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1 Introduction

As the title indicates, the focus in this paper is on Latin hypercubes. However, the topic
can be viewed in terms of design theory, graph theory, and coding theory. Previous
results appear in several guises and these are reviewed in Section 2. We start with
some basic definitions.

A Latin square of order n, denoted by LS(n), is a (2-dimensional) n × n array
L = [L(i, j)], with entries from an n-element set N , such that each element of N
occurs once in each row and once in each column of L. The rows and columns of L are
indexed by an n-element set, which we will always take to be the same as the entry
set N . Unless we say otherwise, we will take N = Zn = {0, 1, 2, . . . , n− 1}.

A Latin hypercube is a generalisation of a Latin square to higher dimensions. To
explain the definition, consider a d-dimensional arrayH = [H(i1, i2, . . . , id)], with each
coordinate indexed by an n-element set N . A line in this array is a 1-dimensional array
formed from H by holding all but one coordinate fixed and allowing the remaining
coordinate to vary through the elements of N . Thus a line in H generalises the notion
of a row or a column in a square array of dimension 2. If it is the jth coordinate that is
variable, then we will say that the line is in the j direction. The set of all lines in the
j direction will be denoted by Lj . Clearly there will be exactly nd−1 lines in each of
the d possible directions, and so dnd−1 lines altogether. Given any cell C in the array
there will be d lines through that cell, and we will denote the set of such lines by L(C).

Having the notion of a line, we can define a Latin hypercube of dimension d and
order n, denoted by LH(d, n), to be a d-dimensional array H = [H(i1, i2, . . . , id)], with
each coordinate indexed by an n-element set N , and entries from the same set N ,
such that each element of N occurs once in each line of H. As with Latin squares,
we will often take N = Zn. A Latin square LS(n) is a particular case of a Latin
hypercube LH(d, n) corresponding to dimension d = 2. An example of an LH(d, n)
with coordinates indexed by, and entries from, Zn is given by taking the entry in cell
(x1, x2, . . . , xd) to be

∑d
i=1 xi, with addition in Zn.

An alternative view of an LH(d, n), which may be easier to visualise, is as a type
of group divisible design, where the groups are the n-element sets representing the d
coordinates and the entry set itself. So if H is an LH(d, n) then H consists of d + 1
disjoint sets (the groups), where each group is an n-element set, each block of the
design has precisely one entry from each group, and each d-tuple from distinct groups
lies in precisely one block.

Figure 1 shows a Latin hypercube of dimension 3 and order 4 represented as 4
levels of rows and columns. The reader should visualise the 4 levels being placed on
top of one another.

Fig. 1 An LH(3,4)

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

1 2 3 0
2 3 0 1
3 0 1 2
0 1 2 3

2 3 0 1
3 0 1 2
0 1 2 3
1 2 3 0

3 0 1 2
0 1 2 3
1 2 3 0
2 3 0 1
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The same Latin hypercube can be viewed as a design, where the groups are the
rows, the columns, the levels and the entries. If the rows are designated as ir, the
columns as ic, the levels as iℓ, and the entries as ie, each for i = 0, 1, 2, 3, then the
blocks in this case are formed as (wr, xc, yl, ze) where w, x, y, z ∈ Z4, and w = x+y+z
in Z4. For example, in the 0th row, 1st column, 2nd level, the entry is 3 as highlighted
in the table.

A partial Latin square of order n, denoted PLS(n), is defined in the same manner
as a Latin square of order n except that some of the cells may be empty, in other
words, each element of the entry set occurs at most once in each row and at most
once in each column. Similarly, a partial Latin hypercube of dimension d and order
n, denoted PLH(d, n) is defined in the same manner LH(d, n) except that some of the
cells may be empty, in other words, each element of the entry set occurs at most once
in each line.

Amaximal PLH(d, n) is a PLH(d, n) that cannot be extended to another PLH(d, n)
by inserting any element of the entry set N into any empty cell. We denote a maximal
PLH(d, n) as an MPLH(d, n). This is analogous to a maximal PLS(n), which is a
partial Latin square of order n that cannot be extended to another PLS(n) by inserting
any entry into any empty cell. A maximal PLS(n) is denoted MPLS(n); it is of course
the same thing as an MPLH(2, n). We will denote by f(d, n) the minimal cardinality
of an MPLH(d, n), i.e.

f(d, n) = min(F : there exists an MPLH(d, n) with precisely F filled cells).

In the next section we review what is already known about maximum partial Latin
hypercubes.

2 Previous results

Our first comment is that it is difficult to recognise what is already known because the
problem can be reformulated in so many different forms. We start by reviewing results
that explicitly refer to Latin squares (d = 2) and Latin cubes (d = 3) of variable order
n.
Theorem 2.1 (Horak and Rosa [4]). If L is a partial Latin square of order n (i.e.
a PLS(n)) with less than n2/2 entries, then it cannot be maximal. Hence f(2, n) ≥
⌈n2/2⌉.

It will help our subsequent discussion to give a proof of this result, essentially that
given in [6]. In Section 3, this proof is adapted and extended to deal with the case of
higher dimensional hypercubes.

