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1 Introduction

A Steiner system is an ordered pair (V,B) where V is a set and B is a
collection of k-element subsets of V , usually referred to as blocks, which
have the property that every t-element subset of V is contained in precisely
one block. In order to exclude trivial cases it is often assumed that 1 < t < k.

The vast literature on Steiner systems which now exists (for a detailed
bibliography see [2] or [3]) almost all relates to the case when the set V
is finite; there appears to be very little published work on infinite Steiner
systems. In this paper we confine our attention to the case where t = 2 and
k = 3, so-called Steiner triple systems. There is a well established body of
knowledge concerning such systems when the set V is finite. Our aim is to
prove various results in the case where V has cardinality ℵ0, We call such a
system a countably infinite Steiner triple system, henceforth abbreviated to
CIST.

2 Existence and Enumeration

In this section we give explicit constructions which answer the existence and
enumeration question for CISTs. Our main result is that the number of
non-isomorphic countably infinite Steiner triple systems has the cardinality
of the continuum. The proof is in three stages. First we prove the existence
of CISTs by giving a simple direct construction. Secondly we examine the
quadrilateral structure of the constructed systems. Finally we complete the
enumeration to establish the main result.
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STAGE 1 - Existence

We take as our representation of a countably infinite set, Q̄ = Q ∪
{∞,−∞} where Q is the set of rationals. The construction of a CIST com-
prises three types of block which we consider separately. The second type of
block depends on the selection of a certain function f and we shall denote
the resulting CIST by CIST(f).

Block Type A. These consist of all blocks {x, y, z} where x + y + z = 0
and x, y, z are unequal with x, y, z ∈ Q. Clearly all pairs of distinct rationals
except those of the form {q,−2q} where q ∈ Q \ {0} will be contained in
precisely one block of this type.

Block Type B. Let f : {r ∈ Q : 1

2
≤ |r| < 1} → {−1, 1}. The blocks of

type B are then taken to be all the blocks of the form

{(−2)sr, (−2)s+1r, (−1)sf(r)∞} where s is an integer.

(Here, and subsequently, we take (−1)∞ to be −∞.) Note that for any
q ∈ Q \ {0} there exists a unique r ∈ Q such that 1

2
≤ |r| < 1 and integer

s such that q = (−2)sr. Blocks of type B exactly cover all pairs of the form
{q,−2q}, {q,∞} and {q,−∞} where q ∈ Q \ {0}.

Block Type C. To complete the CIST(f) define a final block {0,∞,−∞}.

STAGE 2 - Quadrilateral structure

DEFINITION. A quadrilateral consists of four blocks of a Steiner triple
system whose union has cardinality six. It is clear that a quadrilateral must
have the following configuration. {x, y, z}, {a, b, z}, {a, y, c}, {x, b, c}.

DEFINITION. The quadrilateral graph of a Steiner triple system is the
graph with vertex set the set of quadrilaterals and edge set the joins of
vertices (i.e. quadrilaterals) which have at least one block in common.

NOTE. Both the number of quadrilaterals and the quadrilateral graph of a
Steiner triple system are invariants. Therefore two Steiner triple systems with
non-isomorphic quadrilateral graphs must themselves be non-isomorphic.

We firstly establish the three following lemmas.
LEMMA 1. No quadrilateral of a CIST(f) as constructed above contains
the block {0,∞,−∞}.
Proof: Suppose a quadrilateral contained {0,∞,−∞}. Then since each
element occurs in precisely two blocks, the element 0 must appear in one
more block and from our construction this must be of the form {0, x,−x}
where x ∈ Q \ {0}. Similarly ∞ must occur in one more block and from
our construction this has the form {∞, y,−2y} for y ∈ Q \ {0}. From the
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three blocks {0,∞,−∞}, {0, x,−x}, {∞, y,−2y} we must have a maximum
of six distinct elements. Hence we may assume that either y = x or −2y = x.
Therefore the third block has the form {∞, x,−2x} or {∞,−x/2, x}.

Finally the structure of a quadrilateral requires that −∞ and −x oc-
cur again in one block. Thus the fourth block must have one of the forms
{−∞,−x, 2x} or {−∞,−x, x/2} from our construction. None of the four
possibilities for the third and fourth blocks leads to a quadrilateral since in
each case the cardinality of the union of the four blocks is greater than six.

LEMMA 2. No quadrilateral of a CIST(f) contains four blocks of type A.
Proof: Suppose some quadrilateral did and it was

{x, y, z}, {a, b, z}, {a, y.c}, {x, b, c}

where x, y, z, a, b, c are distinct elements of Q. By the construction, x+y+z =
a+b+z = a+y+c = x+b+c = 0. From these equations we obtain x+y = a+b
and x− y = a− b, and so x = a, y = b, z = c. But this is a contradiction.

