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Abstract

We survey the status of minimal coverings of pairs with block sizes
two, three and four when λ = 1, that is, all pairs from a v-set are
covered exactly once. Then we provide a complete solution for the
case λ = 2.

1 Introduction

The covering number g
(k)
λ (v) is defined as the cardinality of the minimal

pairwise balanced design (PBD) with largest block size k such that every
pair occurs exactly λ times in the PBD. For λ = 1 we normally omit the
subscript. It is trivial that g

(2)
λ (v) = λ

(
v
2

)
. Denoting the packing number

Dλ(t, k, v) as the maximum number of blocks in any t − (v, k, λ) packing,
it is easily seen that

g
(3)
λ (v) = Dλ(2, 3, v) + (λ

(
v

2

)
− 3Dλ(2, 3, v));

we merely take the maximum number of triples possible and adjoin the
uncovered pairs.
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For λ = 1, this gives

(i) g(3)(v) = v(v − 1)/6 all triples, for v ≡ 1, 3 (mod 6),

(ii) g(3)(v) = v(v + 1)/6 comprising v(v − 2)/6 triples and v/2 pairs, for
v ≡ 0, 2 (mod 6),

(iii) g(3)(v) = (v2+v+4)/6 comprising (v2−2v−2)/6 triples and (v+2)/2
pairs, for v ≡ 4 (mod 6),

(iv) g(3)(v) = (v2−v+16)/6 comprising (v2−v−8)/6 triples and 4 pairs,
for v ≡ 5 (mod 6).

In cases (i) and (ii) the PBD is a Steiner triple system (STS) with either
zero or one point deleted.

For λ = 2, the results are

(i) g
(3)
2 (v) = v(v − 1)/3 all triples, for v ≡ 0, 1 (mod 3),

(ii) g
(3)
2 (v) = v(v + 1)/3 comprising v(v − 2)/3 triples and v pairs, for

v ≡ 2 (mod 3).

In all cases the PBD is a twofold triple system (TTS) with either zero or
one point deleted.

So the first interesting case occurs for λ = 1, k = 4. This was solved by
Stanton and Stinson, [12], apart from three exceptional cases v = 17, 18, 19.

For v 6∈ {5, 6, 7, 8, 9, 10, 17, 18, 19}, the results are

(i) g(4)(v) = v(v − 1)/12 all quadruples, for v ≡ 1, 4 (mod 12),

(ii) g(4)(v) = v(v + 1)/12 comprising v(v − 3)/12 quadruples and v/3
triples, for v ≡ 0, 3 (mod 12),

(iii) g(4)(v) = (v + 1)(v + 2)/12 comprising (v − 2)(v − 3)/12 quadruples,
2(v − 2)/3 triples and 1 pair, for v ≡ 11, 2 (mod 12),

(iv) g(4)(v) = (v2 − v + 42)/12 comprising (v + 6)(v − 7)/12 quadruples
and 7 triples, for v ≡ 7, 10 (mod 12),

(v) g(4)(v) = (v2 + v + 6)/12 comprising (v2− 3v− 6)/12 quadruples and
(v + 3)/3 triples, for v ≡ 6, 9 (mod 12),

(vi) g(4)(v) = (v2+3v+8)/12 comprising v(v−5)/12 quadruples, (2v−1)/3
triples and 1 pair, for v ≡ 5, 8 (mod 12).
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In cases (i), (ii) and (iii) the PBD is a Steiner system S(2, 4, v) with zero,
one or two points deleted.

The results for 5 ≤ v ≤ 10 are as follows:

g(4)(5) = 5 (one quadruple and four pairs),

g(4)(6) = 8 (one quadruple, one triple and six pairs),

g(4)(7) = 10 (one quadruple, three triples and six pairs),

g(4)(8) = 11 (one quadruple, six triples and four pairs),

g(4)(9) = 12 (two quadruples, seven triples and three pairs),

g(4)(10) = 12 (three quadruples and nine triples).

The last design is obtained by adjoining an additional point to all blocks
of a parallel class of the unique STS(9).

