCSQS(v) for v = 26, 34, 50, 58,
74, 82, 106, 178, 202, 226, 274, 298, 346, 394, 466, 586 and 634. Using similar
techniques Cho [3] has constructed SCSQS(v) for other values of v not nec-
essarily covered by the theorems.

Enumeration results for R-cyclic and S-cyclic Steiner quadruple systems
are few. The unique CSQS(10) is also S-cyclic. For v = 20, there exist
16 distinct RCSQS(v) which partition into 4 isomorphism classes (Phelps
[20]). Of these, 4, a11 within a single isomorphism class, are also S-cyclic
(Jain [15]). The present authors [11] enumerated SCSQS(26). There are 87
distinct SCSQS(26) in 18 isomorphism classes.

4 Existence Results for CSQS(v)

In this section we apply the known methods of construction, particularly
those devised by Cho, Colbourn and Colbourn, and ourselves, to various

6



”small” systems constructed by hand or with the aid of a computer search
to give an account of the known spectrum of CSQS(v).

(a) In [4], Colbourn and Colbourn give a CSQS(16,−8). Together with a
CSQS(32), two examples of which were constructed by the present au-
thors [10], all CSQS(2n) for n ≥ 5 may be obtained using the following
constructional scheme. The details appear in [4].

CSQS(16,−8) CSQS(32,−16) CSQS(64,−32) CSQS(128,−64) · · ·

CSQS(32) CSQS(64) CSQS(128) · · ·

Theorem A: CSQS(2n) exist for n = 2 and n ≥ 5. CSQS(23) and
CSQS(24) do not exist.

(b) Colbourn and Phelps [5] constructed a CSQS(40,−20). Again, together
with one of the known CSQS(20)s a similar constructional scheme to
the one above may be adopted.

CSQS(40,−20) CSQS(80,−40) CSQS(160,−80) · · ·

CSQS(20) CSQS(40) CSQS(80) CSQS(160) · · ·

Theorem B: CSQS(2n · 5) exist for n ≥ 1.

(c) It is clear that what is really required are appropriate ”starter” systems
to which Colbourn and Colbourn’s construction may be applied. These
are provided by the S-cyclic Steiner quadruple systems. From the the-
orem on the structure of these systems, if m is even and m|v then by
removing all those orbits which contribute blocks of the SCSQS(m)
subdesign from the SCSQS(v), a CSQS(v,−m) is obtained. In partic-
ular if m = 10 and u = v/m is odd we have the following:

SCSQS(10u) CSQS(10u,−10) CSQS(20u,−20) CSQS(40u,−40) · · ·

CSQS(10u) CSQS(20u) CSQS(40u) · · ·

CSQS(10) CSQS(20) CSQS(40) · · ·
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using the CSQS(2n · 5) from the previous theorem. An SCSQS(50)
is given by Köhler [16], and Cho [3] has constructed SCSQS(10u) for
u = 13, 17, 25, 29 and 37.

Theorem C: CSQS(2n · 5u) exist for n ≥ 1 and u = 5, 13, 17, 52, 29
and 37.

(d) The results given in Theorems A, B and C appear to be the only known
infinite families, the orders of whose members increase by a factor of
2, which are totally determined. In many others there are gaps. Using
our Theorem 3, let u = 2nw for some n ≥ 1 and w = 5 or 5u for any
of the values of u given in Theorem C. Then for any v = 2x, with x
odd, for which a CSQS(v) exists, it follows that a CSQS(2n+1wx) exists
i.e. only the existence of a CSQS(2wx) is left undetermined. Values
of x for which CSQS(2x) are known are x = 5, 11, 13, 17, 19 (Colbourn
and Phelps [5]), x = 52, 29, 37, 41, 72 (Cho [3]) as well as other values
greater than 50 constructed by Köhler [16] and listed towards the end
of Section 3.

Theorem D: If there exists a CSQS(2x) with x odd then there exist
CSQS(2n · 5x) and CSQS(2n · 5ux) for u = 5, 13, 17, 52, 29 and 37 and
n ≥ 2.

(e) The existence of a CSQS(2x) with x odd also implies the existence of an-
other infinite family. Immediately from Cho’s construction there exists
a CSQS(4x) and also, by removing the quarter orbit, a CSQS(4x,−4).
Applying Colbourn and Colbourn’s construction one can then produce
CSQS(2nx,−2n) for all n ≥ 2 and when n ≥ 5 these systems can be
completed using the CSQS(2n) from Theorem A. Again a gap appears
i.e. the existence of a CSQS(23x) and a CSQS(24x) is left unresolved.

Theorem E: If there exists a CSQS(2x) with x odd then there exists
CSQS(2nx) for n = 2 and n ≥ 5.

(f) There are other values of v for which CSQS(v) are known to exist,
These include v = 2n · 7 for n = 2 and n ≥ 5, constructed as in
(e) from a CSQS(28). Phelps’ theorems enable further systems to be
constructed and there are applications of our Theorem 3 in addition to
that given above such as the construction of a CSQS(2n ·5xy) for n ≥ 3
from a CSQS(2x) and CSQS(2y) with x and y odd. Also Cho [3] has
constructed CSQS(v) for v = 88, 92 and 124.
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5 Concluding Remarks

The evidence of the results in the previous section would seem to support
the conjecture that CSQS(v) exist for all admissible v apart from v = 8, 14
and 16. The only values less than 100 for which the existence of a CSQS(v)
is unresolved are v = 46, 56, 62, 70, 86 and 94.

A major problem with the methods known at present appears to be that
the non-existence of CSQS(8), CSQS(14) and CSQS(16) frustrate the con-
struction of certain systems of higher order. To overcome this, it would be
useful to have a generalisation of Cho’s construction which in effect “dou-
bles” the quarter orbit. If v = 4m then starting from a CSQS(4m,−4), a
CSQS(8m,−8) can be constructed but not completed. However, it seems
not unlikely that the removal of a relatively small number of orbits from the
CSQS(8m,−8) may result in completion being possible.

Other major lines of investigation would appear to be the construction af
CSQS(2x) with x odd and the development of more general recursive con-
structions. Finally, the question of whether the known necessary conditions
for R-cyclic and S-cyclic Steiner quadruple systems are also sufficient remains
open.
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