Minimal perfect bicoverings of K_{v} with block sizes two, three and four

M.J. Grannell and T.S. Griggs
Department of Pure Mathematics
The Open University
Walton Hall
Milton Keynes MK7 6AA
UNITED KINGDOM
R.G. Stanton
Department of Computer Science
Univesity of Manitoba
Winnipeg
CANADA R3T 2N2

This is a preprint of an article accepted for publication in the Ars Combinatoria (C)2004 (copyright owner as specified in the journal).

Abstract

We survey the status of minimal coverings of pairs with block sizes two, three and four when $\lambda=1$, that is, all pairs from a v-set are covered exactly once. Then we provide a complete solution for the case $\lambda=2$.

1 Introduction

The covering number $g_{\lambda}^{(k)}(v)$ is defined as the cardinality of the minimal pairwise balanced design (PBD) with largest block size k such that every pair occurs exactly λ times in the PBD . For $\lambda=1$ we normally omit the subscript. It is trivial that $g_{\lambda}^{(2)}(v)=\lambda\binom{v}{2}$. Denoting the packing number $D_{\lambda}(t, k, v)$ as the maximum number of blocks in any $t-(v, k, \lambda)$ packing, it is easily seen that

$$
g_{\lambda}^{(3)}(v)=D_{\lambda}(2,3, v)+\left(\lambda\binom{v}{2}-3 D_{\lambda}(2,3, v)\right) ;
$$

we merely take the maximum number of triples possible and adjoin the uncovered pairs.

For $\lambda=1$, this gives
(i) $g^{(3)}(v)=v(v-1) / 6$ all triples, for $v \equiv 1,3(\bmod 6)$,
(ii) $g^{(3)}(v)=v(v+1) / 6$ comprising $v(v-2) / 6$ triples and $v / 2$ pairs, for $v \equiv 0,2(\bmod 6)$,
(iii) $g^{(3)}(v)=\left(v^{2}+v+4\right) / 6$ comprising $\left(v^{2}-2 v-2\right) / 6$ triples and $(v+2) / 2$ pairs, for $v \equiv 4(\bmod 6)$,
(iv) $g^{(3)}(v)=\left(v^{2}-v+16\right) / 6$ comprising $\left(v^{2}-v-8\right) / 6$ triples and 4 pairs, for $v \equiv 5(\bmod 6)$.

In cases (i) and (ii) the PBD is a Steiner triple system (STS) with either zero or one point deleted.

For $\lambda=2$, the results are
(i) $g_{2}^{(3)}(v)=v(v-1) / 3$ all triples, for $v \equiv 0,1(\bmod 3)$,
(ii) $g_{2}^{(3)}(v)=v(v+1) / 3$ comprising $v(v-2) / 3$ triples and v pairs, for $v \equiv 2(\bmod 3)$.

In all cases the PBD is a twofold triple system (TTS) with either zero or one point deleted.

So the first interesting case occurs for $\lambda=1, k=4$. This was solved by Stanton and Stinson, [12], apart from three exceptional cases $v=17,18,19$.

For $v \notin\{5,6,7,8,9,10,17,18,19\}$, the results are
(i) $g^{(4)}(v)=v(v-1) / 12$ all quadruples, for $v \equiv 1,4(\bmod 12)$,
(ii) $g^{(4)}(v)=v(v+1) / 12$ comprising $v(v-3) / 12$ quadruples and $v / 3$ triples, for $v \equiv 0,3(\bmod 12)$,
(iii) $g^{(4)}(v)=(v+1)(v+2) / 12$ comprising $(v-2)(v-3) / 12$ quadruples, $2(v-2) / 3$ triples and 1 pair, for $v \equiv 11,2(\bmod 12)$,
(iv) $g^{(4)}(v)=\left(v^{2}-v+42\right) / 12$ comprising $(v+6)(v-7) / 12$ quadruples and 7 triples, for $v \equiv 7,10(\bmod 12)$,
(v) $g^{(4)}(v)=\left(v^{2}+v+6\right) / 12$ comprising $\left(v^{2}-3 v-6\right) / 12$ quadruples and $(v+3) / 3$ triples, for $v \equiv 6,9(\bmod 12)$,
(vi) $g^{(4)}(v)=\left(v^{2}+3 v+8\right) / 12$ comprising $v(v-5) / 12$ quadruples, $(2 v-1) / 3$ triples and 1 pair, for $v \equiv 5,8(\bmod 12)$.

In cases (i), (ii) and (iii) the PBD is a Steiner system $S(2,4, v)$ with zero, one or two points deleted.

