This is a preprint of an article accepted for publication in Ars Combinatoria, 9, 1980, 51–58. \bigcirc 1980 (copyright owner as specified in the journal).

ON THE STRUCTURE OF S-CYCLIC STEINER QUADRUPLE SYSTEMS

M.J.Grannell and T.S.Griggs

1980

1 Introduction

A Steiner quadruple system of order v, denoted by SQS(v), consists of a pair (A, B) where A is a v-element set and B is a family of four-element subsets of A (called blocks) with the property that each three-element subset of A lies in precisely one block. Such a system is said to be cyclic if B is invariant under a cyclic group of order v.

Any cyclic SQS(v) will be isomorphic to a system in which A = V (the set of residue classes modulo v) and where B is invariant under the cyclic group $C_v = \langle i \rightarrow > i + 1 \pmod{v} \rangle$. Any system of this type will be composed of orbits generated by the action of C_v on four-element subsets of V. An orbit generated in this way is said to be symmetric if it is invariant under the mapping $i \rightarrow -i \pmod{v}$.

An SQS(v) is said to be S-cyclic if it is isomorphic to a cyclic system, of the form described above, each of whose orbits is symmetric. (This is an alternative, but equivalent, definition to that usually given e.g. in [6]).

In [6] Lindner and Rosa partition the admissible orders for SQS(v) into four classes:

- A. $v \equiv 2 \text{ or } 10 \pmod{24}$,
- B. $v \equiv 4 \text{ or } 20 \pmod{24}$,
- C. $v \equiv 14 \text{ or } 22 \pmod{24}$,
- D. $v \equiv 8 \text{ or } 16 \pmod{24}$.

Cyclic systems in classes B and D necessarily contain the unique $\frac{1}{4}$ -orbit (i.e. the orbit with v/4 blocks), while those in C and D contain an odd number of $\frac{1}{2}$ -orbits (i.e. orbits with v/2 blocks). At the time [6] was written, all known cyclic SQS(v) were S-cyclic and, with the single exception of the

unique S-cyclic SQS(20) constructed by Jain [5], all lay in class A. Subsequently several cyclic (but non S-cyclic) systems have been discovered (c.f. [7], [1], [4]).

In [8], Phelps gives a complete enumeration of cyclic SQS(20). He also notes that there are no S-cyclic systems in classes C and D (in fact no Scyclic system may contain a $\frac{1}{2}$ -orbit). He then poses the question of whether S-cyclic systems necessarily exist whenever v lies in classes A or B. Diener [2] shows that this is not the case by proving that if $v \equiv 0 \pmod{7}$ then there does not exist an S-cyclic SQS(v).

In this paper we establish an improved necessary condition on v for the existence of an S-cyclic SQS(v), thereby showing that for many values of v in classes A and B (including those covered by Diener's result), S-cyclic SQS(v) do not exist. In the course of establishing the condition we also prove a general result (Theorem 2(ii)) concerning the structure of S-cyclic systems and in Theorem 4 we establish a further result of this type. These results facilitate the construction of an S-cyclic SQS(v) for v = 52: this was the smallest value of v, satisfying the improved necessary condition, for which an S-cyclic SQS(v) for v = 52, 68 and 122).

2 General Results

THEOREM 1.

Suppose \mathcal{O} is an orbit of blocks, with elements drawn from the residue classes modulo uv, under the action of the cyclic group $C_{uv} = \langle i \to i+1 \pmod{uv} \rangle$. Suppose also that \mathcal{O} is invariant under the mapping $i \to -i \pmod{uv}$ and that v is even. Then if \mathcal{O} contains a block of the form $\{ua, ub, uc, x\}$, x is necessarily of the form ud for some $d \in \{0, 1, \ldots, (v-1)\}$.

Proof.

If \mathcal{O} contains a block of the form $\{ua, ub, uc, x\}$ then it will contain just four (not necessarily distinct) blocks each containing 0. These will be of the form $\{0, u\alpha, u\beta, z\}$, $\{-u\alpha, 0, u(\beta - \alpha), z - u\alpha\}$, $\{-u\beta, u(\alpha - \beta), 0, z - u\beta\}$, $\{-z, u\alpha - z, u\beta - z, 0\}$, where $\alpha = b - a$, $\beta = c - a$ and z = x - ua (all arithmetic being modulo uv).

Since \mathcal{O} is invariant under $i \to -i \pmod{uv}$, the block $\{0, -u\alpha, -u\beta, -z\}$ must be one of the four blocks listed above. We show that each possibility leads to the conclusion $z = u\gamma$ for some $\gamma \in \{0, 1, \ldots, (v-1)\}$, and hence x = ud for some $d \in \{0, 1, \ldots, (v-1)\}$.