The results of [12] show that g(4)(v) ≥ 29 for v = 17, 18, 19. For v = 17,
Seah and Stinson, [5], have given a PBD with 31 blocks comprising 17
quadruples, 10 triples and 4 pairs. The design is listed in [13]. Recently,
Stanton, [11], has ruled out the value 29. So 30 ≤ g(4)(17) ≤ 31. For
v = 18, Stanton, [8] and [7], has shown that 30 ≤ g(4)(18) ≤ 33. Finally,
Stanton, [6], determined the exact value of g(4)(19) as 35 by exhibiting a
design with 22 quadruples and 13 triples.

In this paper, we determine g
(4)
2 (v).

2 The cases v = 3n + 1 and 3n

There is a balanced incomplete block design, (BIBD), with parameters

(v, b, r, k, λ) = (3n + 1, n(3n + 1)/2, 2n, 4, 2).

So we immediately have g
(4)
2 (3n + 1) = n(3n + 1)/2.

If v = 3n, we can delete one point from the BIBD just cited to leave a PBD
with 2n triples and 3n(n− 1)/2 quadruples.

So we have g
(4)
2 (3n) ≤ n(3n + 1)/2.
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Now suppose the minimal PBD has g blocks consisting of gi blocks of
length i, where i = 2, 3, 4. Then, let ki be the length of block i and ri be
the frequency of element i. We have

g = g2 + g3 + g4,∑
g

(ki − 3)(ki − 4) = 2g2 + 0g3 + 0g4.

But ∑
g

(ki − 3)(ki − 4)

=
∑

g

ki(ki − 1)− 6
∑

g

ki + 12
∑

g

1

= 2v(v − 1)− 6
∑

v

ri + 12g.

Now ri = d2(v − 1)/3e+ εi, where εi ≥ 0.
So

12g = 2g2 + 6
∑

v

(d2(v − 1)/3e+ εi)− 2v(v − 1)

= 2g2 + 6vd2(v − 1)/3e+ 6
∑

v

εi − 2v(v − 1)

≥ v(6d2(v − 1)/3e − 2(v − 1)).

Let v = 3n, then

g ≤ 3n(6d(6n− 2)/3e − 2(3n− 1))/12

= n(6(2n)− 2(3n− 1))/4

= n(6n− 3n + 1)/2 = n(3n + 1)/2.

This establishes that g
(4)
2 (3n) = n(3n + 1)/2.

Indeed, it is an easy corollary that the minimum can only be achieved with
g2 = 0 and using triples and quadruples as we have done.
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3 The case v = 3n + 2, general results

We start by dividing this case into the cases when n is even and n is odd.
Thus v = 6m + 2 (n = 2m) or v = 6m + 5 (n = 2m + 1).

Case 3A. v = 6m + 2.
The packing number, [14],

D2(2, 4, 6m + 2) =
⌊

6m + 2
4

⌊
2(6m + 1)

3

⌋⌋
= m(6m + 2).

These quadruples cover 6m(6m + 2) pairs and leave (6m + 2)(6m + 1) −
6m(6m+2) = 6m+2 pairs uncovered. These uncovered pairs would require
at least 2m triples and 2 pairs. So we have a lower bound

g
(4)
2 (6m + 2) ≥ 6m2 + 4m + 2.

Suppose that this lower bound is attained and that element x occurs λi

times in blocks of length i = 2, 3, 4. Then

λ2 + 2λ3 + 3λ4 = 2(6m + 1) = 12m + 2.

Hence λ4 ≤ 4m.
Suppose a4m−i is the number of elements having λ4 = 4m− i, i ≥ 0. Then∑

i≥0

a4m−i = 6m + 2,

∑
i≥0

(4m− i)a4m−i = 4m(6m + 2).

Multiply the first equation by 4m and subtract the second equation. Then∑
i≥0

ia4m−i = 0.

It immediately follows that a4m−i = 0 for i > 0. So the only possibility
is i = 0 and λ4 = 4m. Then (λ2, λ3, λ4) = (2, 0, 4m) or (0, 1, 4m). By
counting elements, we immediately have the following result.

Lemma If v = 6m + 2 and g
(4)
2 (v) = 6m2 + 4m + 2, then there are two

elements of type (2, 0, 4m) and 6m elements of type (0, 1, 4m).