The results for $5 \leq v \leq 10$ are as follows:
$g^{(4)}(5)=5$ (one quadruple and four pairs),
$g^{(4)}(6)=8$ (one quadruple, one triple and six pairs),
$g^{(4)}(7)=10$ (one quadruple, three triples and six pairs),
$g^{(4)}(8)=11$ (one quadruple, six triples and four pairs),
$g^{(4)}(9)=12$ (two quadruples, seven triples and three pairs),
$g^{(4)}(10)=12$ (three quadruples and nine triples).
The last design is obtained by adjoining an additional point to all blocks of a parallel class of the unique $\operatorname{STS}(9)$.

The results of [12] show that $g^{(4)}(v) \geq 29$ for $v=17,18,19$. For $v=17$, Seah and Stinson, [5], have given a PBD with 31 blocks comprising 17 quadruples, 10 triples and 4 pairs. The design is listed in [13]. Recently, Stanton, [11], has ruled out the value 29. So $30 \leq g^{(4)}(17) \leq 31$. For $v=18$, Stanton, [8] and [7], has shown that $30 \leq g^{(4)}(18) \leq 33$. Finally, Stanton, [6], determined the exact value of $g^{(4)}(19)$ as 35 by exhibiting a design with 22 quadruples and 13 triples.

In this paper, we determine $g_{2}^{(4)}(v)$.

2 The cases $v=3 n+1$ and $3 n$

There is a balanced incomplete block design, (BIBD), with parameters

$$
(v, b, r, k, \lambda)=(3 n+1, n(3 n+1) / 2,2 n, 4,2) .
$$

So we immediately have $g_{2}^{(4)}(3 n+1)=n(3 n+1) / 2$.
If $v=3 n$, we can delete one point from the BIBD just cited to leave a PBD with $2 n$ triples and $3 n(n-1) / 2$ quadruples.

So we have $g_{2}^{(4)}(3 n) \leq n(3 n+1) / 2$.

Now suppose the minimal PBD has g blocks consisting of g_{i} blocks of length i, where $i=2,3,4$. Then, let k_{i} be the length of block i and r_{i} be the frequency of element i. We have

$$
\begin{gathered}
g=g_{2}+g_{3}+g_{4} \\
\sum_{g}\left(k_{i}-3\right)\left(k_{i}-4\right)=2 g_{2}+0 g_{3}+0 g_{4}
\end{gathered}
$$

But

$$
\begin{gathered}
\sum_{g}\left(k_{i}-3\right)\left(k_{i}-4\right) \\
=\sum_{g} k_{i}\left(k_{i}-1\right)-6 \sum_{g} k_{i}+12 \sum_{g} 1 \\
=2 v(v-1)-6 \sum_{v} r_{i}+12 g .
\end{gathered}
$$

Now $r_{i}=\lceil 2(v-1) / 3\rceil+\epsilon_{i}$, where $\epsilon_{i} \geq 0$.
So

$$
\begin{aligned}
& 12 g=2 g_{2}+6 \sum_{v}\left(\lceil 2(v-1) / 3\rceil+\epsilon_{i}\right)-2 v(v-1) \\
& =2 g_{2}+6 v\lceil 2(v-1) / 3\rceil+6 \sum_{v} \epsilon_{i}-2 v(v-1) \\
& \geq v(6\lceil 2(v-1) / 3\rceil-2(v-1)) .
\end{aligned}
$$

Let $v=3 n$, then

$$
\begin{aligned}
& g \leq 3 n(6\lceil(6 n-2) / 3\rceil-2(3 n-1)) / 12 \\
& =n(6(2 n)-2(3 n-1)) / 4 \\
& =n(6 n-3 n+1) / 2=n(3 n+1) / 2
\end{aligned}
$$

This establishes that $g_{2}^{(4)}(3 n)=n(3 n+1) / 2$.
Indeed, it is an easy corollary that the minimum can only be achieved with $g_{2}=0$ and using triples and quadruples as we have done.

3 The case $v=3 n+2$, general results

We start by dividing this case into the cases when n is even and n is odd. Thus $v=6 m+2(n=2 m)$ or $v=6 m+5(n=2 m+1)$.

