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1 Introduction

A Steiner quadruple system of order v, denoted by SQS(v), consists of a pair
(A,B) where A is a v-element set and B is a family of four-element subsets
of A (called blocks) with the property that each three-element subset of A
lies in precisely one block. Such a system is said to be cyclic if B is invariant
under a cyclic group of order v.

Any cyclic SQS(v) will be isomorphic to a system in which A = V (the set
of residue classes modulo v) and where B is invariant under the cyclic group
Cv = 〈i →> i + 1 (mod v)〉. Any system of this type will be composed of
orbits generated by the action of Cv on four-element subsets of V . An orbit
generated in this way is said to be symmetric if it is invariant under the
mapping i→ −i (mod v).

An SQS(v) is said to be S-cyclic if it is isomorphic to a cyclic system,
of the form described above, each of whose orbits is symmetric. (This is an
alternative, but equivalent, definition to that usually given e.g. in [6]).

In [6] Lindner and Rosa partition the admissible orders for SQS(v) into
four classes:

A. v ≡ 2 or 10 (mod 24),

B. v ≡ 4 or 20 (mod 24),

C. v ≡ 14 or 22 (mod 24),

D. v ≡ 8 or 16 (mod 24).

Cyclic systems in classes B and D necessarily contain the unique 1
4
-orbit

(i.e. the orbit with v/4 blocks), while those in C and D contain an odd
number of 1

2
-orbits (i.e. orbits with v/2 blocks). At the time [6] was written,

all known cyclic SQS(v) were S-cyclic and, with the single exception of the
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unique S-cyclic SQS(20) constructed by Jain [5], all lay in class A. Subse-
quently several cyclic (but non S-cyclic) systems have been discovered (c.f.
[7], [1], [4]).

In [8], Phelps gives a complete enumeration of cyclic SQS(20). He also
notes that there are no S-cyclic systems in classes C and D (in fact no S-
cyclic system may contain a 1

2
-orbit). He then poses the question of whether

S-cyclic systems necessarily exist whenever v lies in classes A or B. Diener [2]
shows that this is not the case by proving that if v ≡ 0 (mod 7) then there
does not exist an S-cyclic SQS(v).

In this paper we establish an improved necessary condition on v for the
existence of an S-cyclic SQS(v), thereby showing that for many values of v in
classes A and B (including those covered by Diener’s result), S-cyclic SQS(v)
do not exist. In the course of establishing the condition we also prove a
general result (Theorem 2(ii)) concerning the structure of S-cyclic systems
and in Theorem 4 we establish a further result of this type. These results
facilitate the construction of an S-cyclic SQS(v) for v = 52: this was the
smallest value of v, satisfying the improved necessary condition, for which
an S-cyclic system was not previously known. (Recently C.J.Cho has also
constructed S-cyclic SQS(v) for v = 52, 68 and 122).

2 General Results

THEOREM 1.
Suppose O is an orbit of blocks, with elements drawn from the residue classes
modulo uv, under the action of the cyclic group Cuv = 〈i→ i+1 (mod uv)〉.
Suppose also that O is invariant under the mapping i → −i (mod uv) and
that v is even. Then if O contains a block of the form {ua, ub, uc, x}, x is
necessarily of the form ud for some d ∈ {0, 1, . . . , (v − 1)}.
Proof.
If O contains a block of the form {ua, ub, uc, x} then it will contain just
four (not necessarily distinct) blocks each containing 0. These will be of the
form {0, uα, uβ, z}, {−uα, 0, u(β − α), z − uα}, {−uβ, u(α − β), 0, z − uβ},
{−z, uα − z, uβ − z, 0}, where α = b − a, β = c − a and z = x − ua (all
arithmetic being modulo uv).

Since O is invariant under i→ −i (mod uv), the block {0,−uα,−uβ,−z}
must be one of the four blocks listed above. We show that each possibility
leads to the conclusion z = uγ for some γ ∈ {0, 1, . . . ., (v − 1)}, and hence
x = ud for some d ∈ {0, 1, . . . , (v − 1)}.

