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Abstract

We review results for the embedding of orthogonal partial Latin squares in orthogo-

nal Latin squares, comparing and contrasting these with results for embedding partial

Latin squares in Latin squares. We also present a new construction that uses the ex-

istence of a set of t mutually orthogonal Latin squares of order n to construct a set of

2t mutually orthogonal Latin squares of order nt.

1 Introduction

In combinatorial theory the seemingly straightforward question – “When is it possible to
embed a partial combinatorial design in a complete design with related properties?” – has
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generated much research, including many challenging conjectures that have been answered to
varying degrees. The Handbook of Combinatorial Designs [9] provides an excellent overview
of this research.

In the current article we seek to collate the more recent research on the embedding of
orthogonal partial Latin squares in orthogonal Latin squares (definitions provided below).
The genesis of this research can be found in the study of embeddings for partial Latin squares,
and so we begin with a brief overview of these earlier studies. This allows us to compare
and contrast the impact of imposing the additional orthogonality condition on the size of
the embedding.

In writing this review it is important to emphasize that there are a number of equivalent
representations for a Latin square, and we will review results that arise in the associated
algebraic and graph theory settings.

The different combinatorial representations for a partial Latin square will be discussed in
Section 2. In Section 3 we give a brief overview of embedding results for partial Latin squares,
extending these to orthogonal partial Latin squares in Section 4. Section 5 documents new
results on the embedding of orthogonal partial Latin squares and a new construction for
mutually orthogonal Latin squares. We show that the existence of a set of t mutually
orthogonal Latin squares of order n can be used to verify the existence of a set of 2t mutually
orthogonal Latin squares of order nt. These results have not appeared in the earlier literature.
We conclude the review article with open questions in Section 6.

2 Background and Definitions

In discrete mathematics, the study of combinatorial designs using different representations
allows us to define and study the same discrete structure from different perspectives. These
distinct representations provide valuable insights depending on the problem at hand. For
instance, there are many equivalent representations for Latin squares. In this article there
are four equivalent representations that feature strongly. On the set N = {0, 1, . . . , n− 1},
these representations are:

- A Latin square of order n, denoted LS(n), is an n× n array L = [L(i, j)], where for all
i, j ∈ N , L(i, j) ∈ N is chosen in such a way that each element of N occurs once in
every row and once in every column.

- A quasigroup of order n, denoted (N, ◦), is defined by a binary operation ◦ closed on
the set N and such that, for all 1 6 i, j, i′, j′ 6 n, if i ◦ j = i′ ◦ j, then i = i′ and if
i ◦ j = i ◦ j′, then j = j′.

- A triangulation of the complete tripartite graph Kn,n,n, where the triangles form a
partition of the edge set of Kn,n,n.

- A transversal design, denoted TD(3, n), comprises a set of 3n points partitioned into
three n-subsets, called groups, and a set of n2 triples such that each pair of points from
different groups appears in precisely one triple and no triple contains more than one
point from each group.
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It will also be useful to use the ordered triple notation for an LS; that is, the LS L = [L(i, j)]
can be represented as a set of triples of the form (i, j, L(i, j)).

As stated, the focus here is on determining the “smallest complete structure” that con-
tains a given partial structure. More specifically we begin with partial Latin squares:

- A partial Latin square of order n, denoted PLS(n), is an n × n array P = [P (i, j)]
with cells either empty or containing P (i, j) ∈ N in such a way that each element of
N occurs at most once in every row and at most once in every column. The volume of
the partial Latin square is the number of filled cells.

Likewise we may define partial (incomplete) quasigroups, partial triangulations of Kn,n,n and
partial transversal designs.

Example 2.1. Let N = {0, 1, 2, 3}. The following are equivalent partial systems.

PLS(4), volume 4 Partial (N, ◦) Subgraph of K4,4,4 PTD(3, 4)

0
1

1
1

0 ◦ 0 = 0
1 ◦ 1 = 1
2 ◦ 2 = 1
3 ◦ 3 = 1

V =
2
⋃

i=0

Gi, i = 0, 1, 2,

Gi = {4i+ x : x = 0, . . . , 3},
B = {{0, 4, 8}, {1, 5, 9},

{2, 6, 9}, {3, 7, 9}}

It is clear that the partial designs presented in Example 2.1 are not contained in complete
designs of the same type and order, but what happens when we allow the order to be
increased? This notion is formalized in the following definition.

- A PLS(n), P = [P (i, j)], is said to complete to an LS(n), L = [L(i, j)], if the empty
cells of P can be filled with elements from N to obtain the LS(n) L. The PLS(m),
P = [P (i, j)], is said to be embedded in the LS(n), L = [L(i, j)], m < n, if for all
non-empty cells (i, j) of P , P agrees with L, that is, P (i, j) = L(i, j).

Specifically, we are interested in embedding orthogonal PLS. Here we begin with the
definition of orthogonal LS.

- Two LS(n), A = [A(i, j)] and B = [B(i, j)], are said to be orthogonal, if, for all
i, i′, j, j′ ∈ N , A(i, j) = A(i′, j′) implies B(i, j) 6= B(i′, j′). A set of t LS(n) that are
pairwise orthogonal are said to be mutually orthogonal. Such a collection of t mutually
orthogonal LS(n), A1, . . . , At, will be denoted t-MOLS(n) and sometimes referred to
as MOLS.

In this paper, it is assumed that t > 1. Now we may define orthogonal partial Latin squares.