(i) Suppose $\{0, -u\alpha, -u\beta, -z\} = \{0, u\alpha, u\beta, z\}$. If $z = 0, -u\alpha$ or $-u\beta$ there is nothing to prove. Otherwise z = -z and so either z = 0 or

z = (uv)/2. In the latter case, since v is even, we may write z = u(v/2).

- (ii) Suppose $\{0, -u\alpha, -u\beta, -z\} = \{-u\alpha, 0, u(\beta \alpha), z u\alpha\}$. As before, there is nothing to prove unless $-z = z u\alpha$. But in this case we must also have $-u\beta = u(\beta \alpha)$. Hence $-ua = -2u\beta$, and so $-z = z 2u\beta$. This gives $2z = 2u\beta$ and it follows that either $z = u\beta$ or $z = u\beta + (uv)/2$. In the latter case we may again write $z = u(\beta + v/2)$.
- (iii) The case $\{0, -u\alpha, -u\beta, -z\} = \{-u\beta, u(\alpha \beta), 0, z u\beta\}$ can be dealt with similarly to (ii).
- (iv) Suppose $\{0, -u\alpha, -u\beta, -z\} = \{-z, u\alpha z, u\beta z, 0\}$. Then either $-u\alpha = u\alpha z$ or $-u\beta = u\alpha z$ and there is nothing to prove.

THEOREM 2.

Suppose that v is even, v > 2, and that an S-cyclic SQS(uv) exists. Then

- (i) there exists an S-cyclic SQS(v),
- (ii) given any S-cyclic SQS(v), S_v , there is an S-cyclic SQS(uv) containing an isomorphic image of S_v ; in the usual representation such an embedding is given by $i \to ui$ $(i \in \{0, 1, \dots, (v-1)\})$.

Proof.

(i) Let S_{uv} be an S-cyclic SQS(uv) represented in the usual way on the residue classes modulo uv.

Choose any three distinct elements from $\{0, u, 2u, \ldots, (v-1)u\}$, ua, ub, uc, say (this is possible since v > 2). S_{uv} necessarily contains a block of the form $\{ua, ub, uc, x\}$. By Theorem 1, x must be of the form ud for some d, and clearly $d \neq a, b$ or c. Hence those blocks in S_{uv} which have a common factor u will form an SQS(v), S_v say, on the points $\{0, u, 2u, \ldots, (v-1)u\}$. Each orbit \mathcal{O} in S_{uv} containing such a block will give rise to an orbit \mathcal{O}' in S_v , formed from the blocks of this type under the action of the group $\langle i \rightarrow i + u \pmod{uv} \rangle$; since \mathcal{O} is invariant under $i \rightarrow -i \pmod{uv}$, so also will be \mathcal{O}' : Hence S_v is S-cyclic.

(ii) Suppose that S_{uv} is an S-cyclic SQS(uv) (represented in the usual way) and that S_v^* is any S-cyclic SQS(v). We may assume that the latter system is based on the points $\{0, u, 2u, \ldots, (v-1)u\}$, that it has an automorphism group $\langle i \to i+u \pmod{uv} \rangle$, and that the orbits forming it are invariant under $i \to -i \pmod{uv}$.

Let R_{uv} denote the design formed from S_{uv} by deleting those orbits contributing blocks to the SQS(v) sub-system, S_v , described in part (i). To R_{uv} we add all orbits formed from the blocks of S_v^* under the action of the group $\langle i \to i+1 \pmod{uv} \rangle$; the resulting design we refer to as S_{uv}^* .

Since S_v and S_v^* , contain exactly the same three-element subsets of $\{0, u, 2u, \ldots, (v-1)u\}$, the orbits removed from S_{uv} to form R_{uv} and the orbits added to R_{uv} to form S_{uv}^* will contain exactly the same three-element subsets of $\{0, 1, \ldots, vu-1\}$. Hence S_{uv}^* is an SQS(uv).

To complete the proof note that R_{uv} is composed of symmetric cyclic orbits and that the orbits from the blocks of S_v^* are also symmetric and cyclic. It follows that S_{uv}^* is S-cyclic. Factoring out the u from the blocks of S_v^* gives an isomorphic S-cyclic SQS(v) represented in the usual way; clearly S_{uv}^* contains a copy of this system under the mapping $i \to ui$ $(i \in \{0, 1, \ldots, (v-1)\})$.

THEOREM 3.