Case 3B. v = 6m + 5.
We proceed as in Case 3A and find, [14],

D2(2, 4, 6m + 5) =
⌊

6m + 5
4

⌊
2(6m + 4)

3

⌋⌋
= 6m2 + 8m + 2.
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The number of uncovered pairs is (6m + 5)(6m + 4)− 6(6m2 + 8m + 2) =
6m + 8. These uncovered pairs would require at least 2m + 2 triples and 2
pairs. So we have the bound

g
(4)
2 (6m + 5) ≥ 6m2 + 10m + 6.

Assuming that the bound is achieved and proceeding with the same nota-
tion as before, we have

λ2 + 2λ3 + 3λ4 = 2(6m + 4).

Hence λ4 ≤ 4m + 2.
Thus we may write ∑

i≥0

a4m+2−i = 6m + 5,

∑
i≥0

(4m + 2− i)a4m+2−i = 4(6m2 + 8m + 2).

Multiply the first equation by 4m + 2 and subtract to give∑
i≥0

ia4m+2−i = 2, that is,

a4m+1 + 2a4m = 2 and a4m+2−i = 0, i > 2.

These equations have 2 solutions which give 3 possibilities.

(1) a4m+1 = 2, a4m = 0. Then a4m+2 = 6m+3, and counting establishes
that there are 2 elements of type (1, 2, 4m + 1), 1 element of type
(2, 0, 4m + 2), 6m + 2 elements of type (0, 1, 4m + 2). We call a
solution of this type Case (A).

(2) a4m+1 = 0, a4m = 1. Then a4m+2 = 6m + 4 and counting establishes
that there is either 1 element of type (2, 3, 4m), 1 element of type
(2, 0, 4m + 2), 6m + 3 elements of type (0, 1, 4m + 2), or 1 element of
type (0, 4, 4m), 2 elements of type (2, 0, 4m + 2), 6m + 2 elements of
type (0, 1, 4m + 2). We call solutions of this type Case (B) and Case
(C) respectively.

The case m = 0 is exceptional. Here v = 5 and the number of pairs is 2,
the number of triples is 2, and the number of quadruples is 2. But Case
(B) has λ3 = 3 for one element and so cannot occur. Similarly, Case (C)
has λ3 = 4 for one element and so cannot occur. Thus for m = 0, there is
a unique solution

xa abp xapq
xb abq xbpq

For each m > 0, all 3 cases occur. Indeed, it is shown in [2] that for
m = 1 (v = 11) there is a total of 316 non-isomorphic solutions.
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4 The constructions for v = 6m + 2

We split this case into the cases v = 12t + 2 and v = 12t + 8.

For the former, take first a BIBD with parameters (v, b, r, k, λ) = (12t +
4, (3t + 1)(4t + 1), 4t + 1, 4, 1). Let {a, b, c, d} be a block. Delete this block
and, in the remaining 12t2 + 7 blocks, set a = b and c = d. This gives a
design of 12t2 + 7t quadruples on 12t + 2 points in which every pair {a, x},
x 6= c, occurs twice, every pair {c, x}, x 6= a, occurs twice, the pair {a, c}
does not occur, and pairs on the remaining 12t points occur once each.

Next take a 4-GDD of type 34t, [3], on these remaining 12t points. This
has 9 × 4t(4t − 1)/(2 × 6) = 12t2 − 3t quadruples. Adjoin the 4t triples
which form the groups of the 4-GDD. Finally adjoin the pairs {a, c}, {a, c}.
The result is a design with 2 pairs, 4t triples and 24t2 + 4t = 2t(12t + 2)
quadruples. This design meets the bound.

The case v = 12t+8 is more difficult. For t = 0, the bound cannot be met.
In [9] it is shown that g

(4)
2 (8) = 13, whereas the bound is 12.

There are precisely 3 non-isomorphic solutions as follows.

Solution 1: 68 128 1458 1267
78 368 2358 1357

478 2456 2347
567 1346

Solution 2: 68 256 1258 1467
78 357 3458 2346

567 1368 1237
145 2478

Solution 3: 68 256 1234 2478
78 456 1258 1467

157 3458 2367
357 1368

Indeed, setting m = 2t + 1, we have in general that g
(4)
2 (12t + 8) =

24t2 + 32t + 12, where t > 0, and g2 = 2, g3 = 4t + 2, g4 = 24t2 + 28t + 8.
First, we give a solution for t = 1 (v = 20).
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v = 20. Let the elements be ∞1,∞2, 0, 1, . . . , 17. The pairs are {∞1,∞2}
and {∞1,∞2}. The triples are {i, 6 + i, 12 + i}, i = 0, 1, . . . , 5.
The quadruples are {∞1, i, 6 + i, 12 + i}, {∞1, 3i, 1 + 3i, 5 + 3i}, {∞2, 1 +
3i, 2+3i, 6+3i}, {∞2, 2+3i, 3+3i, 7+3i}, i = 0, 1, . . . , 5 and {i, 1+ i, 3+
i, 11+i}, {i, 3+i, 5+i, 14+i}, i = 0, 1, . . . , 17, all addition being modulo 18.