Case 3A. $v=6 m+2$.
The packing number, [14],

$$
D_{2}(2,4,6 m+2)=\left\lfloor\frac{6 m+2}{4}\left\lfloor\frac{2(6 m+1)}{3}\right\rfloor\right\rfloor=m(6 m+2) .
$$

These quadruples cover $6 m(6 m+2)$ pairs and leave $(6 m+2)(6 m+1)-$ $6 m(6 m+2)=6 m+2$ pairs uncovered. These uncovered pairs would require at least $2 m$ triples and 2 pairs. So we have a lower bound

$$
g_{2}^{(4)}(6 m+2) \geq 6 m^{2}+4 m+2 .
$$

Suppose that this lower bound is attained and that element x occurs λ_{i} times in blocks of length $i=2,3,4$. Then

$$
\lambda_{2}+2 \lambda_{3}+3 \lambda_{4}=2(6 m+1)=12 m+2 .
$$

Hence $\lambda_{4} \leq 4 m$.
Suppose $a_{4 m-i}$ is the number of elements having $\lambda_{4}=4 m-i, i \geq 0$. Then

$$
\begin{gathered}
\sum_{i \geq 0} a_{4 m-i}=6 m+2, \\
\sum_{i \geq 0}(4 m-i) a_{4 m-i}=4 m(6 m+2) .
\end{gathered}
$$

Multiply the first equation by $4 m$ and subtract the second equation. Then

$$
\sum_{i \geq 0} i a_{4 m-i}=0
$$

It immediately follows that $a_{4 m-i}=0$ for $i>0$. So the only possibility is $i=0$ and $\lambda_{4}=4 m$. Then $\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right)=(2,0,4 m)$ or $(0,1,4 m)$. By counting elements, we immediately have the following result.

Lemma If $v=6 m+2$ and $g_{2}^{(4)}(v)=6 m^{2}+4 m+2$, then there are two elements of type $(2,0,4 m)$ and $6 m$ elements of type $(0,1,4 m)$.

Case 3B. $v=6 m+5$.
We proceed as in Case 3A and find, [14],

$$
D_{2}(2,4,6 m+5)=\left\lfloor\frac{6 m+5}{4}\left\lfloor\frac{2(6 m+4)}{3}\right\rfloor\right\rfloor=6 m^{2}+8 m+2
$$

The number of uncovered pairs is $(6 m+5)(6 m+4)-6\left(6 m^{2}+8 m+2\right)=$ $6 m+8$. These uncovered pairs would require at least $2 m+2$ triples and 2 pairs. So we have the bound

$$
g_{2}^{(4)}(6 m+5) \geq 6 m^{2}+10 m+6
$$

Assuming that the bound is achieved and proceeding with the same notation as before, we have

$$
\lambda_{2}+2 \lambda_{3}+3 \lambda_{4}=2(6 m+4)
$$

Hence $\lambda_{4} \leq 4 m+2$.
Thus we may write

$$
\begin{gathered}
\sum_{i \geq 0} a_{4 m+2-i}=6 m+5 \\
\sum_{i \geq 0}(4 m+2-i) a_{4 m+2-i}=4\left(6 m^{2}+8 m+2\right)
\end{gathered}
$$

Multiply the first equation by $4 m+2$ and subtract to give

$$
\begin{gathered}
\sum_{i \geq 0} i a_{4 m+2-i}=2, \text { that is, } \\
a_{4 m+1}+2 a_{4 m}=2 \text { and } a_{4 m+2-i}=0, i>2 .
\end{gathered}
$$

These equations have 2 solutions which give 3 possibilities.
(1) $a_{4 m+1}=2, a_{4 m}=0$. Then $a_{4 m+2}=6 m+3$, and counting establishes that there are 2 elements of type $(1,2,4 m+1), 1$ element of type $(2,0,4 m+2), 6 m+2$ elements of type $(0,1,4 m+2)$. We call a solution of this type Case (A).
(2) $a_{4 m+1}=0, a_{4 m}=1$. Then $a_{4 m+2}=6 m+4$ and counting establishes that there is either 1 element of type $(2,3,4 m), 1$ element of type $(2,0,4 m+2), 6 m+3$ elements of type $(0,1,4 m+2)$, or 1 element of type $(0,4,4 m), 2$ elements of type $(2,0,4 m+2), 6 m+2$ elements of type $(0,1,4 m+2)$. We call solutions of this type Case (B) and Case (C) respectively.

The case $m=0$ is exceptional. Here $v=5$ and the number of pairs is 2 , the number of triples is 2 , and the number of quadruples is 2 . But Case (B) has $\lambda_{3}=3$ for one element and so cannot occur. Similarly, Case (C) has $\lambda_{3}=4$ for one element and so cannot occur. Thus for $m=0$, there is a unique solution

$$
\begin{array}{lll}
x a & a b p & x a p q \\
x b & a b q & x b p q
\end{array}
$$

For each $m>0$, all 3 cases occur. Indeed, it is shown in [2] that for $m=1(v=11)$ there is a total of 316 non-isomorphic solutions.