LEMMA 3. No quadrilateral of a CIST(f) contains four blocks of type B.
Proof: Suppose some quadrilateral did. Then it would have one of the two
following forms:

(i) {∞, x,−2x}, {∞, y,−2y}, {−∞, x, y}, {−∞,−2x,−2y}

(ii) {∞, x,−2x}, {∞, y,−2y}, {−∞, x,−2y}, {−∞,−2x, y}

where x, y,−2x,−2y are distinct elements of Q \ {0}.
In case (i) the existence of the third block gives x = −2y or y = −2x,

both of which are contradictions. In case (ii) the third block gives x = 4y
and the fourth block gives y = 4x and these together form a contradiction.

DISCUSSION. Lemmas 1, 2 and 3 establish that any quadrilateral in a
CIST(f) must contain two blocks of type A and two blocks of type B. The
two type B blocks must have the form {±∞, x,−2x} and {±∞, y,−2y}
where x, y,−2x,−2y are distinct elements of Q \ {0}. There are just two
possibilities for the two type A blocks:

(i) {x,−2y, z} and {y,−2x, z}

(ii) {x, y, z} and {−2x,−2y, z}

where z ∈ Q. In case (i) we have x− 2y + z = 0 and y − 2x+ z = 0 giving
x = y which is a contradiction. In case (ii) we have x + y + z = 0 and
−2x − 2y + z = 0 and so z = 0 and y = −x. Thus any quadrilateral in a
CIST(f) must have the form

{±∞, x,−2x}, {±∞,−x, 2x}, {0, x,−x}, {0, 2x,−2x},
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where x ∈ Q \ {0}.
Further it is clear that if such a CIST(f) contains a quadrilateral with the

above blocks it also will contain by our construction the two quadrilaterals
with blocks

{∓∞,
x

2
,−x}, {∓∞,−

x

2
, x}, {0,

x

2
,−

x

2
}, {0, x,−x} and

{∓∞, 2x,−4x}, {∓∞,−2x, 4x}, {0, 2x,−2x}, {0, 4x,−4x}

and it is evident that these are the only quadrilaterals in the CIST having a
block in common with the original quadrilateral. In addition each of these
two quadrilaterals will have a block in common with another quadrilateral
namely

{±∞,
x

4
,−

x

2
}, {±∞,−

x

4
,
x

2
}, {0,

x

4
,−

x

4
}, {0,

x

2
,−

x

2
} and

{±∞, 4x,−8x}, {±∞,−4x, 8x}, {0, 4x,−4x}, {0, 8x,−8x}

respectively.
By continued application of this argument it is clear that what is obtained

is a doubly infinite chain in the quadrilateral graph.

The existence of quadrilaterals in a CIST(f) depends on the choice of
f . By choosing f such that f(r) 6= f(−r) for all r satisfying 1

2
≤ r < 1 no

quadrilaterals will appear in the resulting CIST(f). Steiner triple systems
without quadrilaterals are known as anti-Pasch systems. In the case of finite
Steiner triple systems the spectrum of v for which anti-Pasch Steiner triple
systems exist appears not to be completely determined. In [1] Doyen gives a
construction for anti-Pasch Steiner triple systems when v ≡ 3 (mod 6) and is
relatively prime to 7. The discussion above enables us to state the following
theorem.

THEOREM 1. There exists a countably infinite Steiner triple system hav-
ing no quadrilaterals i.e. an anti-Pasch CIST.

By choosing f such that f(r) = f(−r) for precisely one r satisfying
1

2
≤ r < 1 a single doubly infinite chain of quadrilaterals will be present in

the quadrilateral graph of the resulting CIST(f). If f is chosen arbitrarily
then there will be a doubly infinite chain of quadrilaterals for each r satisfying
1

2
≤ r < 1 for which f(r) = f(−r); moreover these chains will be mutually

disjoint.

STAGE 3 - Enumeration

We are now in a position to prove the main result of this section.
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THEOREM 2. The number of countably infinite Steiner triple systems has
the cardinality of the continuum.
Proof: The method of the proof is to start with a CIST(f) having exactly
one doubly infinite chain in its quadrilateral graph. From this system we
obtain 2ℵ0 CISTs each of which is obtained by minor modifications of the
original CIST(f). The modifications break the chain in the quadrilateral
graph and this fracturing can be controlled to give 2ℵ0 distinct patterns. The
corresponding CISTs are therefore non-isomorphic. Initially, then, choose
any f for which there is precisely one r ∈ Q satisfying 1

2
≤ r < 1 and

f(r) = f(−r). For example

f(r) =

{

1 if 1

2
≤ r < 1, or if r = −1

2
,

−1 if − 1 < r < −1

2
.

The quadrilateral graph of such a CIST(f) comprises a single doubly infinite
chain.

If a CIST contains a quadrilateral

{±∞, x,−2x}, {±∞,−x, 2x}, {0, x,−x}, {0, 2x,−2x},

then we define the opposite quadrilateral to be

{0,−x, 2x}, {0, x,−2x}, {±∞, 2x,−2x}, {±∞, x,−x},

that is the quadrilateral obtained from the original by set complementation.
It is obvious that replacing a quadrilateral in a Steiner triple system by its
opposite still gives a Steiner triple system.