For t ≥ 5, take a PBD on 12t + 10 points with all blocks of size 4 except
for one block of size 22, [4]. Let the points be 1, 2, . . . , 12t + 6, a, b, c, d and
set V = {1, 2, . . . , 12t + 6} and W = {1, 2, . . . , 18}. Let {a, b, c, d} ∪W be
the 22-block. Delete this block and, in the remaining 12t2 +19t−31 blocks
set a = b and c = d. This gives a design of 12t2 + 19t − 31 quadruples on
12t + 8 points in which every pair {a, x}, x ∈ V \W , occurs twice, every
pair {c, x}, x ∈ V \ W , occurs twice, the pair {a, c} does not occur, and
pairs {x, y}, x, y ∈ V occur once except if both x, y ∈ W in which case the
pair does not occur at all.

Next take a 4-GDD of type 34(t−1)181, [3], on the set V with the set W
as the long block. This has 12t2 + 9t − 21 quadruples. Adjoin the 4t − 4
triples which form groups of the 4-GDD. This design also covers every pair
{x, y}, x, y ∈ V , precisely once except if both x, y ∈ W in which case the
pair does not occur at all.

Finally, take the design given above on 20 points on the set {a, c}∪W and
consisting of 2 pairs, 6 triples and 60 quadruples. This covers every pair
{a, x}, x ∈ W , twice, every pair {c, x}, x ∈ W , twice, the pair {a, c} twice,
and every pair {x, y}, x, y ∈ W , twice.

Juxtapose these three designs to give the required solution with 2 pairs,
4t + 2 triples and 24t2 + 28t + 8 quadruples.

This construction fails for t = 2, 3 and 4 (v = 32, 44 and 56). Designs for
v = 32 and v = 56 are given below and the case v = 44 is covered by the
construction given in Section 6.

v = 32. Let the elements be ∞1,∞2, 0, 1, . . . , 29. The pairs are {∞1,∞2}
and {∞1,∞2}. The triples are {i, 10 + i, 20 + i}, i = 0, 1, . . . , 9.
The quadruples are {∞1, i, 10+ i, 20+ i}, {∞1, 3i, 1+3i, 14+3i}, {∞2, 1+
3i, 2+3i, 15+3i}, {∞2, 2+3i, 3+3i, 16+3i}, i = 0, 1, . . . , 9 and {i, 3+i, 4+
i, 12+i}, {i, 4+i, 6+i, 21+i}, {i, 3+i, 5+i, 11+i}, {i, 5+i, 12+i, 19+i}, i =
0, 1, . . . , 29, all addition being modulo 30.

v = 56. Let the elements be ∞1,∞2, 0, 1, . . . , 53. The pairs are {∞1,∞2}
and {∞1,∞2}. The triples are {i, 18 + i, 36 + i}, i = 0, 1, . . . , 17.
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The quadruples are {∞1, i, 18+ i, 36+ i}, {∞1, i, 1+ i, 8+ i}, {∞2, 1+ i, 2+
i, 9 + i}, {∞2, 2 + i, 3 + i, 10 + i}, i = 0, 1, . . . , 17 and {i, 9 + i, 21 + i, 22 +
i}, {i, 10+i, 21+i, 27+i}, {i, 2+i, 5+i, 9+i}, {i, 15+i, 25+i, 41+i}, {i, 3+
i, 17 + i, 32 + i}, {i, 12 + i, 23 + i, 46 + i}, {i, 5 + i, 19 + i, 35 + i}, {i, 28 +
i, 30 + i, 34 + i}, i = 0, 1, . . . , 53, all addition being modulo 54.

5 The constructions for v = 6m + 5

We again split the construction into two cases according as m = 2t or
m = 2t + 1.