4 The constructions for $v=6 m+2$

We split this case into the cases $v=12 t+2$ and $v=12 t+8$.
For the former, take first a BIBD with parameters $(v, b, r, k, \lambda)=(12 t+$ $4,(3 t+1)(4 t+1), 4 t+1,4,1)$. Let $\{a, b, c, d\}$ be a block. Delete this block and, in the remaining $12 t^{2}+7$ blocks, set $a=b$ and $c=d$. This gives a design of $12 t^{2}+7 t$ quadruples on $12 t+2$ points in which every pair $\{a, x\}$, $x \neq c$, occurs twice, every pair $\{c, x\}, x \neq a$, occurs twice, the pair $\{a, c\}$ does not occur, and pairs on the remaining $12 t$ points occur once each.

Next take a 4-GDD of type $3^{4 t}$, [3], on these remaining $12 t$ points. This has $9 \times 4 t(4 t-1) /(2 \times 6)=12 t^{2}-3 t$ quadruples. Adjoin the $4 t$ triples which form the groups of the 4-GDD. Finally adjoin the pairs $\{a, c\},\{a, c\}$. The result is a design with 2 pairs, $4 t$ triples and $24 t^{2}+4 t=2 t(12 t+2)$ quadruples. This design meets the bound.

The case $v=12 t+8$ is more difficult. For $t=0$, the bound cannot be met. In $[9]$ it is shown that $g_{2}^{(4)}(8)=13$, whereas the bound is 12 .

There are precisely 3 non-isomorphic solutions as follows.

Solution 1:	68	128	1458	1267
	78	368	2358	1357
		478	2456	2347
		567	1346	
Solution 2:				
	68	256	1258	1467
	78	357	3458	2346
		567	1368	1237
		145	2478	
Solution 3:				
	68	256	1234	2478
	78	456	1258	1467
		157	3458	2367
		357	1368	

Indeed, setting $m=2 t+1$, we have in general that $g_{2}^{(4)}(12 t+8)=$ $24 t^{2}+32 t+12$, where $t>0$, and $g_{2}=2, g_{3}=4 t+2, g_{4}=24 t^{2}+28 t+8$. First, we give a solution for $t=1(v=20)$.
$v=20$. Let the elements be $\infty_{1}, \infty_{2}, 0,1, \ldots, 17$. The pairs are $\left\{\infty_{1}, \infty_{2}\right\}$ and $\left\{\infty_{1}, \infty_{2}\right\}$. The triples are $\{i, 6+i, 12+i\}, i=0,1, \ldots, 5$.
The quadruples are $\left\{\infty_{1}, i, 6+i, 12+i\right\},\left\{\infty_{1}, 3 i, 1+3 i, 5+3 i\right\},\left\{\infty_{2}, 1+\right.$ $3 i, 2+3 i, 6+3 i\},\left\{\infty_{2}, 2+3 i, 3+3 i, 7+3 i\right\}, i=0,1, \ldots, 5$ and $\{i, 1+i, 3+$ $i, 11+i\},\{i, 3+i, 5+i, 14+i\}, i=0,1, \ldots, 17$, all addition being modulo 18 .

For $t \geq 5$, take a PBD on $12 t+10$ points with all blocks of size 4 except for one block of size 22, [4]. Let the points be $1,2, \ldots, 12 t+6, a, b, c, d$ and set $V=\{1,2, \ldots, 12 t+6\}$ and $W=\{1,2, \ldots, 18\}$. Let $\{a, b, c, d\} \cup W$ be the 22 -block. Delete this block and, in the remaining $12 t^{2}+19 t-31$ blocks set $a=b$ and $c=d$. This gives a design of $12 t^{2}+19 t-31$ quadruples on $12 t+8$ points in which every pair $\{a, x\}, x \in V \backslash W$, occurs twice, every pair $\{c, x\}, x \in V \backslash W$, occurs twice, the pair $\{a, c\}$ does not occur, and pairs $\{x, y\}, x, y \in V$ occur once except if both $x, y \in W$ in which case the pair does not occur at all.

Next take a 4 -GDD of type $3^{4(t-1)} 18^{1}$, [3], on the set V with the set W as the long block. This has $12 t^{2}+9 t-21$ quadruples. Adjoin the $4 t-4$ triples which form groups of the 4-GDD. This design also covers every pair $\{x, y\}, x, y \in V$, precisely once except if both $x, y \in W$ in which case the pair does not occur at all.

Finally, take the design given above on 20 points on the set $\{a, c\} \cup W$ and consisting of 2 pairs, 6 triples and 60 quadruples. This covers every pair $\{a, x\}, x \in W$, twice, every pair $\{c, x\}, x \in W$, twice, the pair $\{a, c\}$ twice, and every pair $\{x, y\}, x, y \in W$, twice.