- Two PLS(n), P = [P (i, j)] and Q = [Q(i, j)], are said to be orthogonal, if they have
the same non-empty cells and, for all i, i′, j, j′ ∈ N , P (i, j) = P (i′, j′) implies Q(i, j) 6=
Q(i′, j′). A set of t PLS(n) that are pairwise orthogonal are said to be mutually
orthogonal and will be denoted t-MOPLS(n). Assume that the two MOLS(n) (A,B),
agree in the MOPLS(m) (P,Q). If m = n, we say (P,Q) can be completed to (A,B),
and if n > m we say (P,Q) can be embedded in (A,B).
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These definitions are illustrated in Example 2.2.

Example 2.2. A pair of MOPLS(4), P and Q, and a pair of MOLS(5), A and B. The pair
of MOPLS(4), (P,Q) can not be completed, but they can be embedded in the given pair of
MOLS(5), (A,B).

P Q A B

0 1 2
1 2 0

3 1
1 3

0 1 2
2 3 1

0 3
0 2

0 1 2 4 3
1 2 3 0 4
2 3 4 1 0
4 0 1 3 2
3 4 0 2 1

0 1 2 4 3
2 3 4 1 0
4 0 1 3 2
3 4 0 2 1
1 2 3 0 4

Similarly, two quasigroups (N, ◦) and (N, ∗) are said to be orthogonal if the equations
x ◦ y = z ◦ w and x ∗ y = z ∗ w together imply x = z and y = w.

A group divisible design comprises a set of points V partitioned in groups G and a set of
blocks B satisfying the property that each pair of points from different groups occurs in one
block and no block contains more than one point from each group. The set K = {|B| : B ∈
B} gives the possible sizes of the blocks and if K = {k} then the design is generally referred
to as a k-GDD. A TD(k, n) is a k-GDD that contains k groups of n points. A TD(k + 2, n)
is also equivalent to a collection of k-MOLS(n), A1 = [A1(i, j)], . . . , Ak = [Ak(i, j)], with the
k+2 groups of the TD each associated with the set N and the set {(i, j, A1(i, j), . . . , Ak(i, j)) :
0 6 i, j 6 n − 1} forming the set of n2 blocks. Similarly, we have the equivalence between
a PTD(k + 2, n) (partial transversal design) and k-MOPLS(n). MOLS can also be readily
generalized to orthogonal arrays (see Section 3.6 in [9]). It is also worth noting that MOLS
have also been studied as permutations and complete mappings, where each row (column)
defines an orthomorphism on N ; a representation first studied by Mann in 1942, see Section
6 of [9], [18] and [41].

Further the completion or embedding of a pair of MOPLS to a pair of MOLS, L = [L(i, j)]
andM = [M(i, j)], results in a structure where all ordered pairs (L(i, j),M(i, j)) are distinct.
However, one can also study the completion or embedding of a pair of MOPLS in complete
structures L = [L(i, j)] and M = [M(i, j)], where the number of distinct ordered pairs
(L(i, j),M(i, j)) is fixed, say r. In this context, it is said that, a pair of LS(n) L = [L(i, j)]
and M = [M(i, j)] on N are r-orthogonal if r = |{(L(i, j),M(i, j)) : 0 6 i, j 6 n − 1}|. For
further discussion see Subsection 3.8 of [9]. It is known that:

Theorem 2.3. [10, 58] For n, a positive integer, a pair of r-orthogonal LS(n) exist if and
only if r ∈ {n, n2} or n+ 2 6 r 6 n2 − 2, except when

1. n = 2 and r = 4;

2. n = 3 and r ∈ {5, 6, 7};

3. n = 4 and r ∈ {7, 10, 11, 13, 14};

4. n = 5 and r ∈ {8, 9, 20, 22, 23};

5. n = 6 and r ∈ {33, 36}.
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Interestingly, in [5], Belyavskaya and Lumpov study these structures in terms of r-
orthogonal quasigroups and document a product construction which is a generalization of
the direct product construction (see Section 5). Belyavskaya and Lumpov give conditions
under which this construction can be applied and employ the method for the construction
of r-orthogonal quasigroups of composite order. They list two theorems, the first establish-
ing the existence of quasigroups with r-orthogonal mates and the second establishing the
existence of sets of mutually r-orthogonal quasigroups.

Theorem 2.4. [5] If m,n 6= 2, then there exists an LS(mn) which has an r-orthogonal mate,
for r = km2 + (n − k + pt)m + (n2 − n − t)p with arbitrary k, p, t satisfying 0 6 k 6 n,
0 6 p 6 m and 0 6 t 6 k(n− 1).

Theorem 2.5. [5] If there exists a set of s+ 1 mutually orthogonal quasigroups of order n
and s mutually orthogonal quasigroups of order m, then there exists s mutually r-orthogonal
quasigroups of order mn, for r = km2+(n−k)m+(n2 −n− t)p+(2m−p)tp with arbitrary
k, p, t satisfying 0 6 k 6 n, 0 6 p 6 m and 0 6 t 6 k(n− 1).

We will revisit r-orthogonal LS when we present a number of open questions in Section
6.

Determining which PLS are completable is a hard problem. Colbourn [8] (1984) has
shown that the decision problem: “Can a partial Latin square of order n be completed to a
Latin square?” is an NP-complete problem, even if there are no more than 3 empty cells
in any row or column. Adding the additional orthogonality condition, that is, determining
if MOPLS can be completed to MOLS does not diminish the complexity of this question.
However, allowing the PLS to be embedded in LS of increased order does change the problem
making it possible to apply a wider range of theoretical arguments. See for instance, Theorem
3.3 below where a linear order embedding of any PLS in an LS is established.

3 Completing and embedding PLS

In 1945, M. Hall [24] showed that every (n− r)× n array, satisfying the property that each
element of the set N occurs once in every row and at most once in any column, could be
extended to an LS(n).

Theorem 3.1. [24] Given a rectangle of r rows and n columns such that each of the elements
of {0, 1, 2, . . . , n−1} occurs once in every row and no element occurs more than once in any
column, then there exist n − r rows which may be added to the given rectangle to form an
LS.