Proof. Let F denote the number of filled cells in the partial Latin square L of order
n. We assume that F < n2/2 and denote by E the number of empty cells, so that
E = n2 − F > n2/2. The set of all empty cells will be denoted by E . We can assume
that the rows and columns of L are indexed by Zn. Define e1(i) to be the number of
empty cells in row i, and e2(j) to be the number of empty cells in column j. Then∑n−1

i=0 e1(i) =
∑n−1

j=0 e2(j) = E.
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If an empty cell (i, j) has less than n filled cells in the union of its row and column
then there exists x in the entry set which does not appear in row i or in column j.
The number of filled cells in the union of row i and column j is at most (n− e1(i))+
(n−e2(j)). Consequently if there is an empty cell (i, j) with e1(i)+e2(j)−n > 0, then
L may be extended to a PLS(n) L′ with F + 1 filled cells by inserting an appropriate
entry into cell (i, j).

To prove that there is such an empty cell, consider the sum

S =
∑

(i,j)∈E

(e1(i) + e2(j)− n).

Here the summation is over all empty cells (i, j). Each e1(i) will appear in the
summation precisely e1(i) times, and each e2(j) will appear precisely e2(j) times.
Consequently

S =

[
n−1∑
i=0

(e1(i))
2

]
+

[
n−1∑
j=0

(e2(j))
2

]
− nE.

By Cauchy’s inequality,

n−1∑
i=0

(e1(i))
2 ≥ 1

n

[
n−1∑
i=0

e1(i)

]2

=
E2

n
, and

n−1∑
j=0

(e2(j))
2 ≥ 1

n

[
n−1∑
j=0

e2(j)

]2

=
E2

n
.

Hence S ≥ E( 2En − n) > 0. Since S > 0, at least one term in the summation must be
strictly positive, i.e. there exists an empty cell (i, j) with e1(i) + e2(j) − n > 0. The
result follows.

For each positive integer n there is an MPLS(n) with the number of filled cells
equal to ⌈n2/2⌉. As examples we show squares of orders n = 6 and n = 7. It is easy
to see how these generalise. So f(2, n) = ⌈n2/2⌉.

Fig. 2 MPLS(6) and MPLS(7)

0 1 2
2 0 1
1 2 0

3 4 5
5 3 4
4 5 3

0 1 2
2 0 1
1 2 0

3 4 5 6
6 3 4 5
5 6 3 4
4 5 6 3
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Horak and Rosa [4] also proved the following result about the spectrum of
MPLS(n)s, in other words the values of F for which it is possible to construct an
MPLS(n) having exactly F filled cells.

Theorem 2.2 (Horak and Rosa [4]). Let Sn be defined as

Sn =

{⌈
n2

2

⌉
+ k : k is odd and 1 ≤ k ≤ n− 1

}
.

And suppose that the integer F ̸∈ Sn,
n2

2 ≤ F ≤ n2, and F ̸= n2−1. Then there exists
an MPLS(n) having precisely F filled cells.

They went on to conjecture that the values of F covered by Theorem 2.2 form the
spectrum of MPLS(n). They eliminated most of the values of F not covered by this
Theorem, leaving undetermined the following cases:

1. F = n2

2 + k, k odd, n
2 < k ≤ n− 1, when n is even, and

2. F = n2+1
2 + k, k odd, n−1

2 ≤ k ≤ n− 2, when n is odd.

As far as we are aware this conjecture remains open.

Next we review what is known about MPLH(3, n)s. A Latin hypercube of dimension
3 and order n is usually called a Latin cube and denoted by LC(n) with associated
notations PLC (partial) and MPLC (maximal partial). In [2] Britz, Cavenagh and
Sørensen prove the following result.

Theorem 2.3. If C is a partial Latin cube of order n (i.e. a PLC(n)) with less than(
1− 1√

2

)
n3 ≈ 0.29289n3 entries, then it cannot be maximal.

It is also shown that the bound can be improved slightly by the addition of an
O(n2) term. The same paper goes on to construct MPLC(n) with n3/3 filled cells
when n is divisible by 3, and with n3/3+O(n2) filled cells when n is not divisible by 3.

As regards the spectrum of values of F (the number of filled cells) for which a
MPLC(n) exists the following results are also established in [2].

Theorem 2.4. There exists an MPLC(n) having precisely F filled cells if

1. n ≥ 10 is even and n3

2 ≤ F ≤ n3 − 3, or

2. n ≥ 21 is odd and n3

2 + n
2 ≤ F ≤ n3 − 3.

Moreover, there is no MPLC(n) having precisely n3 − 1 or n3 − 2 filled cells.

Open questions remain about the spectrum below approximately F = n3/2.

The results of [4] and [2] deal with fixed dimensions (d = 2 and d = 3 respectively)
and variable order n. In [5] and in [1] the authors (respectively Jha, and Arumugam
and Kala) obtain results covering fixed order n = 2 and variable dimension d. These
results are obtained in the context of graph domination numbers.

