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The authors are both graduates of the University of London, and
have been working together in combinatorial design theory for 15
years. Construction of the Steiner system S(5, 6, 108) described in
this article was one of the first problems they tackled (unsuccess-
fully) many years ago. but a return to it in 1991 proved successful.

1 Introduction

Begin with a base set of nine elements, say the positive integers from 1 to 9
inclusive. Next consider the following subsets: 123, 456, 789, 147, 258, 369,
159, 267, 348, 168, 249 and 357. (Here, and elsewhere in this article, we will,
when convenient, use the simpler notation abc for the set {a, b, c}.) Collectively
the above subsets, which are more usually called blocks, have the property that
every pair of elements of the base set is contained in precisely one of the blocks.
Before proceeding further, readers should verify this fact for themselves. Such
a collection of blocks is an example of a Steiner system and this particular
configuration is usually denoted by S(2, 3, 9). It is quite easy to see what the
three integers 2, 3 and 9 describe. Considering them in reverse order, the 9 gives
the number of elements in the base set, and these can be any nine elements;
we named them as the positive integers 1 to 9 inclusive only for convenience.
The 3 gives the number of elements in each block and the 2 tells us that every
pair of elements of the base set, i.e. every subset consisting of two elements, is
contained in precisely one block. More succinctly we have a covering of pairs of
the base set, each precisely once, by a collection of triples. In this short article
our aim will be to introduce some of the elementary theory of Steiner systems,
which is a branch of combinatorial mathematics, and to try to give the flavour of
what we feel is an intrinsically very interesting topic with many fascinating open
problems to be solved. In formal terms, a Steiner system S(t, k, v) comprises a
base set having v elements and a family of k-element subsets of this base set.
These k-element subsets are called blocks. The blocks have the property that
each t-element subset of the base set appears in precisely one block. The reason
that these structures have the name of Steiner associated with them is that, in
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1853, the Swiss geometer Jakob Steiner (1796-1863) proposed the problem of
how to construct them. Six years later M. Reiss published a solution for the
case t = 2 and k = 3. However, as we describe later, both Steiner and Reiss
had been anticipated.

Steiner systems and other related structures have applications in statistics
through the design of experiments and in coding theory. For example, consider
the problem of comparing nine different breakfast cereals. A single person could
not rank all nine with confidence; by the time he or she was on the ninth they
would have forgotten the taste of the first. To be reasonable, we can only ask
people to rank at most three each. If we asked people to rank two each then to
get all 1

2
× 9× 8 = 36 comparisons we would need 36 people. However, if we use

the S(2, 3, 9) described above then we can reduce this to 12 people each testing
three brands and be sure that every pair is compared precisely once. As an
example in coding theory, look at the 12 blocks of S(2, 3, 9) above. Each block
has built-in redundancy in the sense that if any two of its digits are correctly re-
ceived then the block is uniquely defined. This property forms the basis for the
construction of codes which can both detect and correct errors. Such codes are
particularly important in telecommunications. Similar codes have been used in
space missions. Further details can be found in the book by Ian Anderson (ref-
erence 1). To conclude this introduction it is perhaps instructive to give a sec-
ond example. Let the base set be {A, B, C, D, E, F, G, H} and let the blocks be
ABCH, ADEH, AFGH, BDFH, BEGH, CDGH, CEFH, DEFG, BCFG,
BCDE, ACEG, ACDF, ABEF and ABDG. These form a Steiner system
S(3, 4, 8); there are eight elements in the base set, each block contains four
elements and it is easily verified that every triple, i.e. every subset consisting of
three elements, is contained in precisely one block.

2 Basic theory

Firstly we develop some elementary but important ideas. Suppose t, k and v are
integers satisfying 0 < t < k < v. Now it is impossible for a system S(t, k, v)
to be constructed for all values of t, k and v satisfying the inequality as will be
quickly realized if the reader attempts to construct an S(2, 3, 8). So we need to
ascertain which values of t, k and v may allow us to construct Steiner systems.
Simple necessary conditions on these parameters can be deduced from the fol-
lowing two easy theorems.

