This is a preprint of an article accepted for publication in Ars Combinatoria, 9, 1980, 51-58. (C) 1980 (copyright owner as specified in the journal).

ON THE STRUCTURE OF S-CYCLIC STEINER QUADRUPLE SYSTEMS

M.J.Grannell and T.S.Griggs

1980

1 Introduction

A Steiner quadruple system of order v, denoted by $\operatorname{SQS}(v)$, consists of a pair (A, B) where A is a v-element set and B is a family of four-element subsets of A (called blocks) with the property that each three-element subset of A lies in precisely one block. Such a system is said to be cyclic if B is invariant under a cyclic group of order v.

Any cyclic $\operatorname{SQS}(v)$ will be isomorphic to a system in which $A=V$ (the set of residue classes modulo v) and where B is invariant under the cyclic group $\left.C_{v}=\langle i \rightarrow\rangle i+1(\bmod v)\right\rangle$. Any system of this type will be composed of orbits generated by the action of C_{v} on four-element subsets of V. An orbit generated in this way is said to be symmetric if it is invariant under the mapping $i \rightarrow-i(\bmod v)$.

An $\operatorname{SQS}(v)$ is said to be S-cyclic if it is isomorphic to a cyclic system, of the form described above, each of whose orbits is symmetric. (This is an alternative, but equivalent, definition to that usually given e.g. in [6]).

In [6] Lindner and Rosa partition the admissible orders for $\operatorname{SQS}(v)$ into four classes:
A. $v \equiv 2$ or $10(\bmod 24)$,
B. $v \equiv 4$ or $20(\bmod 24)$,
C. $v \equiv 14$ or $22(\bmod 24)$,
D. $v \equiv 8$ or $16(\bmod 24)$.

Cyclic systems in classes B and D necessarily contain the unique $\frac{1}{4}$-orbit (i.e. the orbit with $v / 4$ blocks), while those in C and D contain an odd number of $\frac{1}{2}$-orbits (i.e. orbits with $v / 2$ blocks). At the time [6] was written, all known cyclic $\operatorname{SQS}(v)$ were S -cyclic and, with the single exception of the
unique S-cyclic SQS(20) constructed by Jain [5], all lay in class A. Subsequently several cyclic (but non S-cyclic) systems have been discovered (c.f. [7], [1], [4]).

In [8], Phelps gives a complete enumeration of cyclic $\operatorname{SQS}(20)$. He also notes that there are no S-cyclic systems in classes C and D (in fact no Scyclic system may contain a $\frac{1}{2}$-orbit). He then poses the question of whether S-cyclic systems necessarily exist whenever v lies in classes A or B. Diener [2] shows that this is not the case by proving that if $v \equiv 0(\bmod 7)$ then there does not exist an S-cyclic SQS(v).

In this paper we establish an improved necessary condition on v for the existence of an S-cyclic SQS (v), thereby showing that for many values of v in classes A and B (including those covered by Diener's result), S-cyclic SQS(v) do not exist. In the course of establishing the condition we also prove a general result (Theorem 2(ii)) concerning the structure of S-cyclic systems and in Theorem 4 we establish a further result of this type. These results facilitate the construction of an S-cyclic $\operatorname{SQS}(v)$ for $v=52$: this was the smallest value of v, satisfying the improved necessary condition, for which an S-cyclic system was not previously known. (Recently C.J.Cho has also constructed S-cyclic SQS (v) for $v=52,68$ and 122).

2 General Results

THEOREM 1.

Suppose \mathcal{O} is an orbit of blocks, with elements drawn from the residue classes modulo $u v$, under the action of the cyclic group $C_{u v}=\langle i \rightarrow i+1(\bmod u v)\rangle$. Suppose also that \mathcal{O} is invariant under the mapping $i \rightarrow-i(\bmod u v)$ and that v is even. Then if \mathcal{O} contains a block of the form $\{u a, u b, u c, x\}, \quad x$ is necessarily of the form $u d$ for some $d \in\{0,1, \ldots,(v-1)\}$.

Proof.