M. Hall achieved this result by showing that the (n− r)× n array could be extended to
an (n − r + 1) × n array satisfying the same property. The elements to be added to each
column are determined by a system of distinct representatives for the collection of subsets
corresponding to the elements not appearing in the given columns. This process can then
be repeated until an n× n array is obtained. This use of systems of distinct representatives
can be traced back to the work of P. Hall [25] and earlier results by König, [33]. Later in
1951, Ryser [47] extended these arguments to show that under certain initial conditions it is
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always possible to complete an r× s Latin rectangle (i.e. a PLS where the filled cells define
a complete r × s subarray) to an LS(n).

Theorem 3.2. [47] Let T be an r× s Latin rectangle on the set N , and let N(i) denote the
number of times element i occurs in the cells of T . A necessary and sufficient condition for
T to be extended to an LS(n) is that, for each i = 1, . . . , n,

N(i) > r + s− n.

In 1960 Evans, [19], was motivated by Ryser’s work, and asked:

For each n, what is the minimum v such that there exists a PLS(n) of volume v
which is not contained in any LS(n)?

If we denote the minimum volume by mv(n), then the PLS(4) in Example 2.2 points to
the conclusion that mv(n) 6 n. However proving that the minimum mv(n) is n is non-trivial,
with a number of papers appearing on this topic. Nosov, Sachkov and Tarakanov provide a
brief review of these articles in [43], see also [2]. In 1970 Lindner, [37], solved the problem
when the filled cells occur in less than n/2 rows and in 1981 Smetaniuk, see [48, 13], gave a
construction for the case where the filled cells intersect more than n/2 rows. The intricacies
of this question and its solution led Evans and others to the problem of establishing a finite
embedding.

In this context Evans, [19], asked:

For each t, what is the minimum n such that any PLS(t) can be embedded in an
LS(n)?

Evans settled this question in [19], showing that:

Theorem 3.3. [19] For each t, a PLS(t) P can be embedded in an LS(n) L, for any n > 2t.

In proving this result Evans constructed a proxy LS(t), M , on a set N ′ disjoint from
{0, 1, . . . , t − 1} and used the corresponding elements in M to fill the empty cells of P to
obtain a complete t × t array P ∗. He then showed that the initial conditions for Ryser’s
Theorem (Theorem 3.2) were satisfied. Thus he verified that P ∗ may always be embedded
in an LS(n), where n > 2t. Further, Evans proved that this embedding was the best possible.

In many articles the authors have highlighted the allied problem of embedding quasi-
groups that satisfy additional conditions. For instance, in [19] Evans specifically remarks
that “An incomplete loop containing n elements can be embedded in a loop containing 2n ele-
ments”. A loop (N, ◦) is a quasigroup where the addition algebraic identity x◦0 = 0◦x = x is
satisfied for all x ∈ N . Quasigroups that satisfy a specific collection of additional identities,
are termed varieties. We will say that a partial quasigroup (N, ◦) belongs to variety V if the
given identities, associated with V are satisfied.

The embedding of partial quasigroups in the varieties defined by subsets of the set of
identities I = {x2 = x, x ◦ y = y ◦ x, (y ◦ x) ◦ x = y, x ◦ (x ◦ y) = y, x ◦ (y ◦ x) = y} have been
studied extensively, with embedding results summarized in the table compiled by Bennett
and Lindner in Subsection 2.6 of [9], and reproduced below.
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Variety of partial quasigroup Best possible Best embedding of
of order t defined by I = embedding of size n size n, known to date

∅ all n > 2t all n > 2t [19]
Commutative, x ◦ y = y ◦ x

x ◦ (x ◦ y) = y all even n > 2t all even n > 2t [11]
(y ◦ x) ◦ x = y

Idempotent, x2 = x all n > 2t+ 1 all n > 2t+ 1 [3]
x2 = x, x ◦ y = y ◦ x

x2 = x, x ◦ (x ◦ y) = y all odd n > 2t+ 1 all odd n > 2t + 1 [11]
x2 = x, (y ◦ x) ◦ x = y

Semisymmetric, all n > 2t all n > 6t s.t.
x ◦ (y ◦ x) = y n ≡ 0, 3(mod 6) [12]

Totally symmetric, all even n > 2t+ 4 all even n > 2t+ 4 [6]
x ◦ (x ◦ y) = y, (y ◦ x) ◦ x = y

Mendelsohn quasigroup, all n > 2t+ 1 s.t. all n > 4t s.t.
x2 = x, x ◦ (y ◦ x) = y n ≡ 0, 1(mod 3) n ≡ 0, 1(mod 3) [46]

Steiner quasigroup, x2 = x, all n > 2t+ 1 s.t. all n > 2t+ 1 s.t.
x ◦ (x ◦ y) = y, (y ◦ x) ◦ x = y n ≡ 1, 3(mod 6) n ≡ 1, 3(mod 6) [7]

In addition to the table given above, embeddings of other types of quasigroups are also
studied. A loop L is said to be an inverse property loop (IP loop) if for all x ∈ L there is
a unique element x−1 of L such that x−1(xy) = y = (yx)x−1. Embeddings of IP-loops are
discussed by Treash in [50] and, more recently by Vodička and Zlatoš in [52].