Theorem 1. If there exists an S(t, k, v) then there exists an S(t−1, k−1, v−1).

Proof. Choose any element, say x, of the system. Remove all the blocks
which do not contain x. Those which remain contain precisely once every t-
element subset which also contains x. Thus if we remove the element x from
these blocks, what is left is a base set of v − 1 elements and blocks containing
k−1 elements which collectively cover every (t−1)-element subset precisely once.
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As an illustration of this theorem the reader may obtain a Steiner system
S(2, 3, 7) from the S(3, 4, 8) given above. Simply choose x as any letter from A
to H and apply the procedure described in the proof.

Theorem 2. If there exists an S(t, k, v) then kCt divides vCt.

Proof. kCt is the number of t-element subsets in a block. If b is the total
number of blocks in the system then the number of t-element subsets covered is
b × kCt . But every t-element subset appears precisely once and there are vCt

t-element subsets, so b × kCt = vCt. Hence vCt/
kCt is an integer (b in fact).

Although the two theorems above are elementary, if we combine them we
obtain a condition on the parameter set, the so-called admissibility condition,
for the possible existence of a Steiner system S(t, k, v).

Admissibility condition. If there exists an S(t, k, v) then k−iCt−i divides
v−iCt−i for each i = 0, 1, 2, ..., t− 1.

Proof. By continued application of theorem 1, there exists an S(t − i, k −
i, v − i) for i = 0, 1, 2, ..., t− 1. Then apply theorem 2.

At this point it is perhaps worth noting that, in general, each of the admis-
sibility criteria kCt divides vCt,

k−1Ct−1 divides v−1Ct−1, etc., forces different
conditions on the parameter set (t, k, v). They are independent constraints and
one does not necessarily imply another. A parameter set which satisfies the
admissibility criteria is called an admissible set.

3 Steiner triple systems

We are now in a position to deduce, for given values of t and k, which integers v
form an admissible parameter set {t, k, v}. When t = 1, the admissibility condi-
tion reduces to the statement that k must divide v, which is elementary anyway
and it is equally elementary how to construct such systems. As an example, to
construct an S(1, 5, 15) let the base set be {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o};
the blocks can then be chosen to be abcde, fghij and klmno. The first non-
trivial case is when t = 2 and k = 3, the covering of pairs of elements by triples,
and these systems are more often called Steiner triple systems. We begin by
working out the admissibility condition on v. By theorem 1, if there exists
S(2, 3, v) then there exists S(1, 2, v − 1). Hence 2 divides v − 1, i.e. v is odd
and can be written in the form v = 2s + 1, where s is a positive integer. Now
applying theorem 2 to S(2, 3, v), we see that 3C2 divides vC2, i.e. 3 divides
1

2
v(v − 1) = s(2s + 1). Since 3 is prime then either 3 divides s or 3 divides

2s + 1, i.e. either s must be of the form 3r or of the form 3r + 1, where r is a
positive integer. Hence v = 6r + 1 or 6r + 3. Note here what we have done and,
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more importantly, what still remains to be done. We have not shown that there
actually exist Steiner triple systems S(2, 3, v) when v = 6r+1 or 6r+3. We have
merely shown that these are the only possible values of v for which such systems
can exist. The work of showing whether the necessary admissibility condition is
also sufficient is still to come and is more difficult. What is required is a general
construction or a number of constructions to produce Steiner triple systems.
The first person to solve this problem was an Anglican clergyman living in the
nineteenth century. The Reverend T. P. Kirkman (1806-1895) was Rector of
Croft, near Warrington in what was then Lancashire. In 1847 (reference 4) he
published a paper giving the complete solution to the problem of constructing
Steiner triple systems. In the sense that he did not earn his living from math-
ematics, Kirkman belonged to the line of great amateurs whose contributions
have so enriched and advanced the subject. By right the systems should be
called Kirkman triple systems, but Kirkman’s work was overlooked for many
years. However. Kirkman’s contributions to the development of combinatorial
mathematics were eventually recognized and the name Kirkman triple system
is now given to a special type of Steiner triple system with additional proper-
ties. Since Kirkman’s time many other different constructions of Steiner triple
systems have been discovered and we give below our favourite which occurs in
the work of the American mathematician, R. M. Wilson (reference 8).