(i) Suppose {0,−uα,−uβ,−z} = {0, uα, uβ, z}. If z = 0,−uα or −uβ
there is nothing to prove. Otherwise z = −z and so either z = 0 or
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z = (uv)/2. In the latter case, since v is even, we may write z = u(v/2).

(ii) Suppose {0,−uα,−uβ,−z} = {−uα, 0, u(β − α), z − uα}. As before,
there is nothing to prove unless −z = z − uα. But in this case we
must also have −uβ = u(β − α). Hence −ua = −2uβ, and so −z =
z − 2uβ. This gives 2z = 2uβ and it follows that either z = uβ or
z = uβ+ (uv)/2. In the latter case we may again write z = u(β+v/2).

(iii) The case {0,−uα,−uβ,−z} = {−uβ, u(α− β), 0, z− uβ} can be dealt
with similarly to (ii).

(iv) Suppose {0,−uα,−uβ,−z} = {−z, uα − z, uβ − z, 0}. Then either
−uα = uα− z or −uβ = uα− z and there is nothing to prove.

THEOREM 2.
Suppose that v is even, v > 2, and that an S-cyclic SQS(uv) exists. Then

(i) there exists an S-cyclic SQS(v),

(ii) given any S-cyclic SQS(v), Sv, there is an S-cyclic SQS(uv) contain-
ing an isomorphic image of Sv; in the usual representation such an
embedding is given by i→ ui (i ∈ {0, 1, . . . , (v − 1)}).

Proof.

(i) Let Suv be an S-cyclic SQS(uv) represented in the usual way on the
residue classes modulo uv.

Choose any three distinct elements from {0, u, 2u, . . . , (v − 1)u},
ua, ub, uc, say (this is possible since v > 2). Suv necessarily contains
a block of the form {ua, ub, uc, x}. By Theorem 1, x must be of the
form ud for some d, and clearly d 6= a, b or c. Hence those blocks in
Suv which have a common factor u will form an SQS(v), Sv say, on
the points {0, u, 2u, . . . , (v−1)u}. Each orbit O in Suv containing such
a block will give rise to an orbit O′ in Sv, formed from the blocks of
this type under the action of the group 〈i→ i+ u (mod uv)〉; since O
is invariant under i → −i (mod uv), so also will be O′ : Hence Sv is
S-cyclic.

(ii) Suppose that Suv is an S-cyclic SQS(uv) (represented in the usual way)
and that S∗v is any S-cyclic SQS(v). We may assume that the latter
system is based on the points {0, u, 2u, . . . , (v − 1)u}, that it has an
automorphism group 〈i→ i+u (mod uv)〉, and that the orbits forming
it are invariant under i→ −i (mod uv).
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Let Ruv denote the design formed from Suv by deleting those orbits
contributing blocks to the SQS(v) sub-system, Sv, described in part
(i). To Ruv we add all orbits formed from the blocks of S∗v under the
action of the group 〈i→ i+ 1 (mod uv)〉; the resulting design we refer
to as S∗uv.

Since Sv and S∗v , contain exactly the same three-element subsets of
{0, u, 2u, . . . , (v − 1)u}, the orbits removed from Suv to form Ruv and
the orbits added to Ruv to form S∗uv will contain exactly the same three-
element subsets of {0, 1, . . . , vu− 1}. Hence S∗uv is an SQS(uv).

To complete the proof note that Ruv is composed of symmetric cyclic
orbits and that the orbits from the blocks of S∗v are also symmetric
and cyclic. It follows that S∗uv is S-cyclic. Factoring out the u from
the blocks of S∗v gives an isomorphic S-cyclic SQS(v) represented in
the usual way; clearly S∗uv contains a copy of this system under the
mapping i→ ui (i ∈ {0, 1, . . . , (v − 1)}).