If G = (V,E) is a finite simple connected graph then S ⊆ V is called a dominating
set if every vertex in V \S is adjacent to at least one vertex in S. A dominating set S
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is called an independent dominating set if no two vertices of S are adjacent. A survey
of results on independent dominating sets is given in [3]. The minimum cardinality
of an independent dominating set of a graph G is called the independent domination
number of G and is denoted by i(G). The d-cube Qd is the graph whose vertex set is
the set of all d-dimensional boolean vectors, i.e. (Z2)

d, two vertices being joined by an
edge if and only if they differ in exactly one coordinate. In [5] the following result is
established.

Theorem 2.5 (Jha [5]). For d a positive integer, the independent domination number
of the d-cube satisfies the inequalities

2d

d+ 1
≤ i(Qd) ≤

2d

2⌊log2(d+1)⌋ .

In particular, if d + 1 is an integer power of 2, i.e. if d + 1 = 2k for some integer k,
then i(Qd) = 2d/(d+ 1) = 2d−k.

In [1] the authors establish the values of i(Qd) for d ≤ 6 as shown in Table 1 below.

Table 1 Independent
domination numbers for Qd.

d 1 2 3 4 5 6

i(Qd) 1 2 2 4 8 12

There is a strong connection between independent dominating sets and maximum
partial Latin hypercubes. Let G(d, n) denote the graph with vertex set (Zn)

d+1 in
which vertices are joined by an edge if and only if they differ in precisely one coordinate.

Theorem 2.6. An independent dominating set for G(d, n) is equivalent to an
MPLH(d, n).

Proof. Suppose first that S is an independent dominating set for G(d, n). A PLH(d, n),
say H, may be formed by taking each (x1, x2, . . . , xd, xd+1) ∈ S and placing the entry
xd+1 in the cell (x1, x2, . . . , xd) of H. The independence property of S ensures that
no cell receives more than one entry. That H has the Latin property also follows
from the independence property: if H had two cells in the same line with the same
entry then the corresponding points of S would be adjacent, a contradiction. To see
that H is maximal, suppose that C = (x1, x2, . . . , xd) is an empty cell of H, so that
ck = (x1, x2, . . . , xd, k) ̸∈ S for any k ∈ Zn. Since S is a dominating set, for each
k ∈ Zn there exists c′k = (x′

1, x
′
2, . . . , x

′
d, k) ∈ S, where x′

i = xi except for one value j
where x′

j ̸= xj . But then cell C ′
k = (x′

1, x
′
2, . . . , x

′
d) is a filled cell of H containing the

entry k and it differs in only one coordinate from cell C. So, for any k ∈ Zn, entry k
cannot be placed in cell C because this would give two cells in line j with the same
entry. We deduce that no further entries can be added to H without violating the
Latin condition, and so H is an MPLH(d, n).
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Conversely suppose that H is an MPLH(d, n). We may assume that its coordinates
and entries are from Zn. Define S ⊆ (Zn)

d+1 to be the set of points:

{(x1, x2, . . . , xd, xd+1) : cell (x1, x2, . . . , xd) of H contains entry xd+1}.

The Latin property of H ensures that no two points from S are adjacent in G(d, n). To
see that S is a dominating set for G(d, n), suppose that ck = (x1, x2, . . . , xd, k) ̸∈ S.
If cℓ = (x1, x2, . . . , xd, ℓ) ∈ S for some ℓ ̸= k then ck is adjacent to a vertex of S. If
cℓ = (x1, x2, . . . , xd, ℓ) ̸∈ S for any ℓ ∈ Zn then cell C = (x1, x2, . . . , xd) of H is empty.
Since H is maximal, entry k cannot be placed in cell C, and so there is a filled cell
of H, C ′ = (x′

1, x
′
2, . . . , x

′
d) containing entry k, where x′

i = xi except for one value j
where x′

j ̸= xj . But then c′k = (x′
1, x

′
2, . . . , x

′
d, k) ∈ S and is adjacent to ck in G(d, n).

It follows that S is an independent dominating set for G(d, n).

Combining this result with those of Theorem 2.5 and Table 1, gives the following
results.

Corollary 2.7. f(d, 2) = i(Qd+1), and so

2d+1

d+ 2
≤ f(d, 2) ≤ 2d+1

2⌊log2(d+2)⌋ .

In particular, if d+2 is an integer power of 2 then f(d, 2) = 2d+1/(d+2). For 2 ≤ d ≤ 6
values of f(d, 2) are as in Table 2.

Table 2 Minimum number of
filled cells in an MPLH(d, 2).

d 2 3 4 5 6

f(d, 2) 2 4 8 12 16

In Section 3 we will generalise Corollary 2.7 to orders n > 2.

Next we examine connections with coding theory. Results of Quistorff [10] are par-
ticularly relevant to Latin hypercubes. For background information on coding theory,
see [7]. An n-ary code C of length l over Zn is said to have covering radius r if r is
the smallest integer such that every vector in Zl

n is within Hamming distance r of a
codeword of C. It is easy to see that the minimum distance of such a code can be at
most 2r + 1.

Theorem 2.8. An MPLH(d, n) is equivalent to a n-ary code C of length d + 1 over
Zn with minimum distance at least 2 and covering radius 1.