List all triples a, b, c (with a, b and c not necessarily distinct) such that
a + b + c = 0 (mod v − 2). It can be proved that the number of triples so
obtained is precisely the required number of blocks for an S(2, 3, v). Because
some triples contain repeated elements and there are only v− 2 elements rather
than v, we do not as yet have a Steiner triple system. But, as will be seen from
the example which follows, such a system can easily be constructed with a little
modification. We illustrate the method when v = 15. There are three types of
triples which sum to zero in arithmetic modulo 13.

Type A (all elements different)

0, 1, 12 0, 2, 11 0, 3, 10 0, 4, 9 0, 5, 8 0, 6, 7
1, 2, 10 1, 3, 9 1, 4, 8 1, 5, 7 2, 3, 8 2, 4, 7
2, 5, 6 3, 4, 6 3, 11, 12 4, 10, 12 5, 9, 12 5, 10, 11
6, 8, 12 6, 9, 11 7, 8, 11 7, 9, 10

Type B (two elements equal)

1, 1, 11 11, 11, 4 4, 4, 5 5, 5, 3 3, 3, 7 7, 7, 12
12, 12, 2 2, 2, 9 9, 9, 8 8, 8, 10 10, 10, 6 6, 6, 1

Type C (all elements equal)
0, 0, 0

For all v = 6r + 1 or 6r + 3, then v − 2 = 6r − 1 or 6r + 1 is not divisible
by 3. Therefore 0, 0, 0 will be the only type C triple. Repeated elements in
the type B and type C triples must now be replaced by two further elements
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which we call X and Y . Firstly 0, 0, 0 becomes 0, X, Y . Next, considering type
B triples, observe that these are listed to form a cycle with the non-repeated
element of each triple being the repeated element of the next. The first triple
1, 1, 11 becomes X, 1, 11; the second 11, 11, 4 becomes Y, 11, 4, the next 4, 4, 5
becomes X, 4, 5. Continuing in this way, replacing one of the repeated elements
in the triples alternately with X and Y , we reach Y, 6, 1. It is easily verified
that we have constructed an S(2, 3, 15) on the base set {0, 1, 2, . . . , 12, X, Y }.

The only problem with this method can occur when the type B triples do
not form a single cycle as in the example used. This does not matter if all such
cycles contain an even number of triples as the replacement by X and Y in
each cycle can be handled independently. However, in certain cases, odd cycles
occur. For example when v = 13 the type B triples are 1, 1, 9; 9, 9, 4; 4, 4, 3;
3, 3, 5; 5, 5, 1; and 10, 10, 2; 2, 2, 7; 7, 7, 8; 8, 8, 6; 6, 6, 10. However, observe
that these two cycles form a pair, each the negative of the other in arithmetic
modulo 11. We replace these triples as follows. The first one becomes X, 1, 9;
Y, 9, 4; X, 4, 3; Y, 3, 5; and 0, 5, 1, since the latter cannot be either X, 5, 1 or
Y, 5, 1. Similarly the second one becomes X, 10, 2; Y, 2, 7; X, 7, 8; Y, 8, 6; and
0, 6, 10. Finally two of the type A triples 0, 1, 10 and 0, 5, 6 are amended to
become Y, 1, 10 and X, 5, 6 respectively. If this procedure seems complicated
then it is suggested that the reader tries out the cases v = 19, 21, 25, 27, etc.,
when it will be realized that this is an extremely simple method of constructing
Steiner triple systems. In fact this method works for all v = 6r+1 or 6r+3, thus
showing that the necessary admissibility condition for a Steiner triple system is
indeed sufficient.