If \mathcal{O} contains a block of the form $\{u a, u b, u c, x\}$ then it will contain just four (not necessarily distinct) blocks each containing 0 . These will be of the form $\{0, u \alpha, u \beta, z\},\{-u \alpha, 0, u(\beta-\alpha), z-u \alpha\},\{-u \beta, u(\alpha-\beta), 0, z-u \beta\}$, $\{-z, u \alpha-z, u \beta-z, 0\}$, where $\alpha=b-a, \beta=c-a$ and $z=x-u a$ (all arithmetic being modulo $u v$).

Since \mathcal{O} is invariant under $i \rightarrow-i(\bmod u v)$, the block $\{0,-u \alpha,-u \beta,-z\}$ must be one of the four blocks listed above. We show that each possibility leads to the conclusion $z=u \gamma$ for some $\gamma \in\{0,1, \ldots,(v-1)\}$, and hence $x=u d$ for some $d \in\{0,1, \ldots,(v-1)\}$.
(i) Suppose $\{0,-u \alpha,-u \beta,-z\}=\{0, u \alpha, u \beta, z\}$. If $z=0,-u \alpha$ or $-u \beta$ there is nothing to prove. Otherwise $z=-z$ and so either $z=0$ or
$z=(u v) / 2$. In the latter case, since v is even, we may write $z=u(v / 2)$.
(ii) Suppose $\{0,-u \alpha,-u \beta,-z\}=\{-u \alpha, 0, u(\beta-\alpha), z-u \alpha\}$. As before, there is nothing to prove unless $-z=z-u \alpha$. But in this case we must also have $-u \beta=u(\beta-\alpha)$. Hence $-u a=-2 u \beta$, and so $-z=$ $z-2 u \beta$. This gives $2 z=2 u \beta$ and it follows that either $z=u \beta$ or $z=u \beta+(u v) / 2$. In the latter case we may again write $z=u(\beta+v / 2)$.
(iii) The case $\{0,-u \alpha,-u \beta,-z\}=\{-u \beta, u(\alpha-\beta), 0, z-u \beta\}$ can be dealt with similarly to (ii).
(iv) Suppose $\{0,-u \alpha,-u \beta,-z\}=\{-z, u \alpha-z, u \beta-z, 0\}$. Then either $-u \alpha=u \alpha-z$ or $-u \beta=u \alpha-z$ and there is nothing to prove.

THEOREM 2.

Suppose that v is even, $v>2$, and that an S-cyclic $\operatorname{SQS}(u v)$ exists. Then
(i) there exists an S-cyclic $\operatorname{SQS}(v)$,
(ii) given any S-cyclic $\operatorname{SQS}(v), S_{v}$, there is an S-cyclic $\operatorname{SQS}(u v)$ containing an isomorphic image of S_{v}; in the usual representation such an embedding is given by $i \rightarrow u i \quad(i \in\{0,1, \ldots,(v-1)\})$.

Proof.

(i) Let $S_{u v}$ be an S-cyclic $\operatorname{SQS}(u v)$ represented in the usual way on the residue classes modulo $u v$.

Choose any three distinct elements from $\{0, u, 2 u, \ldots,(v-1) u\}$, $u a, u b, u c$, say (this is possible since $v>2$). $S_{u v}$ necessarily contains a block of the form $\{u a, u b, u c, x\}$. By Theorem $1, x$ must be of the form $u d$ for some d, and clearly $d \neq a, b$ or c. Hence those blocks in $S_{u v}$ which have a common factor u will form an $\operatorname{SQS}(v), S_{v}$ say, on the points $\{0, u, 2 u, \ldots,(v-1) u\}$. Each orbit \mathcal{O} in $S_{u v}$ containing such a block will give rise to an orbit \mathcal{O}^{\prime} in S_{v}, formed from the blocks of this type under the action of the group $\langle i \rightarrow i+u(\bmod u v)\rangle$; since \mathcal{O} is invariant under $i \rightarrow-i(\bmod u v)$, so also will be \mathcal{O}^{\prime} : Hence S_{v} is S-cyclic.
(ii) Suppose that $S_{u v}$ is an S-cyclic $\operatorname{SQS}(u v)$ (represented in the usual way) and that S_{v}^{*} is any S-cyclic $\operatorname{SQS}(v)$. We may assume that the latter system is based on the points $\{0, u, 2 u, \ldots,(v-1) u\}$, that it has an automorphism group $\langle i \rightarrow i+u(\bmod u v)\rangle$, and that the orbits forming it are invariant under $i \rightarrow-i(\bmod u v)$.