Juxtapose these three designs to give the required solution with 2 pairs, $4 t+2$ triples and $24 t^{2}+28 t+8$ quadruples.

This construction fails for $t=2,3$ and $4(v=32,44$ and 56). Designs for $v=32$ and $v=56$ are given below and the case $v=44$ is covered by the construction given in Section 6 .
$v=32$. Let the elements be $\infty_{1}, \infty_{2}, 0,1, \ldots, 29$. The pairs are $\left\{\infty_{1}, \infty_{2}\right\}$ and $\left\{\infty_{1}, \infty_{2}\right\}$. The triples are $\{i, 10+i, 20+i\}, i=0,1, \ldots, 9$. The quadruples are $\left\{\infty_{1}, i, 10+i, 20+i\right\},\left\{\infty_{1}, 3 i, 1+3 i, 14+3 i\right\},\left\{\infty_{2}, 1+\right.$ $3 i, 2+3 i, 15+3 i\},\left\{\infty_{2}, 2+3 i, 3+3 i, 16+3 i\right\}, i=0,1, \ldots, 9$ and $\{i, 3+i, 4+$ $i, 12+i\},\{i, 4+i, 6+i, 21+i\},\{i, 3+i, 5+i, 11+i\},\{i, 5+i, 12+i, 19+i\}, i=$ $0,1, \ldots, 29$, all addition being modulo 30 .
$v=56$. Let the elements be $\infty_{1}, \infty_{2}, 0,1, \ldots, 53$. The pairs are $\left\{\infty_{1}, \infty_{2}\right\}$ and $\left\{\infty_{1}, \infty_{2}\right\}$. The triples are $\{i, 18+i, 36+i\}, i=0,1, \ldots, 17$.

The quadruples are $\left\{\infty_{1}, i, 18+i, 36+i\right\},\left\{\infty_{1}, i, 1+i, 8+i\right\},\left\{\infty_{2}, 1+i, 2+\right.$ $i, 9+i\},\left\{\infty_{2}, 2+i, 3+i, 10+i\right\}, i=0,1, \ldots, 17$ and $\{i, 9+i, 21+i, 22+$ $i\},\{i, 10+i, 21+i, 27+i\},\{i, 2+i, 5+i, 9+i\},\{i, 15+i, 25+i, 41+i\},\{i, 3+$ $i, 17+i, 32+i\},\{i, 12+i, 23+i, 46+i\},\{i, 5+i, 19+i, 35+i\},\{i, 28+$ $i, 30+i, 34+i\}, i=0,1, \ldots, 53$, all addition being modulo 54 .

5 The constructions for $v=6 m+5$

We again split the construction into two cases according as $m=2 t$ or $m=2 t+1$.

In the first case $v=12 t+5$, and we have already cited the unique solution S_{0} for $t=0, v=5$. For $t \geq 2$, take a BIBD with parameters $(v, b, r, k, \lambda)=(12 t+4,(3 t+1)(4 t+1), 4 t+1,4,1)$. Let the points be $1,2, \ldots, 12 t, a, b, c, d$ where $\{a, b, c, d\}$ is a block. Delete these 4 elements throughout the design. What remains is a PBD on points $1,2, \ldots, 12 t$ having blocks of triples and quadruples in which the triples form 4 parallel classes.

Now take a PBD on $12 t+7$ points consisting of a 7 -block on points a, b, c, d, e, f, g and $t(12 t+13)$ quadruples on these 7 points along with the points $1,2, \ldots, 12 t$ of the previous design, [4]. Then delete elements a, b, c, d, e, f, g to leave 7 parallel classes of triples as well as $3 t(4 t-5)$ quadruples. Juxtapose these two designs and we have a design on $12 t$ points with 11 parallel classes of triples and $24 t(t-1)$ quadruples.

Now take the solution S_{0} found for $v=5$ and comprising blocks

$$
\begin{array}{lll}
x a & a b p & x a p q \\
x b & a b q & x b p q
\end{array}
$$

Adjoin each of x, a, b, p, q to two of the parallel classes to give $40 t$ more quadruples (one parallel class is left over), and we now have a design with $24 t^{2}+16 t$ quadruples and $4 t$ triples. This design, with the design S_{0}, is the required solution with 2 pairs, $4 t+2$ triples and $24 t^{2}+16 t+2$ quadruples.

The construction fails for $t=1(v=17)$. However, that case is covered by a construction given in Section 6.