Proof. A code C of length d + 1 over Zn can be viewed as a set S of vertices in
the graph G(d, n), and vice-versa. The set S is a dominating set if and only if the
corresponding code C has covering radius 1, and it is an independent set (meaning
that no two vertices of S are adjacent) if and only if C has minimum distance at least
2. The result then follows from Theorem 2.6.
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Quistorff [10] uses Kn(l, r) to denote the minimal cardinality of an n-ary code of
length l with covering radius at most r. A covering radius of zero implies that the
code has every vector as a codeword and hence nl codewords. Apart from the trivial
case n = 1, a code with cardinality Kn(l, 1) must therefore have covering radius 1.
However, such codes may have minimum distance 1. Consequently f(d, n) may not
equal Kn(d+ 1, 1), but we certainly have f(d, n) ≥ Kn(d+ 1, 1). Rodemich [11] gives
the bound Kn(d+ 1, 1) ≥ ⌈nd/d⌉, and this gives the bound

f(d, n) ≥ ⌈nd/d⌉.

For d = 3 this is a better bound than the one given in [2] which we described above.
But Theorem 1 of [10] improves on this in certain cases by giving the following lower
bound for Kn(d+ 1, 1).

Theorem 2.9 (Quistorff [10]). If 2 ≤ d < n ≤ 2d and b = 2d− n, then

Kn(d+ 1, 1) ≥
⌈
nd−1 2n(n− 1)− b

2d(n− 1)− b

⌉
.

The bound given in [11] gives f(4, 5) ≥ 157, f(4, 6) ≥ 324, and f(4, 7) ≥ 601.
Theorem 2.9 improves these to give: f(4, 5) ≥ 160, f(4, 6) ≥ 330, and f(4, 7) ≥ 606.
We give a further improvement covering a wider range of cases in Theorem 3.1 below.

Theorem 2 of [10] shows that an n-ary code of length l with minimum distance
at least 2, covering radius 1, and having M codewords gives rise to an n-ary code of
length l + 1 with minimum distance 2, covering radius 1, and having nM codewords.
Recast in the language of Latin hypercubes this can be expressed as follows.

Theorem 2.10 (Quistorff [10]). Suppose that Hd is an MPLH(d, n) with exactly F
filled cells. Then there exists an MPLH(d+ 1, n), Hd+1 with exactly nF filled cells.

The basis of the proof is as follows. We may assume that Hd is expressed over Zn.
Suppose that C = (x1, x2, . . . , xd) is any cell of Hd. If C is empty, then leave all n cells
of the form Ci = (x1, x2, . . . , xd, i) empty in Hd+1, for i ∈ Zn. On the other hand, if
C contains the entry z in Hd, then in cell Ci = (x1, x2, . . . , xd, i) of Hd+1 place the
entry z+ i (addition in Zn), and do this for each i ∈ Zn. It is easy to check that Hd+1

has the desired properties. As a consequence, we have

Corollary 2.11. f(d+ 1, n) ≤ nf(d, n).

3 A lower bound

The bound presented in this section is a generalisation of the result in [4] to Latin
hypercubes. It improves the bound in [2], the bound that follows from [11], and the
bound that follows from Theorem 1 of [10]. It also extends the bound given by [5] to
a wider range of cases.
Theorem 3.1. Suppose that H is a partial Latin hypercube of dimension d and order
n. To avoid trivialities, assume that d, n ≥ 2 and that (d, n) ̸= (2, 2). Let n = qd + r
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where 0 ≤ r ≤ d− 1. Put k = n− q − 1 and

δ = nd−1 r(d− r)

d(kd+ r)
.

Let F denote the number of filled cells in H. Then if F < nd

d +δ, H cannot be maximal.

In other words, f(d, n) ≥ ⌈nd

d + δ⌉.

Proof. The non-triviality conditions on d and n ensure that k ≥ 1. Let E denote the

number of empty cells in H, so that E = nd − F , and assume that F < nd

d + δ.
Case (a): r ̸= 0. Then 1 ≤ r ≤ d− 1, so

E > nd − nd

d
− δ

= nd−1
(
n− n

d
− r(d− r)

d(kd+ r)

)
= nd−1

(
n− q − r

d
− r(d− r)

d(kd+ r)

)
= nd−1

(
n− q − kr + r

kd+ r

)
. (1)

Because r < d it follows that
⌊ E

nd−1

⌋
≥ n− q − 1 = k.

Case (b): r = 0. Then δ = 0, so

E > nd − nd

d

= nd−1
(
n− n

d

)
= nd−1(n− q)

= nd−1(k + 1). (2)

Hence
⌊ E

nd−1

⌋
≥ k + 1.

In both cases (a) and (b), put l =
⌊ E

nd−1

⌋
. Then l ≥ k + 1 except possibly when

r > 0 and l = k.

Define e(L) to be the number of empty cells in line L. If we sum e(L) over all lines
in a given direction, say the j direction, we get

∑
L∈Lj

e(L) = E.