4 Large Steiner systems

It is perhaps a surprise that after Kirkman’s paper over a century passed until
another case was completely solved. In 1960 H. Hanani proved that the neces-
sary admissibility condition v = 6r + 2 or 6r + 4 is also sufficient for Steiner
systems S(3, 4, v) (reference 3). Since then Hanani has also proved that the nec-
essary admissibility condition v = 12r + 1 or 12r + 4 and v = 20r + 1 or 20r +5
are also sufficient for Steiner systems S(2, 4, v) and S(2, 5, v), respectively. To-
day these are the only four pairs of values of t and k, i.e. t = 2, k = 3, 4, 5 and
t = 3, k = 4 for which the problem of constructing Steiner systems S(t, k, v) for
all possible values of v is completely solved. However, some very recent work
has resulted in the problem being almost completely solved when t = 2 and
k = 6, 7, 8, 9. At this point it might also be worth noting that, unlike the cases
which have been completely solved, in general it is known that the necessary
admissibility condition is not always sufficient. For example v = 36 is an admis-
sible value for t = 2 and k = 6, but there is no Steiner system S(2, 6, 36). This
problem, which is also known as the problem of the 36 officers and is related to
ideas in finite geometry, goes back to Euler and was shown to be impossible by
G. Tarry (reference 7).

However, if the state of knowledge concerning the existence of Steiner sys-
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tems with t = 2 and t = 3 is patchy, results dealing with t = 4 and t = 5
are very scarce indeed and when t ≥ 6 they are completely non-existent! Un-
til 1975 the only known systems of these types were S(5, 6, 12) and S(5, 8, 24)
together with the systems S(4, 5, 11) and S(4, 7, 23) obtained from them using
theorem 1. The existence of all these systems is related to some deep results
in group theory. In 1975, R. H. F. Denniston (reference 2) constructed further
systems S(5, 6, v) for v = 24, 48 and 84, and S(5, 7, 28). Two years later W. H.
Mills (reference 5) added S(5, 6, 72). There was then no further progress for over
10 years. Denniston’s systems were constructed using hand calculations. Re-
cently, using a computer, we have constructed S(5, 6, 108). The reason for using
a computer can be seen if the number of blocks in a Steiner system S(5, 6, 108)
is calculated: there are precisely 18 578 196 of them. Using sophisticated com-
puter equipment at the University of Toronto and working with Professor Rudi
Mathon of that university, we subsequently constructed S(5, 6, 132), consisting
of 51 553 216 blocks. Truly enormous systems! Our next target is (5, 6, 168),
with no fewer than 175 036 708 blocks, though we appear to be on the limit
both of mathematical reasoning concerning what the structure of such a system
might be and of computer technology to effect the calculations involved.

To conclude, we give a simple construction of the Steiner system S(5, 6, 12).
The construction, which is purely combinatorial in nature. was first given by R.
G. Stanton (reference 6). We start by constructing S(4, 5, 11), which contains 66
blocks. Let the base set be V = {A, B, C, D, E, 1, 2, 3, 4, 5, 6} and suppose that
ABCDE is the first block. It is then easy to calculate the numbers of other
blocks which contain specified numbers of letters and numbers. Specifically
there are 30 blocks of the form LLLNN, 20 blocks of the form LLNNN and 15
blocks of the form LNNNN, where L is a letter and N a number.

Begin with the LNNNN blocks. Consider the following scheme:

A 12 34 56
B 13 25 46
C 14 26 35
D 15 24 36
E 16 23 45

Note that each pair of digits occurs in the scheme precisely once and further
that each digit occurs precisely once in each row. From each row form three
blocks of the system by the letter and two of the three pairs of digits. Thus the
first row generates blocks A1234, A1256 and A3456. This gives 15 blocks of the
form LNNNN.

Considering next the blocks of the form LLNNN, observe that there are six
numbers of which we require three in each block and that 6C3 = 20, exactly the
number required. Each triple of digits is contained in precisely one block and it
is determined which the two letters must be. For example, consider 123. Blocks
A1234, B1325 and E1623 already occur, so we must have 123CD.

Finally, when the 30 blocks of the form LLLNN are considered, everything is
forced, as the reader will find if the construction is followed through. Obtaining
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the larger system S(5, 6, 12) is easy. First a twelfth element, say ∞, is adjoined
to all the blocks of the S(4, 5, 11). Then 66 further blocks are created as the
complements of the existing 66 blocks; the 132 blocks so formed are a Steiner
system S(5, 6, 12).
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