We now consider the case $m=2 t+1$, i.e. $v=12 t+11$. We already have a solution S_{1} for $v=11$, [10]. It comprises blocks

$X Y$	$Z A F$	$X A C H$	$Y Z C G$	$A B C D$
$X Y$	$Z B E$	$X B D G$	$Y Z D H$	$A B G H$
	$Z C H$	$X D E H$	$Y B C E$	$C D E F$
	$Z D G$	$X C F G$	$Y A D F$	$E F G H$
		$X Z A E$	$Y A E G$	
		$X Z B F$	$Y B F H$	

For $t \geq 3$, take a PBD on $12 t+10$ points with all blocks of size 4 except for one block of size 10, [4]. Let the points be $1,2, \ldots, 12 t, a, b, \ldots, j$ where $\{a, b, \ldots, j\}$ is the 10 -block. Delete the points a, b, \ldots, j to leave 10 parallel classes of triples (the remaining blocks being quadruples); this design is on $12 t$ points.

Now take a PBD on $12 t+13$ points with all blocks of size 4 except for one block of size 13, [4]. This is equivalent to a Steiner system $S(2,4,12 t+13)$ containing an $S(2,4,13)$ as a subsystem. Let the points be $1,2, \ldots, 12 t$, a, b, \ldots, m where $\{a, b, \ldots, m\}$ is the 13 -block. Delete the points a, b, \ldots, m to leave 13 parallel classes of triples (the remaining blocks being quadruples); this design is also on $12 t$ points.

Juxtapose these two designs and the design S_{1} on 11 points. Further, adjoin each point of S_{1} to two parallel classes. This gives a design on $12 t+11$ points having 2 pairs, $4 t+4$ triples and $24 t^{2}+40 t+16$ quadruples and meeting the bound.

This construction fails for $t=1$ and $2(v=23$ and 35). However, the case $v=35$ is covered by the construction given in Section 6, and $v=23$ will be dealt with in Section 7 .

6 A tripling construction

Start with a solution S on $3 n+2$ elements. Then take a resolvable BIBD with parameters $(v, b, r, k, \lambda)=(6 n+6,(6 n+5)(2 n+2), 6 n+5,3,2)$ on a disjoint set of elements. For $n \geq 1$, there exist resolvable designs of this type, [1].

Expand the blocks of the BIBD by appending each of the $3 n+2$ elements of S to two of the parallel classes (this leaves over one of the parallel classes of triples). Adjoin the design S to give a final PBD on $9 n+8$ points with $\lambda=2$.

This construction allows us to use the existence of bicoverings for $n=$ 1,3 and 4 , i.e. on 5,11 and 14 points to construct bicoverings on 17,35 and 44 points, respectively; which cases were not covered in the constructions of Section 4 and 5 .

7 The last open case, $v=23$

The previous sections cover all cases except for the value $v=23$. The construction for this case bears some resemblance to that in Section 6.

We first take a PBD with $\lambda=2$ on 18 points having 18 quadruples and 66 triples, the latter being decomposable into 11 parallel classes of triples. Such a design can be generated cyclically under the mapping $i \mapsto i+1(\bmod$ 18) from the blocks $\{0,1,5,9\},\{0,6,12\},\{0,6,12\},\{0,3,10\},\{0,2,7\}$ and $\{0,2,3\}$. By considering the differences, it is easy to verify that this design covers all pairs precisely twice. The repeated short orbit generated by $\{0,6,12\}$ provides two parallel classes. The six triples $\{0,3,10\},\{9,12,1\}$, $\{4,6,11\},\{13,15,2\},\{5,7,8\},\{14,16,17\}$ form a further parallel class. These 6 triples come in pairs from each of the three full orbits of triples, with the two triples in each pair being images of one another under the mapping $i \mapsto i+9(\bmod 18)$. Consequently, these three orbits may be decomposed into 9 disjoint parallel classes which are the images of the given parallel class under the mappings $i \mapsto i+n(\bmod 18)$ for $n=0,1, \ldots, 8$.

Now expand 10 of these parallel classes by appending each of the 5 symbols of the solution S_{0} for $v=5$ to two parallel classes. This design, with the design S_{0}, is the required solution with 2 pairs, $2+6=8$ triples and $2+18+(10 \times 6)=80$ quadruples.

8 Concluding remarks

When $v=6 m+2$, we might note that it is not possible to have the solution S_{0} for $v=5$ embedded in the solution for $v=6 m+2$. This is because the solution for $v=6 m+2$ must contain two pairs $x y, x y$ whereas S_{0} has two pairs of the form $x a, x b$.

On the other hand, it was shown in Section 5 that a solution for $v=$ $12 t+5, t \geq 2$, can be found in which the solution S_{0} for $v=5$ is embedded, and the case $t=1(v=17)$ was similarly shown, in Section 6 , to have a solution containing S_{0}.