Let Lj(C) denote the line in direction j passing through the cell C. If an empty
cell C has less than n filled cells in the union of all d lines through it, then there
exists x in the entry set which does not appear in any of these lines. The number
of filled cells in a given line L is n − e(L), so the union of all the lines through a

cell C has at most
∑d

j=1(n − e(Lj(C))) filled cells, where the summation is over all

10



the d lines Lj(C) that contain cell C. Consequently, if there is an empty cell C with∑d
j=1(n − e(Lj(C))) < n then H may be extended to a PLH(d, n) H ′ with F + 1

filled cells by inserting an appropriate entry into cell C. Note that the inequality is

equivalent to s(C) =
[∑d

j=1 e(Lj(C))
]
− (d− 1)n > 0.

To prove that there is such an empty cell, consider the sum S of s(C) over all
empty cells C. If E denotes the set of all empty cells in H then

S =
∑
C∈E

{[
d∑

j=1

e(Lj(C))

]
− (d− 1)n

}

=

d∑
j=1

∑
C∈E

e(Lj(C))−
∑
C∈E

(d− 1)n

=

[
d∑

j=1

∑
C∈E

e(Lj(C))

]
− (d− 1)nE.

The aim is to prove that S > 0, thereby showing that at least one of the empty
cells can be filled.

For an empty cell C there will be d lines through C. Consider lines in a single fixed
direction, say the j direction. There will be one such line, namely Lj(C), through
each empty cell C and in the summation

∑
C∈E e(Lj(C)), each term will be counted

e(Lj(C)) times. So ∑
C∈E

e(Lj(C)) =
∑
L∈Lj

(e(L))2,

where the summation on the right-hand side is over all nd−1 lines in the j direction.
The minimum possible value of Tj =

∑
L∈Lj

(e(L))2 subject to
∑

L∈Lj
e(L) = E is

obtained by distributing the total value E as evenly as possible amongst the nd−1 lines
L ∈ Lj . The average value per line is E/nd−1. But l = ⌊E/nd−1⌋, so l ≤ E/nd−1 <
l + 1. Hence Tj will be minimised if e(L) = l for λ lines, and e(L) = l + 1 for µ
lines, where λ + µ = nd−1 and lλ + (l + 1)µ = E. These equations for λ and µ give
λ = (l + 1)nd−1 − E and µ = E − lnd−1. As a consequence

Tj ≥ λl2 + µ(l + 1)2

= nd−1l2(l + 1)− nd−1l(l + 1)2 + E((l + 1)2 − l2)

= E(2l + 1)− nd−1l(l + 1).

It follows that

S ≥ dE(2l + 1)− dnd−1l(l + 1)− (d− 1)nE

= E(2ld+ d− nd+ n)− dnd−1l(l + 1)

= E(2ld+ d− nd+ qd+ r)− dnd−1l(l + 1)

= E(2ld− d(n− 1− q) + r)− dnd−1l(l + 1)
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= E(2ld− kd+ r)− dnd−1l(l + 1). (3)

We consider four possibilities, namely: (i) l = k; (ii) l = k + 1, r = 0;
(iii) l = k + 1, r > 0; (iv) l ≥ k + 2.

(i) If l = k, inequality (3) gives S ≥ E(kd+r)−dnd−1k(k+1), but this can only happen

in case (a) when r > 0 and then from inequality (1), E > nd−1
(
n− q− kr+r

kd+r

)
. So,

if l = k we have

S > nd−1
(
n− q − kr + r

kd+ r

)
(kd+ r)− dnd−1k(k + 1)

= nd−1
(
(k + 1)(kd+ r)− (kr + r)

)
− dnd−1k(k + 1)

= nd−1
(
dk(k + 1)− dk(k + 1)

)
= 0.

(ii) If l = k+1 and r = 0 then inequality (3) gives S ≥ E(ld+d)−dnd−1l(l+1), but this
can only happen in case (b) and then inequality (2) gives E > nd−1(k+1) = lnd−1.
Hence

S > nd−1(dl(l + 1)− dl(l + 1)) = 0.

(iii) If l = k + 1 and r > 0 then inequality (3) gives

S ≥ E(ld+ d+ r)− dnd−1l(l + 1).

But E ≥ lnd−1 and so

S ≥ nd−1(dl(l + 1) + rl − dl(l + 1)) = rlnd−1 > 0.

(iv) Finally, if l ≥ k + 2 then inequality (3) gives

S ≥ E(ld+ 2d+ r)− dnd−1l(l + 1).

Again using E ≥ lnd−1, we obtain

S ≥ nd−1(dl(l + 2) + rl − dl(l + 1)) ≥ dlnd−1 > 0.

In conclusion, S > 0 in all cases under consideration and the result follows.

We remark that for d = 2 (squares) this result coincides with the n2/2 result
of [4]. For d = 3 (cubes) it improves the result of [2], and brings it into line with
the MPLC(n)s constructed in that paper that have precisely n3/3 filled cells. Some
rather tedious arithmetic shows that the bound of Theorem 3.1 is always at least
as good as that provided by Theorem 1 of [10] (Theorem 2.9 above). In particular,
f(4, 5) ≥ 164, f(4, 6) ≥ 336, and f(4, 7) ≥ 612. Theorem 3.1 also applies to a much
wider range of the parameters d and n than Theorem 1 of [10].
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When n ≤ d, in the terminology of Theorem 3.1, we have q = 0, r = n and

k = n− 1, and the bound reduces to f(d, n) ≥ nd+1

d(n−1)+n .