Let $R_{u v}$ denote the design formed from $S_{u v}$ by deleting those orbits contributing blocks to the $\operatorname{SQS}(v)$ sub-system, S_{v}, described in part (i). To $R_{u v}$ we add all orbits formed from the blocks of S_{v}^{*} under the action of the group $\langle i \rightarrow i+1(\bmod u v)\rangle$; the resulting design we refer to as $S_{u v}^{*}$.
Since S_{v} and S_{v}^{*}, contain exactly the same three-element subsets of $\{0, u, 2 u, \ldots,(v-1) u\}$, the orbits removed from $S_{u v}$ to form $R_{u v}$ and the orbits added to $R_{u v}$ to form $S_{u v}^{*}$ will contain exactly the same threeelement subsets of $\{0,1, \ldots, v u-1\}$. Hence $S_{u v}^{*}$ is an $\operatorname{SQS}(u v)$.
To complete the proof note that $R_{u v}$ is composed of symmetric cyclic orbits and that the orbits from the blocks of S_{v}^{*} are also symmetric and cyclic. It follows that $S_{u v}^{*}$ is S-cyclic. Factoring out the u from the blocks of S_{v}^{*} gives an isomorphic S-cyclic $\operatorname{SQS}(v)$ represented in the usual way; clearly $S_{u v}^{*}$ contains a copy of this system under the mapping $i \rightarrow u i \quad(i \in\{0,1, \ldots,(v-1)\})$.

THEOREM 3.

A necessary condition for the existence of an S-cyclic $\operatorname{SQS}(v)$ is that $v=2 n$ or $4 n$, where the prime factors of n are all of the forms $12 s+1$ or $12 s+5$ ($s=0,1,2, \ldots$).

Proof.

Suppose that an S-cyclic SQS(v) exists. The admissibility condition shows that $v \equiv 2$ or $4(\bmod 6)$. Hence v is even and, since v cannot lie in Class D, v is not divisible by 8 . Therefore, v is of the form $2 n$ or $4 n$ where n is odd. Clearly n cannot be divisible by 3 and so n must be a product of prime factors each of which has one of the following forms: $12 s+1,12 s+5,12 s+7,12 s+11$.

Suppose that n had a factor $12 s+7$. Then we could write $v=u v^{\prime}$ where $v^{\prime}=24 s+14$. By Theorem 2(i), the existence of an S-cyclic SQS (v) implies that of an S-cyclic SQS $\left(v^{\prime}\right)$. However, v^{\prime} lies in class C and so there cannot be an S-cyclic SQS $\left(v^{\prime}\right)$. Hence n cannot have a factor $12 s+7$. Similarly we may prove that n cannot have a factor $12 s+11$.

Through the remainder of this section we shall assume that v satisfies the admissibility condition, $v \equiv 2$ or $4(\bmod 6)$. We shall be solely concerned with orbits formed from three-element subsets and four-element subsets of the set of residue classes modulo v, under the action of C_{v}. We make the following definitions, (see also [8]).

DEFINITIONS.

An orbit \mathcal{O} of four-element subsets (i.e. blocks) is said to be suitable if for every pair of distinct blocks $S, T \in \mathcal{O}$, we have $|S \cap T|<3$.

Two distinct orbits \mathcal{O}_{1} and \mathcal{O}_{2}, of blocks are said to be compatible if for every pair of blocks, S, T with $S \in \mathcal{O}_{1}$ and $T \in \mathcal{O}_{2}$, we have $|S \cap T|<3$. Any cyclic $\operatorname{SQS}(v)$ will consist of a union of suitable and pairwise compatible orbits.