The early work by Evans [19], Treash [51], Lindner [36] and others has shed new light
on the embedding of many combinatorial designs, including graph decompositions. For in-
stance, in 1974 Lindner [40] observed that Evans’ paper became a “starting point for a
fascinating collection of problems in the study of Latin squares”. Further, Lindner exploited
the connection between Latin squares and quasigroups to extend Evans’ embedding result
to Steiner quasigroups that are idempotent, commutative totally symmetric quasigroups as
defined above. Steiner quasigroups are in one to one correspondence with Steiner triple sys-
tems (STS). An STS is a decomposition of the complete graph Kn into triangles. Lindner
[38, 39] achieved this by representing a partial STS as a partial Steiner quasigroup, embed-
ding this in a complete Steiner quasigroup which was then translated back to an STS. In this
way the partial STS is finitely embedded in an STS. Other authors have extended this work
to obtain embedding for Steiner quasigroups satisfying additional identities. A summary of
this work can be found in Section 2.6 of [9].

These results have been further applied to finitely embed cycle systems where the length
of the cycle is greater than 3. In this context a cycle system is a decomposition of the
complete graph Kn into cycles of length k. A good starting point for interested readers is
[9], as well as Rodger’s 1992 article [45]. Readers may also be interested in the recent work
in [55] and [14].

But what about MOPLS? In 1960, Evans ([19]) raised the pivotal question:

Can a pair of MOPLS(t) be embedded in a pair of MOLS(n) and if so what is
the smallest such n for each t?
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Evans suggests that the paper by Mann and Ryser [42] on system of distinct represen-
tatives, contained “the ideas probably needed to attack this problem”. Certainly, arguments
using systems of distinct representatives have provided insights into this problem, see for
instance [27], however the breadth of attack has been quite wide as we will see in the next
section.

4 Completing and Embedding MOPLS

In Section 3 we documented results that show the minimum volume mv(n) = n, that is,
every PLS(n) of volume less than n is completable. In addition, the best possible embedding
for any PLS(t) was documented in Theorem 3.3. In this section we extend these results and
consider related questions for MOPLS:

For each n, what is the minimum µv(n) such that there exists a pair of MOPLS(n)
of volume µv(n) which is not contained in any pair of MOLS(n)?

Example 4.1. The pair of MOPLS(4), P and Q, can not be completed to any pair of
MOLS(4). Similarly the pair of MOPLS(5), R and S, can not be completed to any pair of
MOLS(5).

P Q R S

0 1
1

3

0 1
2

3

0 1
1 0

0 1
2 3

The pair of MOPLS(4) P and Q given in Example 4.1 lead to the conclusion that µv(4) 6 4,
but is µv(4) = 4? For n = 3 it is easy to see µv(3) = 3 and there are no MOLS(6) rendering
the question of the size of µv(6) redundant. However, the pair of MOPLS(5) R and S in
Example 4.1 indicate that µv(5) 6 4 = n − 1. This is easy to see as any LS(5) containing
a 2× 2 subsquare can not have an orthogonal mate. But what about µv(n), for n > 7? An
extrapolation of the PLS(4) given in Example 2.1 suggests that µv(n) 6 n, for all n > 7.

One may study sets of MOPLS(n) that are not contained in sets of MOLS(n). In this case,
the MOPLS(n) do NOT have a completion to a set of MOLS(n). Stevens and Mendelsohn
[49] investigated (k − 2)-MOPLS(n) of volume v as packing arrays ΠA(v; k, n). A packing
array ΠA(v; k, n) is a v × k array with entries from an n-set, so that every v × 2 subarray
contains every ordered pair of symbols at most once. Stevens and Mendelsohn asked what
is the largest volume, denoted ΠA(k, n), for which there exists a ΠA(v; k, n). They obtained
a number of bounds and investigated ΠA(k, n) for small values of n and k, see Subsection
3.8 of [9].

In studying the completion or embedding of pair of MOPLS(t), P = [P (i, j)] and
Q = [Q(i, j)], one approach is to resolve two distinct issues; first the necessity of com-
pleting or embedding each PLS P and Q in LS(n), A = [A(i, j)] and B = [B(i, j)] and
then the verification of the orthogonality condition for the pair A, B, that is, N × N =
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{(A(i, j), B(i, j)) : 0 6 i, j 6 n − 1}. The combination of the two issues makes this a com-
plex problem. As a way of decoupling the two questions one might start with a complete
LS(t). However, not all LS have orthogonal mates (such squares are termed bachelor LS).
So for such squares we ask what is the smallest n such that any LS(t) can be embedded in
a pair of MOLS(n)? A related question, studied in the early 1970’s, is the existence of a
pair of MOLS(n) that contain a pair of MOLS(t) (t < n) as subsquares occupying the same
set of cells. Through a series of papers [17, 29, 54, 56, 57] it was established that a pair of
MOLS(t) can be embedded in a pair of MOLS(n) if n > 3t, where the bound of 3t is best
possible. In [26] Heinrich and Zhu completed the proof of this result by drawing on existence
results for group divisible designs. This approach of first embedding a complete LS in a set
of MOLS and then relaxing the result to embed PLS has yielded a number of results, as we
will see later in this section.

In 1991, Gustavsson wrote his ground-breaking Ph.D. thesis [23] where he also studied
MOPLS as PTD(m,n) and as subgraphs of m-partite graphs Kn,...,n. Among other things,
he showed that there exists a constant ǫm > 0 such that if n is large enough (n is greater
than some integer Nm) and the number of occurrence of any point in the PTD(m,n) is
less than ǫmn then the given PTD(m,n) is completable. In terms of MOPLS this condition
translates to the existence of a constant ǫm > 0 such that if n is large enough and the
occurrence of each row, column and element is less than ǫmn in each square (in ordered
triple notation), then the set of (m− 2)-MOPLS(n) is completable to (m− 2)-MOLS(n). In
his thesis Gustavsson states that ǫm > (2m)−2910−7, but does not specify how big n needs to
be. Gustavsson then uses this result to obtain H-decompositions (graph decomposition) of
large graphs that satisfy the necessary condition that each vertex has high degree. This is a
remarkable existence result, but can not be used to determine the best possible embedding,
giving little insight into the structure of the resulting transversal design or equivalently the
corresponding set of MOLS(n).