If n > d then

nd+1

d(n− 1) + n
<

nd+1

d(n− 1) + d
=

nd

d
≤ f(d, n) by Theorem 3.1.

Hence, even when n > d, the bound implies the same inequality, although this inequal-

ity is then weaker than the bound. So in all cases we have f(d, n) ≥ nd+1

d(n−1)+n . For

n = 2 this coincides with the lower bound of Corollary 2.7 that came from the results
of Jha [5]. So the bound of Theorem 3.1 extends that of [5].

In the next two sections we examine how close the bound is to optimality.

4 Constructing MPLH(d, n) for fixed d

The focus in this section is primarily on the case n ≥ d. An examination of the proof of
Theorem 3.1 suggests that it is likely that any MPLH(d, n) with precisely nd/d filled
cells will have the property that for any empty cell, the entries in the lines through
that cell are distinct and cover the entire entry set. Furthermore, if n is divisible by d,
each line through an empty cell will (most likely) have n/d entries in such a minimal
MPLH. The results below go some way to support this conjecture by producing designs
with these properties.

Theorem 4.1. Suppose that d ≥ 2 and that q is a prime or prime power less than or
equal to d. Then there exists an MPLH(d, q) with precisely qd−1 filled cells.

Proof. The proof is by direct construction of an MPLH(d, q) denoted by H. All arith-
metic is in a finite field Fq with q elements; we denote the elements of the field in some
fixed order as λ1, λ2, . . . , λq. The coordinates of H will be indexed by, and its entries
taken from, Fq.

The filled cells of H are those with coordinates (x1, x2, . . . , xd) where
∑d

i=1 xi = 0.
The remaining cells ofH are empty. Clearly there are precisely qd−1 filled cells and only
one filled cell in each line. The entry in a filled cell (x1, x2, . . . , xd) is e =

∑q
i=1 λixi.

Note that this entry does not depend on xj for the value j such that λj = 0, and if
q < d, this entry does not depend on xq+1, xq+2, . . . , xd.

Take an empty cell C = (y1, y2, . . . , yd). Then S =
∑d

i=1 yi ̸= 0. We show that
the d lines through C collectively contain as entries all the elements of Fq. Put T =∑q

i=1 λiyi. Consider any coordinate position j where 1 ≤ j ≤ q. Put xj = yj−S so that
the cell Dj = (y1, y2, . . . , yj−1, xj , yj+1, . . . , yd) is the unique filled cell of H that lies
on the line through C in the j direction. The entry in cell Dj is ej = T +λj(xj−yj) =
T − λjS.

If we take two distinct lines through the empty cell C, say in the j and k directions
where j ̸= k and 1 ≤ j, k ≤ q, then the entries in these lines are ej = T − λjS and
ek = T − λkS, so that ej − ek = (λk − λj)S ̸= 0. Hence ej ̸= ek. Since there are q
such lines through each empty cell C, no new entry may be placed into any such cell
C, and so H is an MPLH(d, q).

13



As a simple consequence of Theorem 4.1 we have the following corollary.

Corollary 4.2. Suppose that d is a prime or prime power. Then there exists an
MPLH(d, d) with precisely dd−1 filled cells.

Our next result will enable us to meet the bound of Theorem 3.1 in more cases.

Theorem 4.3. Suppose that H is an MPLH(d, n) with exactly F filled cells and that
k is a positive integer. Then there exists an MPLH(d, kn), H ′, with exactly kdF filled
cells.

Proof. We can assume that k > 1. Take H to be an MPLH(d, n) with entry set Zn

and precisely F filled cells. Replace each filled cell of H containing the entry i by a
Latin hypercube of dimension d and order k with entry set {ik, ik+1, . . . , ik+(k−1)}.
Each empty cell of H is replaced by an empty d-dimensional array of order k. In the
representation of H as a group divisible design, this means that each point of H is
inflated by a factor k, i.e. replaced by k new points, and each block of H is replaced by
a Latin hypercube of type LH(d, k). The resulting design H ′ still has d+1 groups, but
these now have cardinality kn and each empty cell has all kn entries in the union of
lines through that cell. So H ′ is an MPLH(d, n) having precisely kdF filled cells.

Corollary 4.4. Suppose that d is a prime or prime power, and that n is divisible by
d. Then there exists an MPLH(d, n) with precisely nd/d filled cells.

Proof. By Corollary 4.2, there exists an MPLH(d, d) with precisely dd−1 = dd/d filled
cells. Put k = n/d and apply Theorem 4.3 to obtain an MPLH(d, n) with precisely
kd × (dd/d) = nd/d filled cells.

A rather messier argument deals with the situation when n is not divisible by d.

Theorem 4.5. If d is a prime or prime power then, for large n, there exists an
MPLH(d, n) that has at most nd/d+O(nd−1) filled cells.