If $v=12 t+11$, no solution for $t=0$ can contain the design S_{0} for $v=5$. The reason is as follows. Let the points be $x, a, b, p, q, 1,2,3,4,5,6$. Any solution contains 16 quadruples, 4 triples and 2 pairs and must contain the blocks of $S_{0}: x a, x b, a b p, a b q, x a p q, x b p q$. Now each of the points x, a, b, p, q cannot occur in further blocks with one another and so must occur in four further quadruples to cover pairs with the points $1,2,3,4,5,6$. But there are only 16 quadruples so this is impossible. If $t=1$, the construction of Section 7 produces a solution for $v=23$ that contains S_{0}. For $t \geq 5$, proceed as in Section 5 but use a PBD on $12 t+22$ points with all blocks of size 4 except for a single block of length 22 , (this requires $t \geq 4$), as well as a PBD on $12 t+25$ points, again with all blocks of size 4 except for a single block of length 25 , (this requires $t \geq 5$). By deleting the points from the long blocks we get a PBD on $12 t$ points having $\lambda=2$ and 47 parallel classes of triples. Then juxtapose the solution for $v=23$ and append each of the 23 points in the latter solution to two of the parallel classes. This expands 46 of the parallel classes and gives a solution for $12 t+23$ points, $t \geq 5$, that contains the solution given for $v=23$, and consequently the solution for $v=5$.

We have thus shown that, if $v=12 t+11$, there is a solution containing the solution S_{0} for $v=5$ provided that $t>5$. Of the small cases, we know that embedding in $v=11$ is impossible and in $v=23$ is possible. This leaves the values $v=35,47,59,71$. A solution in the latter case can be obtained by using the tripling construction, Section 6 , starting with the solution for $v=23$ given in Section 7. The three remaining cases are also handled using the construction given in Section 7.

For $v=35$, take the following PBD with $\lambda=2$ on 30 points. It is generated cyclically under the mapping $i \mapsto i+1(\bmod 30)$ from the blocks $\{0,1,6,15\},\{0,11,23,28\},\{0,4,8,27\},\{0,10,20\},\{0,10,20\},\{0,9,12\}$, $\{0,13,14\}$ and $\{0,6,8\}$. The ten triples $\{0,10,20\},\{4,13,16\},\{14,23,26\}$, $\{24,3,6\},\{8,21,22\},\{18,1,2\},\{28,11,12\},\{9,15,17\},\{19,25,27\},\{29,5,7\}$ form a parallel class. The last 9 triples come in threes from each of the three full orbits of triples and are images of one another under the mapping $i \mapsto i+10(\bmod 30)$. Consequently, we obtain 10 disjoint parallel classes which are the images of the given parallel class under the mappings $i \mapsto i+n(\bmod 30)$ for $n=0,1, \ldots, 9$. Now expand these parallel classes by appending each of the 5 symbols of the solution S_{0} for $v=5$ to two parallel classes. This design, with the design S_{0}, is the required solution with 2 pairs, $2+10=12$ triples and $2+(10 \times 10)+(30 \times 3)=192$ quadruples.

For $v=47$, take the following PBD with $\lambda=2$ on 42 points. It is generated cyclically under the mapping $i \mapsto i+1(\bmod 42)$ from the blocks $\{0,3,7,12\},\{0,3,12,22\},\{0,15,21,41\},\{0,13,18,31\},\{0,6,8,23\}$, $\{0,14,28\},\{0,14,28\},\{0,1,17\},\{0,2,10\}$ and $\{0,4,11\}$. One of the repeated short orbit generated by $\{0,14,28\}$ provides one parallel class. Nine further parallel classes are obtained from the triples $\{0,1,17\},\{1,2,18\}$, $\{2,3,19\},\{0,2,10\},\{1,3,11\},\{2,4,12\},\{0,4,11\},\{1,5,12\},\{2,6,13\}$ under the mappings $i \mapsto i+3 n(\bmod 42)$ for $n=0,1, \ldots, 13$. Again expand these parallel classes by appending each of the 5 symbols of the solution S_{0} for $v=5$ to two parallel classes. This design, with the design S_{0}, is the required solution with 2 pairs, $2+14=16$ triples and $2+(14 \times 10)+(42 \times 5)=352$ quadruples.