In the first case v = 12t + 5, and we have already cited the unique so-
lution S0 for t = 0, v = 5. For t ≥ 2, take a BIBD with parameters
(v, b, r, k, λ) = (12t + 4, (3t + 1)(4t + 1), 4t + 1, 4, 1). Let the points be
1, 2, . . . , 12t, a, b, c, d where {a, b, c, d} is a block. Delete these 4 elements
throughout the design. What remains is a PBD on points 1, 2, . . . , 12t hav-
ing blocks of triples and quadruples in which the triples form 4 parallel
classes.

Now take a PBD on 12t+7 points consisting of a 7-block on points a, b, c, d, e,
f, g and t(12t + 13) quadruples on these 7 points along with the points
1, 2, . . . , 12t of the previous design, [4]. Then delete elements a, b, c, d, e, f, g
to leave 7 parallel classes of triples as well as 3t(4t− 5) quadruples. Juxta-
pose these two designs and we have a design on 12t points with 11 parallel
classes of triples and 24t(t− 1) quadruples.

Now take the solution S0 found for v = 5 and comprising blocks

xa abp xapq
xb abq xbpq

Adjoin each of x, a, b, p, q to two of the parallel classes to give 40t more
quadruples (one parallel class is left over), and we now have a design with
24t2 + 16t quadruples and 4t triples. This design, with the design S0, is
the required solution with 2 pairs, 4t+2 triples and 24t2+16t+2 quadruples.

The construction fails for t = 1 (v = 17). However, that case is covered by
a construction given in Section 6.
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We now consider the case m = 2t + 1, i.e. v = 12t + 11. We already have
a solution S1 for v = 11, [10]. It comprises blocks

XY ZAF XACH Y ZCG ABCD
XY ZBE XBDG Y ZDH ABGH

ZCH XDEH Y BCE CDEF
ZDG XCFG Y ADF EFGH

XZAE Y AEG
XZBF Y BFH

For t ≥ 3, take a PBD on 12t + 10 points with all blocks of size 4 except
for one block of size 10, [4]. Let the points be 1, 2, . . . , 12t, a, b, . . . , j where
{a, b, . . . , j} is the 10-block. Delete the points a, b, . . . , j to leave 10 parallel
classes of triples (the remaining blocks being quadruples); this design is on
12t points.

Now take a PBD on 12t + 13 points with all blocks of size 4 except for one
block of size 13, [4]. This is equivalent to a Steiner system S(2, 4, 12t + 13)
containing an S(2, 4, 13) as a subsystem. Let the points be 1, 2, . . . , 12t,
a, b, . . . ,m where {a, b, . . . ,m} is the 13-block. Delete the points a, b, . . . ,m
to leave 13 parallel classes of triples (the remaining blocks being quadru-
ples); this design is also on 12t points.

Juxtapose these two designs and the design S1 on 11 points. Further, ad-
join each point of S1 to two parallel classes. This gives a design on 12t+11
points having 2 pairs, 4t + 4 triples and 24t2 + 40t + 16 quadruples and
meeting the bound.

This construction fails for t = 1 and 2 (v = 23 and 35). However, the case
v = 35 is covered by the construction given in Section 6, and v = 23 will
be dealt with in Section 7.

6 A tripling construction

Start with a solution S on 3n + 2 elements. Then take a resolvable BIBD
with parameters (v, b, r, k, λ) = (6n + 6, (6n + 5)(2n + 2), 6n + 5, 3, 2) on a
disjoint set of elements. For n ≥ 1, there exist resolvable designs of this
type, [1].

Expand the blocks of the BIBD by appending each of the 3n+2 elements of
S to two of the parallel classes (this leaves over one of the parallel classes of
triples). Adjoin the design S to give a final PBD on 9n+8 points with λ = 2.
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This construction allows us to use the existence of bicoverings for n =
1, 3 and 4, i.e. on 5, 11 and 14 points to construct bicoverings on 17, 35 and
44 points, respectively; which cases were not covered in the constructions
of Section 4 and 5.

7 The last open case, v = 23

The previous sections cover all cases except for the value v = 23. The
construction for this case bears some resemblance to that in Section 6.