Any block contains four three-element subsets. Since $v \neq 0(\bmod 3)$, any orbit of three-element subsets is necessarily full (i.e. it contains v distinct three-element subsets). Therefore any suitable and full orbit, \mathcal{O}, (of blocks) will give rise to precisely four distinct full orbits of three-element subsets. We shall refer to these as the suborbits of \mathcal{O}. If \mathcal{O}_{1} and \mathcal{O}_{2} are incompatible orbits (of blocks) then \mathcal{O}_{1} and \mathcal{O}_{2} must have at least one suborbit in common.
THEOREM 4. Suppose that S is an S-cyclic $\operatorname{SQS}(v)$ and that \mathcal{O} is a symmetric suitable full orbit (SSFO) not contained in S. Then there exist precisely two distinct full orbits $\mathcal{O}_{1}, \mathcal{O}_{2}$, contained in S which are incompatible with \mathcal{O}.

Proof.

We may assume S has its usual representation. We note firstly that if \mathcal{O}^{\prime} and $\mathcal{O}^{\prime \prime}$ are both SSFO's and both contain the same suborbits then $\mathcal{O}^{\prime}=\mathcal{O}^{\prime \prime}$. For a proof of this see [8, lemma 2.3].

Next we consider the action of the mapping $i \rightarrow-i(\bmod v)$ on orbits of three-element subsets. If A is such an orbit we shall denote by $-A$ the orbit which is its image under this mapping. For certain orbits we shall have $A=-A$; namely those containing blocks of the form $\{0, x,-x\}$. If $x \neq \pm \frac{v}{4}$ it is easily seen that such an orbit occurs as a suborbit of one and only one SSFO, namely that generated by $\{0, x,-x, v / 2\}$; any such SSFO is therefore necessarily included in S (see [3]). For $x= \pm \frac{v}{4}$ the resulting orbit of four-element subsets is the $\frac{1}{4}$-orbit, and is again included in S

Suppose now that \mathcal{O} is an SSFO not in S. Then \mathcal{O} must contain four distinct suborbits $A,-A, B,-B$. There is an orbit \mathcal{O}_{1} in S containing A and hence also $-A$. Likewise, there is an orbit \mathcal{O}_{2} in S containing B and hence also $-B$. Neither \mathcal{O}_{1} nor \mathcal{O}_{2} can be the $\frac{1}{4}$-orbit and so both are SSFO's. If \mathcal{O}_{1} and \mathcal{O}_{2} were identical then both \mathcal{O} an \mathcal{O}_{1} would contain the same suborbits and we should have $\mathcal{O}=\mathcal{O}_{1}$, which is not the case. Hence $\mathcal{O}_{1} \neq \mathcal{O}_{2}$. Clearly, there can be no other orbits in S which are incompatible with \mathcal{O}. The proof is therefore complete.

Before dealing with the case $v=52$ we make some general observations. Suppose that an S-cyclic SQS(v) exists.Put

$$
\begin{aligned}
S(v)= & \text { the total number of SSFOs }, \\
N(v)= & \text { the number of SSFOs contained in the SQS }(v), \\
s_{i}(v)= & \text { the total number of SSFOs which are incompatible with } \\
& \quad \text { precisely } i \text { other SSFOs, } \\
n_{i}(v)= & \text { the number of SSFOs contained in the SQS }(v) \text { which are } \\
& \text { incompatible with precisely } i \text { other SSFOs. }
\end{aligned}
$$

Clearly $\sum n_{i}(v)=N(v)$ and $n_{i}(v) \leq s_{i}(v)$. Theorem 4 also ensures that $\sum i n_{i}(v)=2(S(v)-N(v))$ and that $n_{0}(v)=s_{0}(v)$ and $n_{1}(v)=s_{1}(v)$.

3 The case $v=52$

Computer calculation gives $S(52)=288$ and, since no S-cyclic system can contain a $\frac{1}{2}$-orbit, $N(52)=106$. Likewise we obtain $S(26)=60$ and $N(26)=$ 25.

Computer listings of compatibility for $v=52$ and 26 give the following values for the $s_{i}(v) \mathrm{s}$.
(a) $v=52: \quad s_{0}(52)=0, \quad s_{1}(52)=12, \quad s_{2}(52)=8, \quad s_{3}(52)=54$, $s_{4}(52)=219$.
(b) $v=26: \quad s_{0}(26)=0, \quad s_{1}(26)=6, \quad s_{2}(26)=3, \quad s_{3}(26)=24$, $s_{4}(26)=27$.