For $v=59$, take the following PBD with $\lambda=2$ on 54 points. It is generated cyclically under the mapping $i \mapsto i+1(\bmod 54)$ from the blocks $\{0,1,12,17\},\{0,15,29,46\},\{0,7,14,52\},\{0,3,27,49\},\{0,20,26,41\}$, $\{0,2,12,45\},\{0,1,20,24\},\{0,18,36\},\{0,18,36\},\{0,3,29\},\{0,6,10\}$, $\{0,19,32\}$. One of the repeated short orbit generated by $\{0,18,36\}$ provides one parallel class. The 18 triples $\{4,7,33\},\{13,16,42\},\{22,25,51\}$, $\{31,34,6\},\{40,43,15\},\{49,52,24\},\{2,8,12\},\{11,17,21\},\{20,26,30\}$, $\{29,35,39\},\{38,44,48\},\{47,53,3\},\{0,19,32\},\{9,28,41\},\{18,37,50\}$, $\{27,46,5\},\{36,1,14\},\{45,10,23\}$ form a parallel class. These 18 triples come in sixes from each of the three full orbits of triples and are images of one another under the mapping $i \mapsto i+9(\bmod 54)$. Consequently we obtain 9 disjoint parallel classes which are the images of the given parallel class under the mappings $i \mapsto i+n(\bmod 54)$ for $n=0,1, \ldots, 8$. Again expand these parallel classes by appending each of the 5 symbols of the solution S_{0} for $v=5$ to two parallel classes. This design, with the design S_{0}, is the required solution with 2 pairs, $2+18=20$ triples and $2+(18 \times 10)+(54 \times 7)=560$ quadruples.

We conclude this paper with a summary of our results for the case when $\lambda=2, k=4$ given in the same format as the results in the Introduction.
(i) $g_{2}^{(4)}(v)=v(v-1) / 6$ all quadruples, for $v \equiv 1,4(\bmod 6)$,
(ii) $g_{2}^{(4)}(v)=v(v+1) / 6$ comprising $v(v-3) / 6$ quadruples and $2 v / 3$ triples, for $v \equiv 0,3(\bmod 6)$,
(iii) $g_{2}^{(4)}(v)=\left(v^{2}+8\right) / 6$ comprising $v(v-2) / 6$ quadruples, $(v-2) / 3$ triples and 2 pairs, for $v \equiv 2(\bmod 6), v \neq 8$,
(iv) $g_{2}^{(4)}(v)=\left(v^{2}+11\right) / 6$ comprising $(v+1)(v-3) / 6$ quadruples, $(v+1) / 3$ triples and 2 pairs, for $v \equiv 5(\bmod 6)$.

In cases (i) and (ii) the PBD is a $\operatorname{BIBD} S_{2}(2,4, v)$ with zero or one point deleted. For the single exceptional case $v=8, g_{2}^{(4)}=13$ (seven quadruples, four triples and two pairs).

References

[1] H. Hanani, On resolvable balanced incomplete block designs, J. Combin. Theory Ser. A 17 (1974), 275-289.
[2] W.L. Kocay and R.G. Stanton, Non-isomorphic solutions for $g_{2}^{(4)}(11)$, to appear
[3] D.L. Kreher and D.R. Stinson, Small group divisible designs with block size four, J. Statist. Plann. Inference 58 (1997), 111-118.
[4] R. Rees and D.R. Stinson, On the existence of incomplete designs of block size 4, having one hole, Utilitas Math. 35 (1989), 119-152.
[5] E. Seah and D.R. Stinson, personal communication.
[6] R.G. Stanton, The exact covering of pairs on nineteen points with block sizes two, three and four, J. Combin. Math. Combin. Comput. 4 (1988), 69-78.
[7] R.G. Stanton, An improved upper bound on $g^{(4)}(18)$, Congr. Numer. 142 (2000), 29-32.
[8] R.G. Stanton, A lower bound for $g^{(4)}(18)$, Congr. Numer. 146 (2000), 153-156.
[9] R.G. Stanton, Non-isomorphic minimal bicovers of K_{8}, Ars Combin. 62 (2002), 137-144.
[10] R.G. Stanton, On the bipacking numbers $g_{2}^{(4)}(v)$, J. Combin. Math. Combin. Comput. 41 (2002), 109-115.
[11] R.G. Stanton, An improved lower bound for $g^{(4)}(17)$, to appeaar.
[12] R.G. Stanton and D.R. Stinson, Perfect pair-coverings with block sizes two, three and four, J. Combin. Inform. System Sci. 8 (1983), 21-25.
[13] R.G. Stanton and A.P. Street, Some achievable defect graphs for pairpackings on 17 points, J. Combin. Math. Combin. Comput. 1 (1987), 207-215.
[14] D.R. Stinson, Packings in CRC Handbook of Combinatorial Designs (ed. C.J. Colbourn and J.H. Dinitz), CRC Press (1996), 409-413.