Recently, Barber et al. in [4] made some progress on this problem. By restricting the
occurrence of elements in the MOPLS, they were able to prove:

Theorem 4.2. [4] For every r > 3 and every ǫ > 0 there exists an n0 ∈ N such that the
following holds for all n > n0. Let

cr =

{

1
25
, if r = 3,
9

107r3
, if r > 4.

Let T1, . . . , Tr−2 be a set of (r − 2)-MOPLS(n) (drawn in the same n × n array). Suppose
that each row and each column of the underlying array contains at most (cr− ǫ)n non-empty
cells and that in each of r−2 arrays each element of N occurs at most (cr−ǫ)n times. Then
T1, . . . , Tr−2 can be completed to a set of MOLS(n).

We will discuss this result further in the latter part of this section.
In 1976 Lindner, [39] gave the first finite embedding result for a set of k-MOPLS(n),

P1, P2, . . . , Pk. Lindner proved:

Theorem 4.3. [39] Any pair of MOPLS can be finitely embedded in a pair of MOLS.

Lindner’s approach was to take all k PLS and fill the empty cells with distinct elements,
relabelling elements in filled cells to ensure that any 2 of the k n × n arrays contained
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distinct elements. He then represented these arrays as PTD(k′, n′), where n′ > n, and
k′ > k + 2 is a power of a prime. Here the blocks of the transversal design take the
form (i, j, P1(i, j), P2(i, j), P3(i, j), . . . , Pk(i, j)) for each cell (i, j). This presentation allowed
Lindner to apply an earlier result due to Quackenbush [44] who made use of the following
result due to Ganter, see [22]. Here a balanced incomplete block design is a decomposition
of the complete graph Kn into complete subgraphs Kq.

Theorem 4.4. [22] Every finite partial balanced incomplete block design with block size q,
where q is a power of a prime, can be embedded in a finite balanced incomplete block design
of the same block size.

However there is no indication of the size of the embedding only that it is finite.
Further investigations were made by Hilton, Rodgers and Wojciechowski’s [3], in 1992,

when they formulated necessary conditions for a pair of orthogonal Latin rectangles to be
embedded in a pair of MOLS.

Since not every LS has an orthogonal mate it is reasonable to return to the investigation
of the embedding of a single LS in a pair of MOLS. It is this problem that Jenkins [31]
addressed in 2006 proving:

Theorem 4.5. [31] Let L be an LS(n), n > 3 and n 6= 6. Then L can be embedded in an
LS(n2) for which there exists an orthogonal mate.

Jenkins took S = [S(i, j)] and T = [T (i, j)], a pair of MOLS(n), such that S(0, 0) = 0,
and strategically replaced the elements in these squares by carefully chosen n × n arrays.
To this end, the element S(i, j) = 0 is replaced by a copy of L. In all other cells of S an
element S(i, j) is replaced by a copy of the LS corresponding to the cyclic group, Cn, of
order n on the set of elements {nx, nx + 1, . . . , nx + n − 1}. Then the elements of T are
replaced by permuted copies of an n×n array, A, containing all elements of {0, 1, . . . , n2−1}
in lexicographical order. Thus S and T are “inflated” to a pair of n2 × n2 arrays, denoted
U and V . By using the orthogonality condition (i.e. the ordered pairs (S(i, j), T (i, j)) are
all distinct) to determine the permutations applied to A, it is possible to show that U and
V are a pair of MOLS(n2). An example of the construction has been included, see Example
4.6.

Example 4.6. Let n = 4, L be an LS(4), S and T be MOLS(4), A be a 4×4 array containing
the elements of the set {0, . . . , 15} and C4 be the cyclic group of order 4. Then L is embedded
in the top left corner of U , an LS(42) which has an orthogonal mate V .
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L S T A C4

0 3 1 2
3 0 2 1
1 2 3 0
2 1 0 3

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

U
0 3 1 2 4 5 6 7 8 9 10 11 12 13 14 15
3 0 2 1 5 6 7 4 9 10 11 8 13 14 15 12
1 2 3 0 6 7 4 5 10 11 8 9 14 15 12 13
2 1 0 3 7 4 5 6 11 8 9 10 15 12 13 14

4 5 6 7 0 3 1 2 12 13 14 15 8 9 10 11
5 6 7 4 3 0 2 1 13 14 15 12 9 10 11 8
6 7 4 5 1 2 3 0 14 15 12 13 10 11 8 9
7 4 5 6 2 1 0 3 15 12 13 14 11 8 9 10

8 9 10 11 12 13 14 15 0 3 1 2 4 5 6 7
9 10 11 8 13 14 15 12 3 0 2 1 5 6 7 4
10 11 8 9 14 15 12 13 1 2 3 0 6 7 4 5
11 8 9 10 15 12 13 14 2 1 0 3 7 4 5 6

12 13 14 15 8 9 10 11 4 5 6 7 0 3 1 2
13 14 15 12 9 10 11 8 5 6 7 4 3 0 2 1
14 15 12 13 10 11 8 9 6 7 4 5 1 2 3 0
15 12 13 14 11 8 9 10 7 4 5 6 2 1 0 3
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V
0 1 2 3 15 12 13 14 10 11 8 9 5 6 7 4
4 5 6 7 3 0 1 2 14 15 12 13 9 10 11 8
8 9 10 11 7 4 5 6 2 3 0 1 13 14 15 12
12 13 14 15 11 8 9 10 6 7 4 5 1 2 3 0