Proof. Suppose that n = dk + r, where 1 ≤ r ≤ d − 1. Take H to be an MPLH(d, d)
with precisely dd−1 filled cells. Inflate H by the factor k as described in the proof of
Theorem 4.3 to form an MPLH(d,m), say Hm, where m = dk. Then Hm has precisely
md/d filled cells. We may assume that the coordinates of Hm are indexed by Zm and
that the entries are from the same set. We wish to add r extra possibilities for each
of the d coordinates and r extra entries from the set Y = {m,m + 1, . . . ,m + r − 1}
to extend Hm to an MPLH(d,m + r), H ′. This is done by adding entries greedily in
two stages.

In the first stage, take the existing lines of Hm in a single fixed direction, say the
first. There are md−1 such lines. Every empty cell of Hm will lie in one of these lines.
For each such line, insert new entries from Y into empty cells in that line until no
further entries can be inserted without violating the Latin condition (i.e., that no line
in any direction has a repeated entry). At most r entries can be placed in each line
in the first direction, and so the maximum number of new entries that can be added
in this way is rmd−1. Once this process is complete, none of the original cells of Hm

that remain empty can have any entry from Zm+r inserted without violating the Latin
condition.
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In the second stage, note that H ′ will have (m + r)d cells, so the number of new
cells added to Hm to form H ′ is (m + r)d −md ≤ dr(m + r)d−1. Insert entries from
Zm+r into these new cells until no further entries can be inserted without violating
the Latin condition. At most dr(m+ r)d−1 new entries are made in this process.

The partial Latin hypercube H ′ that results from the two stages cannot be
extended by inserting any entry from Zm+r into any empty cell, and so H ′ is an
MPLH(d,m+ r). The total number of entries in H ′ is at most the sum of the number
of entries in Hm plus the number added in stages one and two above. So H ′ has at
most md/d + rmd−1 + dr(m + r)d−1 ≤ nd/d + (d + 1)rnd−1. Thus, for large n, the
constructed MPLH(d, n) has nd/d+O(nd−1) entries.

Finally in this section we construct MPLH(d, n) designs when d is neither a prime
nor a prime power. These designs come close to meeting a lower bound of nd/d filled
cells.

By applying Theorem 4.3, the MPLH(d, q) constructed in Theorem 4.1 can be
inflated by a factor k to give an MPLH(d, qk) with precisely qd−1×kd = (qk)d/q filled
cells. So when n is a multiple of q we have an MPLH(d, n) with nd/q filled cells. When
n is not a multiple of q we may again proceed as in Theorem 4.5 by adding extra
possibilities for each of the d coordinates and extra entries to obtain an MPLH(d, n)
having, for large n, nd/q + O(nd−1) filled cells. This result is stated in the following
theorem.

Theorem 4.6. If d is neither a prime nor a prime power then, for large n, there exists
an MPLH(d, n) that has at most nd/q + O(nd−1) filled cells, where q is the largest
prime or prime power less than d.

How close nd/q is to nd/d obviously depends on d. There are many results con-
cerning gaps between primes. As an example, we cite Nagura [8] who proved that for
m ≥ 25, there exists a prime p satisfying m ≤ p ≤ 6m/5. As a consequence it follows
that for any d that is not a prime or prime power, there is a prime or prime power q
satisfying 5d/6 ≤ q ≤ d. So in all cases we have the following corollary of Theorem 4.6.

Corollary 4.7. If d is neither a prime nor a prime power then, for large n, there
exists an MPLH(d, n) that has at most 6nd/5d+O(nd−1) filled cells.

More recent results about gaps between primes improve the factor 6/5, taking it
down to arbitrarily close to 1 for larger values of d.

5 Constructing MPLH(d, n) for fixed n

The focus in this section is on the case d ≥ n. We will show that the bound of Theorem
3.1 can sometimes be achieved, and that it is possible to get close in other cases. Our
first theorem would be vacuous if codes with such parameters did not exist. But the
parameters are those of Hamming codes Ham(r, n), which exist whenever n is a prime
or prime power (see [7]).
Theorem 5.1. Suppose that r, n > 1 are integers and that C is a code over Zn of
length (nr−1)/(n−1) (= d+1, say) that has nd+1−r codewords and minimum distance
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3. Then C is equivalent to an MPLH(d, n) with precisely
nd+1

d(n− 1) + n
filled cells (the

bound of Theorem 3.1).

Proof. The parameters of C ensure that C is a perfect code, and so has covering radius
1. Applying Theorem 2.8, C is therefore equivalent to an MPLH(d, n) with nd+1−r

filled cells. However, nr = d(n−1)+n, so the number of filled cells is
nd+1

d(n− 1) + n
.

Non-trivial perfect n-ary codes are only known for n a prime or prime power. It is
conjectured that none exist when n is not a prime or prime power. Moreover, when n
is a prime or prime power, any non-trivial perfect code C must have the parameters of
Ham(r, n) for some r ≥ 2, or it is one of the Golay codes G23 and G11. The code G23

is a binary code with minimum distance 7 and covering radius 3. The code G11 is a
ternary code with minimum distance 5 and covering radius 2. So Theorem 5.1 cannot
be applied directly to either of these codes.