A necessary condition for the existence of an S-cyclic SQS(v) is that v = 2n or 4n, where the prime factors of n are all of the forms 12s + 1 or 12s + 5 (s = 0, 1, 2, ...).

Proof.

Suppose that an S-cyclic SQS(v) exists. The admissibility condition shows that $v \equiv 2$ or 4 (mod 6). Hence v is even and, since v cannot lie in Class D, v is not divisible by 8. Therefore, v is of the form 2n or 4n where n is odd. Clearly n cannot be divisible by 3 and so n must be a product of prime factors each of which has one of the following forms: 12s+1, 12s+5, 12s+7, 12s+11.

Suppose that n had a factor 12s + 7. Then we could write v = uv' where v' = 24s + 14. By Theorem 2(i), the existence of an S-cyclic SQS(v) implies that of an S-cyclic SQS(v'). However, v' lies in class C and so there cannot be an S-cyclic SQS(v'). Hence n cannot have a factor 12s + 7. Similarly we may prove that n cannot have a factor 12s + 11.

Through the remainder of this section we shall assume that v satisfies the admissibility condition, $v \equiv 2$ or 4 (mod 6). We shall be solely concerned with orbits formed from three-element subsets and four-element subsets of the set of residue classes modulo v, under the action of C_v . We make the following definitions, (see also [8]).

DEFINITIONS.

An orbit \mathcal{O} of four-element subsets (i.e. blocks) is said to be suitable if for every pair of distinct blocks $S, T \in \mathcal{O}$, we have $|S \cap T| < 3$.

Two distinct orbits \mathcal{O}_1 and \mathcal{O}_2 , of blocks are said to be compatible if for every pair of blocks, S, T with $S \in \mathcal{O}_1$ and $T \in \mathcal{O}_2$, we have $|S \cap T| < 3$. Any cyclic SQS(v) will consist of a union of suitable and pairwise compatible orbits.

Any block contains four three-element subsets. Since $v \neq 0 \pmod{3}$, any orbit of three-element subsets is necessarily full (i.e. it contains v distinct three-element subsets). Therefore any suitable and full orbit, \mathcal{O} , (of blocks) will give rise to precisely four distinct full orbits of three-element subsets. We shall refer to these as the suborbits of \mathcal{O} . If \mathcal{O}_1 and \mathcal{O}_2 are incompatible orbits (of blocks) then \mathcal{O}_1 and \mathcal{O}_2 must have at least one suborbit in common.

THEOREM 4. Suppose that S is an S-cyclic SQS(v) and that \mathcal{O} is a symmetric suitable full orbit (SSFO) not contained in S. Then there exist precisely two distinct full orbits $\mathcal{O}_1, \mathcal{O}_2$, contained in S which are incompatible with \mathcal{O} .

Proof.

We may assume S has its usual representation. We note firstly that if \mathcal{O}' and \mathcal{O}'' are both SSFO's and both contain the same suborbits then $\mathcal{O}' = \mathcal{O}''$. For a proof of this see [8, lemma 2.3].

Next we consider the action of the mapping $i \to -i \pmod{v}$ on orbits of three-element subsets. If A is such an orbit we shall denote by -A the orbit which is its image under this mapping. For certain orbits we shall have A = -A; namely those containing blocks of the form $\{0, x, -x\}$. If $x \neq \pm \frac{v}{4}$ it is easily seen that such an orbit occurs as a suborbit of one and only one SSFO, namely that generated by $\{0, x, -x, v/2\}$; any such SSFO is therefore necessarily included in S (see [3]). For $x = \pm \frac{v}{4}$ the resulting orbit of four-element subsets is the $\frac{1}{4}$ -orbit, and is again included in S

Suppose now that \mathcal{O} is an SSFO not in S. Then \mathcal{O} must contain four distinct suborbits A, -A, B, -B. There is an orbit \mathcal{O}_1 in S containing A and hence also -A. Likewise, there is an orbit \mathcal{O}_2 in S containing B and hence also -B. Neither \mathcal{O}_1 nor \mathcal{O}_2 can be the $\frac{1}{4}$ -orbit and so both are SSFO's. If \mathcal{O}_1 and \mathcal{O}_2 were identical then both \mathcal{O} an \mathcal{O}_1 would contain the same suborbits and we should have $\mathcal{O} = \mathcal{O}_1$, which is not the case. Hence $\mathcal{O}_1 \neq \mathcal{O}_2$. Clearly, there can be no other orbits in S which are incompatible with \mathcal{O} . The proof is therefore complete. Before dealing with the case v = 52 we make some general observations. Suppose that an S-cyclic SQS(v) exists.Put

- S(v) = the total number of SSFOs,
- N(v) = the number of SSFOs contained in the SQS(v),
- $s_i(v)$ = the total number of SSFOs which are incompatible with precisely *i* other SSFOs,
- $n_i(v)$ = the number of SSFOs contained in the SQS(v) which are incompatible with precisely *i* other SSFOs.