THEOREM 3.
A necessary condition for the existence of an S-cyclic SQS(v) is that v = 2n
or 4n, where the prime factors of n are all of the forms 12s + 1 or 12s + 5
(s = 0, 1, 2, . . .).
Proof.
Suppose that an S-cyclic SQS(v) exists. The admissibility condition shows
that v ≡ 2 or 4 (mod 6). Hence v is even and, since v cannot lie in Class D,
v is not divisible by 8. Therefore, v is of the form 2n or 4n where n is odd.
Clearly n cannot be divisible by 3 and so n must be a product of prime factors
each of which has one of the following forms: 12s+1, 12s+5, 12s+7, 12s+11.

Suppose that n had a factor 12s+ 7. Then we could write v = uv′ where
v′ = 24s+ 14. By Theorem 2(i), the existence of an S-cyclic SQS(v) implies
that of an S-cyclic SQS(v′). However, v′ lies in class C and so there cannot
be an S-cyclic SQS(v′). Hence n cannot have a factor 12s + 7. Similarly we
may prove that n cannot have a factor 12s+ 11.

Through the remainder of this section we shall assume that v satisfies the
admissibility condition, v ≡ 2 or 4 (mod 6). We shall be solely concerned
with orbits formed from three-element subsets and four-element subsets of
the set of residue classes modulo v, under the action of Cv. We make the
following definitions, (see also [8]).
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DEFINITIONS.
An orbit O of four-element subsets (i.e. blocks) is said to be suitable if for
every pair of distinct blocks S, T ∈ O, we have |S ∩ T | < 3.

Two distinct orbits O1 and O2, of blocks are said to be compatible if for
every pair of blocks, S, T with S ∈ O1 and T ∈ O2, we have |S ∩ T | < 3.
Any cyclic SQS(v) will consist of a union of suitable and pairwise compatible
orbits.

Any block contains four three-element subsets. Since v 6= 0 (mod 3), any
orbit of three-element subsets is necessarily full (i.e. it contains v distinct
three-element subsets). Therefore any suitable and full orbit, O, (of blocks)
will give rise to precisely four distinct full orbits of three-element subsets.
We shall refer to these as the suborbits of O. If O1 and O2 are incompatible
orbits (of blocks) then O1 and O2 must have at least one suborbit in common.

THEOREM 4. Suppose that S is an S-cyclic SQS(v) and that O is a
symmetric suitable full orbit (SSFO) not contained in S. Then there exist
precisely two distinct full orbits O1,O2, contained in S which are incompat-
ible with O.
Proof.
We may assume S has its usual representation. We note firstly that if O′
and O′′ are both SSFO’s and both contain the same suborbits then O′ = O′′.
For a proof of this see [8, lemma 2.3].

Next we consider the action of the mapping i → −i (mod v) on orbits
of three-element subsets. If A is such an orbit we shall denote by −A the
orbit which is its image under this mapping. For certain orbits we shall
have A = −A; namely those containing blocks of the form {0, x,−x}. If
x 6= ±v

4
it is easily seen that such an orbit occurs as a suborbit of one and

only one SSFO, namely that generated by {0, x,−x, v/2}; any such SSFO is
therefore necessarily included in S (see [3]). For x = ±v

4
the resulting orbit

of four-element subsets is the 1
4
-orbit, and is again included in S

Suppose now that O is an SSFO not in S. Then O must contain four
distinct suborbits A,−A,B,−B. There is an orbit O1 in S containing A and
hence also −A. Likewise, there is an orbit O2 in S containing B and hence
also −B. Neither O1 nor O2 can be the 1

4
-orbit and so both are SSFO’s. If O1

and O2 were identical then both O an O1 would contain the same suborbits
and we should have O = O1, which is not the case. Hence O1 6= O2. Clearly,
there can be no other orbits in S which are incompatible with O.
The proof is therefore complete.
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Before dealing with the case v = 52 we make some general observations.
Suppose that an S-cyclic SQS(v) exists.Put

S(v) = the total number of SSFOs,

N(v) = the number of SSFOs contained in the SQS(v),

si(v) = the total number of SSFOs which are incompatible with

precisely i other SSFOs,

ni(v) = the number of SSFOs contained in the SQS(v)which are

incompatible with precisely i other SSFOs.