We first take a PBD with λ = 2 on 18 points having 18 quadruples and
66 triples, the latter being decomposable into 11 parallel classes of triples.
Such a design can be generated cyclically under the mapping i 7→ i+1 (mod
18) from the blocks {0, 1, 5, 9}, {0, 6, 12}, {0, 6, 12}, {0, 3, 10}, {0, 2, 7} and
{0, 2, 3}. By considering the differences, it is easy to verify that this de-
sign covers all pairs precisely twice. The repeated short orbit generated by
{0, 6, 12} provides two parallel classes. The six triples {0, 3, 10}, {9, 12, 1},
{4, 6, 11}, {13, 15, 2}, {5, 7, 8}, {14, 16, 17} form a further parallel class.
These 6 triples come in pairs from each of the three full orbits of triples,
with the two triples in each pair being images of one another under the
mapping i 7→ i + 9 (mod 18). Consequently, these three orbits may be de-
composed into 9 disjoint parallel classes which are the images of the given
parallel class under the mappings i 7→ i + n (mod 18) for n = 0, 1, . . . , 8.

Now expand 10 of these parallel classes by appending each of the 5 symbols
of the solution S0 for v = 5 to two parallel classes. This design, with
the design S0, is the required solution with 2 pairs, 2 + 6 = 8 triples and
2 + 18 + (10× 6) = 80 quadruples.

8 Concluding remarks

When v = 6m+2, we might note that it is not possible to have the solution
S0 for v = 5 embedded in the solution for v = 6m + 2. This is because the
solution for v = 6m + 2 must contain two pairs xy, xy whereas S0 has two
pairs of the form xa, xb.

On the other hand, it was shown in Section 5 that a solution for v =
12t + 5, t ≥ 2, can be found in which the solution S0 for v = 5 is embed-
ded, and the case t = 1 (v = 17) was similarly shown, in Section 6, to have
a solution containing S0.
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If v = 12t + 11, no solution for t = 0 can contain the design S0 for v = 5.
The reason is as follows. Let the points be x, a, b, p, q, 1, 2, 3, 4, 5, 6. Any
solution contains 16 quadruples, 4 triples and 2 pairs and must contain the
blocks of S0: xa, xb, abp, abq, xapq, xbpq. Now each of the points x, a, b, p, q
cannot occur in further blocks with one another and so must occur in four
further quadruples to cover pairs with the points 1, 2, 3, 4, 5, 6. But there
are only 16 quadruples so this is impossible. If t = 1, the construction
of Section 7 produces a solution for v = 23 that contains S0. For t ≥ 5,
proceed as in Section 5 but use a PBD on 12t + 22 points with all blocks
of size 4 except for a single block of length 22, (this requires t ≥ 4), as well
as a PBD on 12t + 25 points, again with all blocks of size 4 except for a
single block of length 25, (this requires t ≥ 5). By deleting the points from
the long blocks we get a PBD on 12t points having λ = 2 and 47 parallel
classes of triples. Then juxtapose the solution for v = 23 and append each
of the 23 points in the latter solution to two of the parallel classes. This
expands 46 of the parallel classes and gives a solution for 12t + 23 points,
t ≥ 5, that contains the solution given for v = 23, and consequently the
solution for v = 5.

We have thus shown that, if v = 12t+11, there is a solution containing the
solution S0 for v = 5 provided that t > 5. Of the small cases, we know that
embedding in v = 11 is impossible and in v = 23 is possible. This leaves
the values v = 35, 47, 59, 71. A solution in the latter case can be obtained
by using the tripling construction, Section 6, starting with the solution for
v = 23 given in Section 7. The three remaining cases are also handled using
the construction given in Section 7.