Clearly $\sum n_i(v) = N(v)$ and $n_i(v) \leq s_i(v)$. Theorem 4 also ensures that $\sum in_i(v) = 2(S(v) - N(v))$ and that $n_0(v) = s_0(v)$ and $n_1(v) = s_1(v)$.

3 The case v = 52

Computer calculation gives S(52) = 288 and, since no S-cyclic system can contain a $\frac{1}{2}$ -orbit, N(52) = 106. Likewise we obtain S(26) = 60 and N(26) = 25.

Computer listings of compatibility for v = 52 and 26 give the following values for the $s_i(v)$ s.

- (a) v = 52: $s_0(52) = 0$, $s_1(52) = 12$, $s_2(52) = 8$, $s_3(52) = 54$, $s_4(52) = 219$.
- (b) v = 26: $s_0(26) = 0$, $s_1(26) = 6$, $s_2(26) = 3$, $s_3(26) = 24$, $s_4(26) = 27$.

Consider now the collection \mathcal{E} of all those SSFOs under C_{52} which contain blocks of the form $\{2a, 2b, 2c, 2d\}$. Orbits of this type correspond (under the mapping $i \to 2i$) to the 60 SSFOs generated by C_{26} . Hence $|\mathcal{E}| = S(26) = 60$. Denote by \mathcal{F} the remaining SSFOs generated by C_{52} and put $S^* = |\mathcal{F}|$. We have $S^* = S(52) - S(26) = 228$. Note that by Theorem 1, if \mathcal{O}_1 and \mathcal{O}_2 are SSFOs in \mathcal{E} and \mathcal{F} respectively then \mathcal{O}_1 and \mathcal{O}_2 must be compatible.

Define s_i^* to be the total number of SSFOs contained in \mathcal{F} which are incompatible with precisely *i* other SSFOs. Then we must have $s_i^* = s_i(52) - s_i(26)$ for each *i*. This gives

$$s_0^* = 0, \quad s_1^* = 6, \quad s_2^* = 0, \quad s_3^* = 30, \quad s_4^* = 192.$$

Suppose now that an S-cyclic SQS(52) exists. For this particular system define

 $n_i^* =$ the number: of SSFOs contained in \mathcal{F} which are also contained in the SQS(52) and which are incompatible with precisely *i* other SSFOs, and $N^* =$ the number of SSFOs contained in \mathcal{F} which are also contained in the SQS(52).

We have immediately that $\sum n_i^* = N^* = N(52) - N(26) = 81$. From Theorem 4 we can deduce that $\sum in_i^* = 2(S^* - N^*) = 294$, and also that $n_0^* = s_0^* = 0$, $n_1^* = s_1^* = 6$. Finally, since $s_2^* = 0$, we have $n_2^* = 0$. Solving the equations for n_3^* and n_4^* gives $n_3^* = 12$ and $n_4^* = 63$.

Reference to computer listings shows that of the 30 orbits contributing to s_3^* , 6 are incompatible with those contributing to s_1^* . The remaining 24 partition into 12 pairs; the two orbits in each pair being incompatible.

From this point onwards it appears necessary to employ heuristic argument. However, even here Theorem 4 is of considerable use in narrowing the choice.

We list below the unique $\frac{1}{4}$ -orbit and 81 mutually compatible orbits from the collection \mathcal{F} . Together with the orbits in \mathcal{E} generated from any S-cyclic SQS(26), these form an S-cyclic SQS(52). To give a specific example, we may complete the system by including the particular SQS(26) given in [6]; the list below includes the 25 orbits for this system.

TABULATION.

Generators for symmetric cyclic orbits forming an S-cyclic SQS(52).