Clearly
∑
ni(v) = N(v) and ni(v) ≤ si(v). Theorem 4 also ensures that∑

ini(v) = 2(S(v)−N(v)) and that n0(v) = s0(v) and n1(v) = s1(v).

3 The case v = 52

Computer calculation gives S(52) = 288 and, since no S-cyclic system can
contain a 1

2
-orbit, N(52) = 106. Likewise we obtain S(26) = 60 and N(26) =

25.
Computer listings of compatibility for v = 52 and 26 give the following

values for the si(v) s.

(a) v = 52: s0(52) = 0, s1(52) = 12, s2(52) = 8, s3(52) = 54,
s4(52) = 219.

(b) v = 26: s0(26) = 0, s1(26) = 6, s2(26) = 3, s3(26) = 24,
s4(26) = 27.

Consider now the collection E of all those SSFOs under C52 which contain
blocks of the form {2a, 2b, 2c, 2d}. Orbits of this type correspond (under the
mapping i→ 2i) to the 60 SSFOs generated by C26. Hence |E| = S(26) = 60.
Denote by F the remaining SSFOs generated by C52 and put S∗ = |F|. We
have S∗ = S(52)− S(26) = 228. Note that by Theorem 1, if O1 and O2 are
SSFOs in E and F respectively then O1 and O2 must be compatible.

Define s∗i to be the total number of SSFOs contained in F which are
incompatible with precisely i other SSFOs. Then we must have s∗i = si(52)−
si(26) for each i. This gives

s∗0 = 0, s∗1 = 6, s∗2 = 0, s∗3 = 30, s∗4 = 192.

7



Suppose now that an S-cyclic SQS(52) exists. For this particular system
define

n∗i = the number: of SSFOs contained in F which are

also contained in the SQS(52) and which are

incompatible with precisely i other SSFOs, and

N∗ = the number of SSFOs contained in F which

are also contained in the SQS(52).

We have immediately that
∑
n∗i = N∗ = N(52) − N(26) = 81. From

Theorem 4 we can deduce that
∑
in∗i = 2(S∗ − N∗) = 294, and also that

n∗0 = s∗0 = 0, n∗1 = s∗1 = 6. Finally, since s∗2 = 0, we have n∗2 = 0. Solving
the equations for n∗3 and n∗4 gives n∗3 = 12 and n∗4 = 63.

Reference to computer listings shows that of the 30 orbits contributing
to s∗3, 6 are incompatible with those contributing to s∗1. The remaining 24
partition into 12 pairs; the two orbits in each pair being incompatible.

From this point onwards it appears necessary to employ heuristic argu-
ment. However, even here Theorem 4 is of considerable use in narrowing the
choice.

We list below the unique 1
4
-orbit and 81 mutually compatible orbits from

the collection F . Together with the orbits in E generated from any S-cyclic
SQS(26), these form an S-cyclic SQS(52). To give a specific example, we
may complete the system by including the particular SQS(26) given in [6];
the list below includes the 25 orbits for this system.
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TABULATION.
Generators for symmetric cyclic orbits forming an S-cyclic SQS(52).

(a) 1/4-orbit. {0, 13, 26, 39}.