Consider now the collection \mathcal{E} of all those SSFOs under C_{52} which contain blocks of the form $\{2 a, 2 b, 2 c, 2 d\}$. Orbits of this type correspond (under the mapping $i \rightarrow 2 i$) to the 60 SSFOs generated by C_{26}. Hence $|\mathcal{E}|=S(26)=60$. Denote by \mathcal{F} the remaining SSFOs generated by C_{52} and put $S^{*}=|\mathcal{F}|$. We have $S^{*}=S(52)-S(26)=228$. Note that by Theorem 1, if \mathcal{O}_{1} and \mathcal{O}_{2} are SSFOs in \mathcal{E} and \mathcal{F} respectively then \mathcal{O}_{1} and \mathcal{O}_{2} must be compatible.

Define s_{i}^{*} to be the total number of SSFOs contained in \mathcal{F} which are incompatible with precisely i other SSFOs. Then we must have $s_{i}^{*}=s_{i}(52)-$ $s_{i}(26)$ for each i. This gives

$$
s_{0}^{*}=0, \quad s_{1}^{*}=6, \quad s_{2}^{*}=0, \quad s_{3}^{*}=30, \quad s_{4}^{*}=192 .
$$

Suppose now that an S-cyclic SQS(52) exists. For this particular system define

$$
\begin{aligned}
n_{i}^{*}= & \text { the number: of SSFOs contained in } \mathcal{F} \text { which are } \\
& \text { also contained in the } \operatorname{SQS}(52) \text { and which are } \\
& \text { incompatible with precisely } i \text { other SSFOs, and } \\
N^{*}= & \text { the number of SSFOs contained in } \mathcal{F} \text { which } \\
& \text { are also contained in the SQS(52). }
\end{aligned}
$$

We have immediately that $\sum n_{i}^{*}=N^{*}=N(52)-N(26)=81$. From Theorem 4 we can deduce that $\sum i n_{i}^{*}=2\left(S^{*}-N^{*}\right)=294$, and also that $n_{0}^{*}=s_{0}^{*}=0, n_{1}^{*}=s_{1}^{*}=6$. Finally, since $s_{2}^{*}=0$, we have $n_{2}^{*}=0$. Solving the equations for n_{3}^{*} and n_{4}^{*} gives $n_{3}^{*}=12$ and $n_{4}^{*}=63$.

Reference to computer listings shows that of the 30 orbits contributing to $s_{3}^{*}, 6$ are incompatible with those contributing to s_{1}^{*}. The remaining 24 partition into 12 pairs; the two orbits in each pair being incompatible.

From this point onwards it appears necessary to employ heuristic argument. However, even here Theorem 4 is of considerable use in narrowing the choice.

We list below the unique $\frac{1}{4}$-orbit and 81 mutually compatible orbits from the collection \mathcal{F}. Together with the orbits in \mathcal{E} generated from any S-cyclic SQS(26), these form an S-cyclic SQS(52). To give a specific example, we may complete the system by including the particular $\operatorname{SQS}(26)$ given in [6]; the list below includes the 25 orbits for this system.

TABULATION.