(a) 1/4-orbit. $\{0, 13, 26, 39\}.$

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{cases} 0, 1, 2, 27 \}, \\ \{0, 1, 10, 11 \}, \\ \{0, 1, 19, 34 \}, \\ \{0, 2, 5, 7 \}, \\ \{0, 2, 19, 35 \}, \\ \{0, 3, 8, 11 \}, \\ \{0, 3, 16, 19 \}, \\ \{0, 3, 24, 27 \}, \\ \{0, 4, 21, 25 \}, \\ \{0, 5, 14, 43 \}, \\ \{0, 5, 21, 36 \}, \\ \{0, 6, 23, 35 \}, \\ \{0, 7, 18, 25 \}, \\ \{0, 8, 21, 29 \}, \\ \{0, 9, 20, 29 \}, \\ \{0, 10, 21, 41 \}, \\ \{0, 12, 25, 37 \}. \end{cases} $	$ \{ 0, 1, 3, 4 \}, \\ \{ 0, 1, 12, 13 \}, \\ \{ 0, 1, 20, 33 \}, \\ \{ 0, 2, 9, 45 \}, \\ \{ 0, 2, 21, 23 \}, \\ \{ 0, 3, 9, 12 \}, \\ \{ 0, 3, 17, 38 \}, \\ \{ 0, 4, 9, 13 \}, \\ \{ 0, 5, 10, 31 \}, \\ \{ 0, 5, 15, 20 \}, \\ \{ 0, 5, 23, 28 \}, \\ \{ 0, 6, 25, 31 \}, \\ \{ 0, 7, 20, 27 \}, \\ \{ 0, 8, 23, 37 \}, \\ \{ 0, 9, 21, 40 \}, \\ \{ 0, 10, 25, 35 \}, \\ \end{cases} $	$ \{ 0, 1, 5, 6 \}, \\ \{ 0, 1, 14, 39 \}, \\ \{ 0, 1, 21, 22 \}, \\ \{ 0, 2, 11, 13 \}, \\ \{ 0, 2, 25, 29 \}, \\ \{ 0, 3, 13, 42 \}, \\ \{ 0, 3, 20, 23 \}, \\ \{ 0, 4, 11, 15 \}, \\ \{ 0, 5, 11, 46 \}, \\ \{ 0, 5, 16, 41 \}, \\ \{ 0, 5, 25, 30 \}, \\ \{ 0, 7, 14, 33 \}, \\ \{ 0, 7, 21, 28 \}, \\ \{ 0, 8, 25, 33 \}, \\ \{ 0, 9, 22, 31 \}, \\ \{ 0, 11, 22, 37 \}, \\ \end{cases} $
(c) 25 orbits $\{0, 2, 14\}$ $\{0, 4, 12\}$ $\{0, 4, 24\}$ $\{0, 8, 10\}$ $\{0, 10, 22\}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\{ 0, 2, 4, 28 \}, \\ \{ 0, 2, 22, 24 \}, \\ \{ 0, 4, 16, 20 \}, \\ \{ 0, 6, 14, 20 \}, \\ \{ 0, 8, 22, 38 \}, \end{cases}$	$\{ \begin{array}{l} \{0,2,6,8\},\\ \{0,4,8,30\},\\ \{0,4,18,38\},\\ \{0,6,18,24\},\\ \{0,8,24,36\}, \end{array}$	$ \{ 0, 2, 10, 12 \}, \\ \{ 0, 4, 10, 46 \}, \\ \{ 0, 4, 22, 34 \}, \\ \{ 0, 6, 22, 28 \}, \\ \{ 0, 10, 20, 36 \}, $

In conclusion we should like to express our gratitude to the computer operations staff at Preston Polytechnic for their patient co-operation. We should also like to thank the referee for his helpful comments and suggestions.

References

[1] C. J. Cho, A construction for cyclic quadruple systems, M.Sc.thesis, Mc-Master University, Hamilton, Ontario (1979).

[2] I. Diener, *S-Zyklische Steinersysteme*, Diplomarbeit, Institut für Numerische und Angewandte Mathematik, Universitat Gottingen (1979).

[3] F. Fitting, Zyklische Lösungen des Steiner'schen Problems, Nieuw Arch. Wisk. 11 (2) (1915), 140–148.

[4] M. J. Grannell and T. S. Griggs, A non-symmetric cyclic Steiner quadruple system, Preston Polytechnic Research Note (1978).

[5] R. K. Jain, On cyclic Steiner quadruple systems, M.Sc. thesis, McMaster University, Hamilton, Ontario (1971).

[6] C. C. Lindner and A. Rosa, *Steiner quadruple systems - a survey*, Discrete Math. 21 (1978),147–181.

[7] K. T. Phelps, A note on the construction of cyclic quadruple systems, Colloq. Math. (to appear).

[8] K. T. Phelps, On cyclic Steiner systems S(3, 4, 20), (to appear).

Division of Mathematics, Preston Polytechnic, Corporation Street, PRESTON, Lancs. PR1 2TQ, England.