14 15 12 13 1 2 3 0 4 5 6 7 11 8 9 10
2 3 0 1 5 6 7 4 8 9 10 11 15 12 13 14
6 7 4 5 9 10 11 8 12 13 14 15 3 0 1 2
10 11 8 9 13 14 15 12 0 1 2 3 7 4 5 6

9 10 11 8 6 7 4 5 3 0 1 2 12 13 14 15
13 14 15 12 10 11 8 9 7 4 5 6 0 1 2 3
1 2 3 0 14 15 12 13 11 8 9 10 4 5 6 7
5 6 7 4 2 3 0 1 15 12 13 14 8 9 10 11

7 4 5 6 8 9 10 11 13 14 15 12 2 3 0 1
11 8 9 10 12 13 14 15 1 2 3 0 6 7 4 5
15 12 13 14 0 1 2 3 5 6 7 4 10 11 8 9
3 0 1 2 4 5 6 7 9 10 11 8 14 15 12 13

Once this embedding was established, Jenkins was able to relax the initial conditions and
work with PLS. Jenkins returned to PLS and used Evans’ result (Theorem 3.3), to embed a
PLS(t) in an LS(n), where n > 2t, and subsequently applied Theorem 4.5 to prove:

Theorem 4.7. [31, 32] If t > 4, then a PLS(t) can be embedded in an LS(4t2) which has
an orthogonal mate.

Jenkins result naturally extends to idempotent MOPLS:

Theorem 4.8. [31, 32] An idempotent PLS(t), t > 3, can be embedded in an idempotent
LS((2t+ 1)2), which has an idempotent orthogonal mate.

Further, these ideas proved to be valuable for embeddings of a class of block designs with
block size 4: a K4-design (X,B) is a decomposition of the edge set of the complete graph
Kn on vertex set X into a set B of copies of K4. Jenkins began by defining a free vertex of
a partial K4-design (X,P ), to be x ∈ X such that point x occurs in exactly one block of P .
In [30], Jenkins used the existence of group divisible designs with block size 4 to obtain a
cubic embedding of any partial K4-design with the property that every block in the partial
design contains at least two free vertices.

In 2014, Donovan and Yazıcı [15] revisited Jenkins’ work, extending it to obtain a poly-
nomial order embedding of a pair of MOPLS. Their approach was to begin with pair of
MOPLS, P and Q, such that all the elements in P are distinct. From there they used
techniques similar to Jenkins to prove:

Theorem 4.9. [15] Suppose 2m > 2n. Let P and Q be a pair of MOPLS(n), such that each
element of N occurs in at most one cell of P . Then P and Q can be embedded in a pair of
MOLS(22m).
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Their proof begins by employing Evans’ result (Theorem 3.3) to embed Q in an LS(2m)
denoted B, where 2m > 2n. Then the PLS P is completed to an 2m × 2m array, denoted
A, containing all elements in the set {0, 1, . . . , 22m − 1}. The significance of 2m is that the
cells of Cayley table of the elementary Abelian 2-group are “inflated” with permuted copies
of A and B. The nature of the permutations is determined by the binary operation of this
underlying elementary Abelian 2-group of order 2m. In this way Donovan and Yazici avoid
the necessity for the pair of MOLS S and T in Jenkins’ construction.

The use of the elementary Abelian 2-group also allows Donovan and Yazıcı [15] to remove
the restriction that all the elements in P are distinct to obtain a more general embedding
than that given in Theorem 4.9, but at the price of increasing the order of the embedding.

Theorem 4.10. [15, 16] Let P and Q be a pair of MOPLS(n). Then P and Q can be
embedded in a pair of MOLS(k4) and any order greater than or equal to 3k4 where 2a = k >

2n > 2a−1 for some integer a.

More recently, Donovan, Grannell and Yazıcı [16] have capitalized on these techniques
to develop a construction for embedding a PLS(n) in an Latin square which has many
orthogonal mates, as well as embedding a pair of MOPLS(n) in a set of many MOLS. While
we state the results here, we will leave a fuller description of the methods to Section 5 where
we give new generalizations of these constructions.

Theorem 4.11. [16] Let P be a PLS(t), t > 3. Then P can be embedded in B, an LS(n) with
n 6 16t2, which belongs to a set of at least 2t MOLS(n2). Furthermore if P is idempotent,
then B can be constructed to be idempotent.

Theorem 4.12. [16] For any t > 2, a pair of MOPLS(n) can be embedded in a set of t
MOLS of polynomial order with respect to n.

In [16] Donovan, Grannell and Yazıcı compared these results to the result given by Barber
et.al. in [4] further interpreting Theorem 4.2 which states that, for any s ∈ N, there exists
k0 ∈ N such that for any n ∈ N, any set of s-MOPLS(n) can be embedded in a set of
s-MOLS(m), for every m > k0n. That there is such a k0 is an important existence result
because it gives a linear order embedding. However, the proof given in [4] does not yield an
estimate for the best (i.e., lowest) value of k0. For s = 1, Evans’ result shows that k0 = 2
is the best possible value. For s > 2, the proof given in [4] requires that k0 > 107(s + 2)3/9
and, being an existence result, there is little information about the structure of the resulting
set of MOLS. For s = 2 and small n, certainly n 6 113 and possibly much larger, [16] gives a
tighter embedding than that of [4], and it more closely specifies the structure of the resulting
pair of MOLS.

Other results which advance our understanding of embedding of MOPLS can be found
in papers on the enumeration of sets of MOLS. Specifically, in 2019 Boyadzhiyska, Das and
Szabó remarked that dividing the number of s-MOLS(n) by the number of (s+1)-MOLS(n)
gives a lower bound on the average number of extensions of an s-MOLS(n) to an (s + 1)-
MOLS(n). This computation is made possible by earlier enumeration results of Luria [35]
and Keevash [34], namely:
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Theorem 4.13. [34, 35] For every fixed k ∈ N, the number of k-MOLS of order n is

(

(1 + o(1))
nk

e(
k+2

2 )−1

)n2

.