For v = 35, take the following PBD with λ = 2 on 30 points. It is gen-
erated cyclically under the mapping i 7→ i + 1 (mod 30) from the blocks
{0, 1, 6, 15}, {0, 11, 23, 28}, {0, 4, 8, 27}, {0, 10, 20}, {0, 10, 20}, {0, 9, 12},
{0, 13, 14} and {0, 6, 8}. The ten triples {0, 10, 20}, {4, 13, 16}, {14, 23, 26},
{24, 3, 6}, {8, 21, 22}, {18, 1, 2}, {28, 11, 12}, {9, 15, 17}, {19, 25, 27}, {29, 5, 7}
form a parallel class. The last 9 triples come in threes from each of the
three full orbits of triples and are images of one another under the map-
ping i 7→ i + 10 (mod 30). Consequently, we obtain 10 disjoint parallel
classes which are the images of the given parallel class under the mappings
i 7→ i + n (mod 30) for n = 0, 1, . . . , 9. Now expand these parallel classes
by appending each of the 5 symbols of the solution S0 for v = 5 to two
parallel classes. This design, with the design S0, is the required solution
with 2 pairs, 2+10 = 12 triples and 2+(10×10)+(30×3) = 192 quadruples.
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For v = 47, take the following PBD with λ = 2 on 42 points. It is gen-
erated cyclically under the mapping i 7→ i + 1 (mod 42) from the blocks
{0, 3, 7, 12}, {0, 3, 12, 22}, {0, 15, 21, 41}, {0, 13, 18, 31}, {0, 6, 8, 23},
{0, 14, 28}, {0, 14, 28}, {0, 1, 17}, {0, 2, 10} and {0, 4, 11}. One of the re-
peated short orbit generated by {0, 14, 28} provides one parallel class. Nine
further parallel classes are obtained from the triples {0, 1, 17}, {1, 2, 18},
{2, 3, 19}, {0, 2, 10}, {1, 3, 11}, {2, 4, 12}, {0, 4, 11}, {1, 5, 12}, {2, 6, 13} under
the mappings i 7→ i+3n (mod 42) for n = 0, 1, . . . , 13. Again expand these
parallel classes by appending each of the 5 symbols of the solution S0 for
v = 5 to two parallel classes. This design, with the design S0, is the required
solution with 2 pairs, 2+14 = 16 triples and 2+ (14× 10)+ (42× 5) = 352
quadruples.

For v = 59, take the following PBD with λ = 2 on 54 points. It is gen-
erated cyclically under the mapping i 7→ i + 1 (mod 54) from the blocks
{0, 1, 12, 17}, {0, 15, 29, 46}, {0, 7, 14, 52}, {0, 3, 27, 49}, {0, 20, 26, 41},
{0, 2, 12, 45}, {0, 1, 20, 24}, {0, 18, 36}, {0, 18, 36}, {0, 3, 29}, {0, 6, 10},
{0, 19, 32}. One of the repeated short orbit generated by {0, 18, 36} pro-
vides one parallel class. The 18 triples {4, 7, 33}, {13, 16, 42}, {22, 25, 51},
{31, 34, 6}, {40, 43, 15}, {49, 52, 24}, {2, 8, 12}, {11, 17, 21}, {20, 26, 30},
{29, 35, 39}, {38, 44, 48}, {47, 53, 3}, {0, 19, 32}, {9, 28, 41}, {18, 37, 50},
{27, 46, 5}, {36, 1, 14}, {45, 10, 23} form a parallel class. These 18 triples
come in sixes from each of the three full orbits of triples and are images
of one another under the mapping i 7→ i + 9 (mod 54). Consequently we
obtain 9 disjoint parallel classes which are the images of the given par-
allel class under the mappings i 7→ i + n (mod 54) for n = 0, 1, . . . , 8.
Again expand these parallel classes by appending each of the 5 symbols
of the solution S0 for v = 5 to two parallel classes. This design, with the
design S0, is the required solution with 2 pairs, 2 + 18 = 20 triples and
2 + (18× 10) + (54× 7) = 560 quadruples.

We conclude this paper with a summary of our results for the case when
λ = 2, k = 4 given in the same format as the results in the Introduction.

(i) g
(4)
2 (v) = v(v − 1)/6 all quadruples, for v ≡ 1, 4 (mod 6),

(ii) g
(4)
2 (v) = v(v+1)/6 comprising v(v−3)/6 quadruples and 2v/3 triples,

for v ≡ 0, 3 (mod 6),

(iii) g
(4)
2 (v) = (v2+8)/6 comprising v(v−2)/6 quadruples, (v−2)/3 triples

and 2 pairs, for v ≡ 2 (mod 6), v 6= 8,

(iv) g
(4)
2 (v) = (v2+11)/6 comprising (v+1)(v−3)/6 quadruples, (v+1)/3

triples and 2 pairs, for v ≡ 5 (mod 6).
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In cases (i) and (ii) the PBD is a BIBD S2(2, 4, v) with zero or one point
deleted. For the single exceptional case v = 8, g

(4)
2 = 13 (seven quadruples,

four triples and two pairs).
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