(b) 81 orbits in F . {0, 1, 2, 27}, {0, 1, 3, 4}, {0, 1, 5, 6},
{0, 1, 7, 8}, {0, 1, 9, 44}, {0, 1, 10, 11}, {0, 1, 12, 13}, {0, 1, 14, 39},
{0, 1, 15, 16}, {0, 1, 17, 18}, {0, 1, 19, 34}, {0, 1, 20, 33}, {0, 1, 21, 22},
{0, 1, 23, 30}, {0, 1, 24, 25}, {0, 2, 5, 7}, {0, 2, 9, 45}, {0, 2, 11, 13},
{0, 2, 15, 39}, {0, 2, 17, 37}, {0, 2, 19, 35}, {0, 2, 21, 23}, {0, 2, 25, 29},
{0, 3, 6, 29}, {0, 3, 7, 10}, {0, 3, 8, 11}, {0, 3, 9, 12}, {0, 3, 13, 42},
{0, 3, 14, 41}, {0, 3, 15, 18}, {0, 3, 16, 19}, {0, 3, 17, 38}, {0, 3, 20, 23},
{0, 3, 21, 34}, {0, 3, 22, 25}, {0, 3, 24, 27}, {0, 4, 9, 13}, {0, 4, 11, 15},
{0, 4, 17, 39}, {0, 4, 19, 23}, {0, 4, 21, 25}, {0, 5, 10, 31}, {0, 5, 11, 46},
{0, 5, 12, 45}, {0, 5, 13, 18}, {0, 5, 14, 43}, {0, 5, 15, 20}, {0, 5, 16, 41},
{0, 5, 17, 22}, {0, 5, 19, 24}, {0, 5, 21, 36}, {0, 5, 23, 28}, {0, 5, 25, 30},
{0, 6, 13, 19}, {0, 6, 15, 21}, {0, 6, 23, 35}, {0, 6, 25, 31}, {0, 7, 14, 33},
{0, 7, 15, 22}, {0, 7, 17, 24}, {0, 7, 18, 25}, {0, 7, 20, 27}, {0, 7, 21, 28},
{0, 7, 23, 36}, {0, 8, 19, 41}, {0, 8, 21, 29}, {0, 8, 23, 37}, {0, 8, 25, 33},
{0, 9, 18, 35}, {0, 9, 19, 42}, {0, 9, 20, 29}, {0, 9, 21, 40}, {0, 9, 22, 31},
{0, 9, 24, 33}, {0, 9, 25, 34}, {0, 10, 21, 41}, {0, 10, 25, 35}, {0, 11, 22, 37},
{0, 11, 23, 34}, {0, 11, 24, 35}, {0, 12, 25, 37}.

(c) 25 orbits in E . {0, 2, 4, 28}, {0, 2, 6, 8}, {0, 2, 10, 12},
{0, 2, 14, 16}, {0, 2, 18, 20}, {0, 2, 22, 24}, {0, 4, 8, 30}, {0, 4, 10, 46},
{0, 4, 12, 44}, {0, 4, 14, 42}, {0, 4, 16, 20}, {0, 4, 18, 38}, {0, 4, 22, 34},
{0, 4, 24, 32}, {0, 6, 12, 32}, {0, 6, 14, 20}, {0, 6, 18, 24}, {0, 6, 22, 28},
{0, 8, 16, 34}, {0, 8, 18, 42}, {0, 8, 22, 38}, {0, 8, 24, 36}, {0, 10, 20, 36},
{0, 10, 22, 32}, {0, 12, 24, 38}.

In conclusion we should like to express our gratitude to the computer opera-
tions staff at Preston Polytechnic for their patient co-operation. We should
also like to thank the referee for his helpful comments and suggestions.
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[3] F. Fitting, Zyklische Lösungen des Steiner’schen Problems, Nieuw Arch.
Wisk. 11 (2) (1915), 140–148.

[4] M. J. Grannell and T. S. Griggs, A non-symmetric cyclic Steiner quadruple
system, Preston Polytechnic Research Note (1978).

[5] R. K. Jain, On cyclic Steiner quadruple systems, M.Sc. thesis, McMaster
University, Hamilton, Ontario (1971).

[6] C. C. Lindner and A. Rosa, Steiner quadruple systems - a survey, Discrete
Math. 21 (1978),147–181.

[7] K. T. Phelps, A note on the construction of cyclic quadruple systems,
Colloq. Math. (to appear).

[8] K. T. Phelps, On cyclic Steiner systems S(3, 4, 20), (to appear).

Division of Mathematics,
Preston Polytechnic,
Corporation Street,
PRESTON,
Lancs. PR1 2TQ,
England.

10