Boyadzhiyska, Das and Szabó calculated that the average number of extensions of an
s-MOLS to an (s+ 1)-MOLS(n) is at least

(

(1 + o(1))
n

es+2

)n2

.

This result then gives the average number of embeddings of a set of s-MOLS in a set of
(s+ 1)-MOLS(n).

5 Sets of Many MOLS

In this section we revisit the work of Donovan, Grannell and Yazıcı [16]. They build on the
following well know fact:

Lemma 5.1. Given a pair of MOLS(m), A = [A(p1, q1)] and A′ = [A′(p1, q1)], and a pair of
MOLS(n), B = [B(p2, q2)] and B′ = [B′(p1, q2)], there exists a pair of MOLS(mn), A ⊗ B
and A′⊗B′, where the element in cell ((p1, p2), (q1, q2)) is (A(p1, q1), B(p2, q2)) in A⊗B and
(A′(p1, q1), B

′(p2, q2)) in A′ ⊗B′.

But in addition to taking direct products Donovan, Grannell and Yazıcı also inflated
the cells of A with copies of B where the elements in either the rows or the columns of
B have been permuted. By carefully choosing the permutation they could ensure that the
orthogonality of the n2 × n2 arrays was maintained. A generalization of these results is
presented in Theorem 5.2.

Let n and t be positive integers. To simplify the exposition, we will abuse notation and
use p1p2 . . . pt to represent (p1, p2, . . . , pt) and write Aαi to represent Aα,i.

Theorem 5.2. For 1 6 α 6 t, let

Aα = {Aα1, . . .Aαt} and C = {C1, . . . , Ct},

represent a collection of t+ 1, not necessarily distinct, sets of t-MOLS(n).
Then, for 1 6 u 6 t and 1 6 v 6 t define 2t; the nt × nt arrays

Xu = A1u ⊗ A2u ⊗ · · · ⊗ Atu,

Yv = {(p1p2 . . . pt, q1q2 . . . qt, (Cv(p2, A11(p1, q1)), Cv(p3, A22(p2, q2)), . . . ,

Cv(pt, A(t−1)(t−1)(pt−1, qt−1)), Cv(q1, Att(pt, qt))))}

form a set of 2t-MOLS(nt).
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Proof. The proof that the arrays Xu and Yv are LS, of order n
t, is fairly straightforward and

omitted here. Further, since the arrays Xu have been obtained by taking products of MOLS,
these t squares are pairwise mutually orthogonal.

Thus we are required to prove that the set of arrays Yv form a set of t-MOLS(nt) and
pairwise Yv and Xu are orthogonal.

For any 1 6 u 6 t and any 1 6 v, v′ 6 t with v 6= v′, consider Yv,Yv′ or Xu,Yv.
Assume that p1 . . . pt 6= p′1 . . . p

′

t and q1 . . . qt 6= q′1 . . . q
′

t; that is, (p1 . . . pt, q1 . . . qt) and
(p′1 . . . p

′

t, q
′

1 . . . , q
′

t) are distinct cells. Then assume that in Yv the entries in these cells are
equal as are the entries in Yv′ .

It follows that

Cv(p2, A11(p1, q1)) = Cv(p
′

2, A11(p
′

1, q
′

1)), (1)

Cv(p3, A22(p2, q2)) = Cv(p
′

3, A22(p
′

2, q
′

2)), (2)
...

Cv(pt, A(t−1)(t−1)(pt−1, qt−1)) = Cv(p
′

t, A(t−1)(t−1)(p
′

t−1, q
′

t−1), (3)

Cv(q1, Att(pt, qt)) = Cv(q
′

1, Att(p
′

t, q
′

t)), and, (4)

Cv′(p2, A11(p1, q1)) = Cv′(p
′

2, A11(p
′

1, q
′

1)), (5)

Cv′(p3, A22(p2, q2)) = Cv′(p
′

3, A22(p
′

2, q
′

2)), (6)
...

Cv′(pt, A(t−1)(t−1)(pt−1, qt−1)) = Cv′(p
′

t, A(t−1)(t−1)(p
′

t−1, q
′

t−1), (7)

Cv′(q1, Att(pt, qt)) = Cv′(q
′

1, Att(p
′

t, q
′

t)). (8)

Since v 6= v′, by assumption Cv is orthogonal to Cv′ and Equations (1) and (5) imply

p2 = p′2, (9)

A11(p1, q1) = A11(p
′

1, q
′

1). (10)

Continuing in this manner we get:

p3 = p′3, (11)

A22(p2, q2) = A22(p
′

2, q
′

2), (12)

p4 = p′4, (13)

A33(p3, q3) = A33(p
′

3, q
′

3), (14)
...

pt = p′t, (15)

A(t−1)(t−1)(pt−1, qt−1) = A(t−1)(t−1)(p
′

t−1, q
′

t−1), (16)

q1 = q′1, (17)

Att(pt, qt) = Att(p
′

t, q
′

t). (18)

Further Equation (9) substituted into Equation (12), implies q2 = q′2, with a similar argument
verifying that q3 = q′3, . . . , qt = q′t and then Equation (17) substituted into Equation (10)
implies p1 = p′1.
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Thus we have shown that Yv and Yv′ , where v 6= v′, are orthogonal LS(nt).
Next assume that the entries in cells (p1 . . . pt, q1 . . . qt) and (p′1 . . . p

′

t, q
′

1 . . . , q
′

t) of Xu are
equal, as are the entries of Yv. Thus for i = 1, . . . , t and j = 1, . . . , t− 1