When the parameters of an MPLH(d, n) do not correspond to those of a Hamming
code, some progress can be made as a result of Theorem 2.10 that shows how to incre-
ment the dimension of an existing MPLH. To see how this works consider the code
Ham(4, 2) which generates an MPLH(14, 2) having 211 filled cells. The “‘next” Ham-
ming code Ham(5, 2) generates an MPLH(30, 2) having 226 filled cells. By repeated use
of Theorem 2.10, we can (for examples) obtain an MPLH(22, 2) that has 211+8 = 219

filled cells and an MPLH(29, 2) that has 211+15 = 226 filled cells. These numbers of
filled cells correspond to the values of the upper bound given in Corollary 2.7. Indeed,
we can generalise that bound as follows.

Corollary 5.2. If n is a prime or prime power then, for d ≥ n,

nd+1

d(n− 1) + n
≤ f(d, n) ≤ nd+1

n⌊logn((n−1)d+n)⌋ .

Proof. Theorem 3.1 established the lower bound in all cases. By Theorem 5.1 and

the existence of Hamming codes, f(d, n) =
nd+1

d(n− 1) + n
whenever d has the form

d = d(r) =
nr − 1

n− 1
− 1 for r > 1. The lowest such value of d is n, which corresponds

to r = 2. To establish the result it is necessary to “fill the gap” between d(r) and
d(r + 1) for r ≥ 2. It is easy to see that d(r + 1) − d(r) = nr, so the gap contains
nr − 1 values of d. Now take an arbitrary d∗ in the gap so that d∗ = d(r) + k where
0 < k < nr. Starting with an MPLH(d(r), n) that has the minimum number of filled
cells f(d(r), n), apply Theorem 2.10 k times to produce an MPLH(d(r)+ k, n) having
nkf(d(r), n) filled cells. This is an MPLH(d∗, n) with precisely F filled cells, where

F = nk nd(r)+1

d(r)(n− 1) + n

=
nd(r)+k+1

d(r)(n− 1) + n

16



=
nd∗+1

d(r)(n− 1) + n

To complete the proof we show that

d(r)(n− 1) + n = n⌊logn((n−1)d∗+n)⌋. (4)

We have d(r)(n− 1) + n = nr, which gives

(n− 1)d∗ + n = (n− 1)d(r) + n+ (n− 1)k = nr + (n− 1)k.

The latter expression lies strictly between nr and nr+1, so

⌊logn((n− 1)d∗ + n)⌋ = r,

and consequently equation 4 is established.

6 Concluding remarks

In many cases the bound given in Theorem 3.1 can either be achieved or approached
asymptotically for large n. However, this bound is certainly not best possible. For
example, f(3, 4) is bounded below by 22 using the bounds of both [11] and Theorem
2.9, and by 23 using Theorem 3.1. But a result of [12] establishes that f(3, 4) ≥ 24,
and in [9] the authors prove that f(3, 4) = 28 after an extensive computer search.

Nevertheless, the constructions presented enable us to produce MPLH(d, n) designs
having relatively small excess numbers of filled cells above the lower bound of Theorem
3.1. It is not always obvious which route leads to the best result. As a concluding
example, consider the formation of an MPLH(6, 6). Theorem 3.1 gives the lower bound
for the number of filled cells in such a design as 65. Since 6 is neither a prime nor a
prime power, consider the following alternative strategies.

1. Start with an MPLH(6, 2) with 16 filled cells, obtained from Ham(3, 2) using
Theorem 5.1. Inflate by a factor 3 using Theorem 4.3 to obtain an MPLH(6, 6) with
36 × 16 = 3

2 × 65 filled cells.
2. Start with the MPLH(2, 6) with 18 filled cells shown in Figure 2. Increment the

dimension 4 times using Theorem 2.10 to obtain an MPLH(6, 6) with 64×18 = 3×65

filled cells.
3. Since 3 is a prime less than 6, Theorem 4.1 gives an MPLH(6, 3) with 35 filled cells.

This can be inflated by a factor 2 (Theorem 4.3) to obtain an MPLH(6, 6) with
26 × 35 = 2× 65 filled cells.

4. Start with an MPLH(3, 3) with 9 filled cells given by Theorem 4.2. Then follow
either (a) or (b).
(a) Increment the dimension 3 times (Theorem 2.10) to obtain an MPLH(6, 3) with

33 × 9 = 35 filled cells. Then proceed as in case (3) above.
(b) Inflate by a factor 2 (Theorem 4.3) to obtain an MPLH(3, 6) with 23 × 9 filled

cells. Then increment the dimension of this design 3 times (Theorem 2.10) to
produce an MPLH(6, 6) with 63 × 23 × 9 = 2× 65 filled cells.
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Of these strategies, number (1) produces an MPLH(6, 6) with the smallest number of
filled cells, 50% more than the lower bound.

It is unlikely that there is a precise general formula for the minimum number of
filled cells in an MPLH(d, n). But it may be possible to tighten the upper bound for
this quantity and to improve the lower bound.
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