Generators for symmetric cyclic orbits forming an S-cyclic SQS(52).
(a) $1 / 4$-orbit. $\quad\{0,13,26,39\}$.
(b) 81 orbits in \mathcal{F}. \qquad $\{0,1,7,8\} \quad\{0,1,4\}, \quad\{0,1,2,27\},-\{0,1,3,4\}, \quad\{0,1,5,6\}$, $\{0,1,15,16\}, \quad\{0,1,17,18\}, \quad\{0,1,19,34\}, \quad\{0,1,20,33\}, \quad\{0,1,21,22\}$, $\{0,1,23,30\}, \quad\{0,1,24,25\}, \quad\{0,2,5,7\}, \quad\{0,2,9,45\}, \quad\{0,2,11,13\}$, $\{0,2,15,39\}, \quad\{0,2,17,37\}, \quad\{0,2,19,35\}, \quad\{0,2,21,23\},\{0,2,25,29\}$, $\begin{array}{lllll}\{0,3,6,29\}, & \{0,3,7,10\}, & \{0,3,8,11\}, & \{0,3,9,12\}, & \{0,3,13,42\}, \\ \{0,3,14,41\}, & \{0,3,15,18\}, & \{0,3,16,19\}, & \{0,3,17,38\}, & \{0,3,20,23\},\end{array}$ $\{0,3,21,34\}, \quad\{0,3,22,25\}, \quad\{0,3,24,27\}, \quad\{0,4,9,13\}, \quad\{0,4,11,15\}$, $\{0,4,17,39\}, \quad\{0,4,19,23\}, \quad\{0,4,21,25\}, \quad\{0,5,10,31\}, \quad\{0,5,11,46\}$, $\{0,5,12,45\}, \quad\{0,5,13,18\}, \quad\{0,5,14,43\}, \quad\{0,5,15,20\}, \quad\{0,5,16,41\}$, $\{0,5,17,22\}, \quad\{0,5,19,24\}, \quad\{0,5,21,36\}, \quad\{0,5,23,28\}, \quad\{0,5,25,30\}$, $\{0,6,13,19\}, \quad\{0,6,15,21\}, \quad\{0,6,23,35\},\{0,6,25,31\},\{0,7,14,33\}$, $\{0,7,15,22\}, \quad\{0,7,17,24\}, \quad\{0,7,18,25\}, \quad\{0,7,20,27\}, \quad\{0,7,21,28\}$, $\{0,7,23,36\}, \quad\{0,8,19,41\}, \quad\{0,8,21,29\}, \quad\{0,8,23,37\}, \quad\{0,8,25,33\}$, $\{0,9,18,35\}, \quad\{0,9,19,42\}, \quad\{0,9,20,29\}, \quad\{0,9,21,40\}, \quad\{0,9,22,31\}$, $\{0,9,24,33\}, \quad\{0,9,25,34\}, \quad\{0,10,21,41\}, \quad\{0,10,25,35\}, \quad\{0,11,22,37\}$, $\{0,11,23,34\}, \quad\{0,11,24,35\}, \quad\{0,12,25,37\}$.
(c) 25 orbits in \mathcal{E}. $\{0,2,14,16\}$,
$\{0,2,4,28\}, \quad\{0,2,6,8\}, \quad\{0,2,10,12\}$, $\{0,4,12,44\}, \quad\{0,4,14,42\}, \quad\{0,4,16,20\},\{0,4,18,38\},\{0,4,22,34\}$, $\{0,4,24,32\}, \quad\{0,6,12,32\}, \quad\{0,6,14,20\}, \quad\{0,6,18,24\}, \quad\{0,6,22,28\}$, $\{0,8,16,34\}, \quad\{0,8,18,42\}, \quad\{0,8,22,38\}, \quad\{0,8,24,36\},\{0,10,20,36\}$, $\{0,10,22,32\}, \quad\{0,12,24,38\}$.

In conclusion we should like to express our gratitude to the computer operations staff at Preston Polytechnic for their patient co-operation. We should also like to thank the referee for his helpful comments and suggestions.

References

[1] C. J. Cho, A construction for cyclic quadruple systems, M.Sc.thesis, McMaster University, Hamilton, Ontario (1979).
[2] I. Diener, S-Zyklische Steinersysteme, Diplomarbeit, Institut für Numerische und Angewandte Mathematik, Universitat Gottingen (1979).
[3] F. Fitting, Zyklische Lösungen des Steiner'schen Problems, Nieuw Arch. Wisk. 11 (2) (1915), 140-148.
[4] M. J. Grannell and T. S. Griggs, A non-symmetric cyclic Steiner quadruple system, Preston Polytechnic Research Note (1978).
[5] R. K. Jain, On cyclic Steiner quadruple systems, M.Sc. thesis, McMaster University, Hamilton, Ontario (1971).
[6] C. C. Lindner and A. Rosa, Steiner quadruple systems - a survey, Discrete Math. 21 (1978),147-181.
[7] K. T. Phelps, A note on the construction of cyclic quadruple systems, Colloq. Math. (to appear).
[8] K. T. Phelps, On cyclic Steiner systems $S(3,4,20)$, (to appear).

Division of Mathematics, Preston Polytechnic, Corporation Street, PRESTON,
Lancs. PR1 2TQ, England.