Aiu(pi, qi) = Aiu(p
′

i, q
′

i), and, (19)

Cv(pj+1, Ajj(pj , qj)) = Cv(p
′

j+1, Ajj(p
′

j, q
′

j)), (20)

Cv(q1, Att(pt, qt)) = Cv(q
′

1, Att(p
′

t, q
′

t)). (21)

In Equation (19) set i = u and substitute into Equation (20) where j = u to get
pu+1 = p′u+1. Then returning to Equation (19) with i = u + 1 gives qu+1 = q′u+1 and so
A(u+1)(u+1)(pu+1, qu+1) = A(u+1)(u+1)(p

′

u+1, q
′

u+1).
Using the same argument when substituting into Equation (20) with j = u+1, . . . , t− 1

gives pu+2 = p′u+2 up to pt = p′t, qu+2 = q′u+2 up to qt = q′t and A(u+2)(u+2)(pu+2, qu+2) =
A(u+2)(u+2)(p

′

u+2, q
′

u+2) up to Att(pt, qt) = Att(p
′

t, q
′

t). When this is substituted into Equation
(21) we obtain q1 = q′1 which when substituted into Equation (19) with i = 1 gives p1 = p′1.
So A11(p1, q1) = A11(p

′

1, q
′

1).
Finally picking up the above argument at the substitution into Equation (20) with j =

1, . . . , u− 2 gives p2 = p′2 up to pu−1 = p′u−1 and q2 = q′2 up to qu−1 = q′u−1.
Hence for 1 6 u, v 6 t, Xu and Yv are orthogonal.

6 Conclusions and Open Questions

It is natural to extend transversal designs TD(3, n) to transversal designs TD(k, n) with
block size k > 3, or equivalently the decomposition of the complete tripartite graph Kn,n,n

into triangles to decompositions of the k-partite graph Kn,...,n into Kk. In the same way it is
natural to extend LS(n) to sets of (k − 2)-MOLS(n). However, imposing this orthogonality
condition significantly increases the complexity, making it harder to construct and determine
the properties of MOLS, for instance in determining the existence question for 3-MOLS(10)
or the study of the smallest possible embedding for MOPLS. This leaves us with many open
questions, some of which we state or restate below.

Q1. For each n, what is the minimum volume µv(n) such that all pairs of MOPLS(n) of
volume less than µv(n) can be completed to a pair of MOLS(n)?

Q2. For each t, what is the smallest n such that any pair of MOPLS(t) can be embedded
in a pair of MOLS(n)?

Q3. For each t, what is the smallest n such that any pair of MOPLS(t) can be embedded
in k-MOLS(n), for k > 3?

Q4. For each t, what is the smallest n such that any k-MOPLS(t), k > 3, can be embedded
in k-MOLS(n)?
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Q5. What are the constraints on n and r such that a pair of MOPLS(t) of volume r can
be embedded in a pair of r-orthogonal LS(n)?

Q6. For each t and each admissible r, what is the smallest n such that an r-orthogonal
LS(t) can be embedded in a pair of r-orthogonal LS(n)?

Recently, in [20] Falcón, Falcón and Núñez gave results on the existence of orthogo-
nal partial quasigroups (N, ◦) that are totally conjugate orthogonal, in that the six
conjugates are distinct and pairwise orthogonal. The six conjugates are the partial
quasigroups defined by the binary operations ◦, ◦2, ◦3, ◦4, ◦5, ◦6 on N , where given
x ◦ y = z, y ◦2 x = z, x ◦3 z = y, z ◦4 x = y, z ◦5 y = x, y ◦6 z = x. This work leads to
the following question.

Q7. What is the smallest size of the embedding for the totally conjugate orthogonal partial
quasigroups of small orders given in [20] and what is the smallest n such that totally
conjugate orthogonal partial quasigroup, of order t, can be embedded in a totally
conjugate orthogonal quasigroup of order n?
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[4] B. Barber, D. Kühn, A. Lo, D. Osthus, A. Taylor, Clique decompositions of multipartite
graphs and completion of Latin squares, J. Comb. Theory Ser. A., 151 (2017), 146–201.

[5] G. B. Belyavskaya and A. D. Lumpov, Crossed product of two systems of quasigroups
and its use for the construction of partially orthogonal quasigroups, Mat. Issled., 83
(1985), 26–38.

[6] D. Bryant and M. Buchanan, Embedding partial totally symmetric quasigroups, J.
Comb. Theory Ser. A., 114(6) (2007), 1046–1088.

[7] D. Bryant, and D. Horsley, A proof of Lindner’s conjecture on embeddings of partial
Steiner triple systems. J. Comb. Des. 17(1) (2009), 63–89.

[8] C. J. Colbourn, The complexity of completing partial Latin squares, Discrete Appl.
Math, 8 (1984), 25–30.

[9] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs (Second edition),
CRC/Chapman and Hall, 2007.

18



[10] C. J. Colbourn and L. Zhu, The spectrum of r-orthogonal latin squares, in Combina-
torics Advances, Kluwer, New York, (1995), 49–75.

[11] A. B. Cruse, On embedding incomplete symmetric Latin squares, J. Combin. Theory
A. 16 (1974), 18–27.

[12] A. B. Cruse and C. C. Lindner, Small embeddings for partial semisymmetric and totally
symmetric quasigroups, J. London Math. Soc., 12 (1976), 479–484.

[13] R. M. Damerell, On Smetaniuk’s Construction for Latin Squares and the Andersen-
Hilton Theorem, P. Lond. Math. Soc., 47(3) (1983), 523–526.

[14] H. Dietrich and I. M. Wanless, Small partial Latin squares that embed in an infinite
group but not into any finite group, J. Symbolic Comput., 86 (2018), 142–152.
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