Returning now to the CIST(f) constructed above, we investigate the
effect on the quadrilateral graph of replacing a quadrilateral of the CIST by
its opposite. Firstly note that the vertex corresponding to the quadrilateral,
its two adjacent vertices and all edges incident with any of these vertices
are removed from the graph. It remains to ascertain what new structure is
introduced. Observe that all new blocks are either of the form {0, x,−2x}
which we refer to as type D, or {±∞, x,−x} type E, where x ∈ Q \ {0}.

Any new vertex that is formed must contain a block of one of these types.
Recalling that each element occurs in precisely two blocks of a quadrilateral
there are six possibilities to consider. The quadrilateral must contain at least
one of the following.

(i) two blocks of type D,

(ii) one block of type D and one of type A,

6



(iii) one block of type D and the block of type C,

(iv) two blocks of type E,

(v) one block of type E and one of type B,

(vi) one block of type E and the block of type C.

We investigate each of these in turn and reduce the possibilities to four
different types (I), (II), (III) and (IV) given below.

(i) the quadrilateral contains blocks {0, x,−2x} and {0, y,−2y}, both of
type D. Then the remaining two blocks are of one of the forms:

(a) {x, y, z} and {−2x,−2y, z} where z ∈ Q \ {0}. These are both of
type A giving x+ y+ z = −2x− 2y+ z = 0. Hence z = 0 and we
have a contradiction.

(b) {x, y,±∞} and {−2x,−2y,±∞}. If the first of these was of type
B then either y = −2x or x = −2y giving a repeated pair in
each case. So we are left with {x, y,±∞} being of type E giving
y = −x and we have an opposite quadrilateral (Type I).

(c) {x,−2y, z} and {−2x, y, z} where z ∈ Q \ {0}. Again these are
both of type A so x− 2y + z = y − 2x+ z = 0. Hence x = y and
we have a contradiction.

(d) {x,−2y,±∞} and {−2x, y,±∞}. If the first of these was of type
B then since x 6= y, we must have x = 4y and no such second
block exists. If the first block was of type E then x = 2y and
again no such second block exists.
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(ii) the quadrilateral contains blocks {0, x,−2x} of type D and {0, y.− y}
of type A. Again the remaining two blocks are of one of the forms:

(a) {x, y, z} and {−2x,−y, z} where z ∈ Q \ {0}. These are both of
type A giving x + y + z = −2x − y + z = 0. Hence y = −3x/2
and z = x/2 yielding the quadrilateral of Type II

{0, x,−2x}, {0,−3x/2, 3x/2}, {x,−3x/2, x/2}, {−2x, 3x/2, x/2}.

(b) {x, y,±∞} and {−2x,−y,±∞}. If the first block was of type B
then either y = −2x giving a repeated pair or y = −x/2 and no
such second block exists. If the first block was of type E then
y = −x giving a repeated pair.

(c) {x,−y, z} and {−2x, y, z} where z ∈ Q \ {0}. This becomes the
same as (a) by replacing y by −y and yields the same quadrilateral
(Type II).

(d) {x,−y,±∞} and {−2x, y,±∞}. Again this becomes the same
as (b) by replacing y by −y and may be eliminated in the same
manner.

(iii) the quadrilateral contains blocks {0, x,−2x} of type D and {0,∞,−∞}
of type C. The remaining two blocks are of the form {x, y,±∞} and
{−2x, y,∓∞} where y ∈ Q \ {0}, and with obvious notation as to
selection of the “sign of the ∞ s”. If the first block was of type B then
either y = −2x which is clearly impossible or y = −x/2 and no such
second block exists. If the first block was of type E then y = −x and
again no such second block exists.

(iv) the quadrilateral contains blocks {±∞, x,−x} and {±∞, y,−y} both
of type E. The remaining two blocks are of one of the forms:

(a) {0, x, y} and {0,−x,−y} . If the first block was of type A then
y = −x which is impossible. If the first block was of type D then
either y = −2x or x = −2y and we have an opposite quadrilateral
(Type I).

(b) {x, y, z} and {−x,−y, z} where z ∈ Q \ {0}. These blocks are of
type A. Hence x + y + z = −x − y + z = 0 giving z = 0 and we
have a contradiction.

(c) {x, y,∓∞} and {−x,−y,∓∞}. If the first block was of type B
then either y = −2x or x = −2y yielding without loss of generality
the quadrilateral of Type IV

{±∞, x,−x}, {±∞, 2x,−2x}, {∓∞, x,−2x}, {∓∞,−x, 2x}.
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If the first block was of type E then y = −x which is impossible.

Now we must go on to consider the last two blocks of the forms {x,−y, }
and {−x, y, } where again the missing element may be either 0, z ∈
Q \ {0} or ∓∞. These are treated exactly similarly to (a), (b) or (c)
above respectively where now x is replaced by −x. Again the same two
quadrilaterals are obtained.

(v) the quadrilateral contains blocks {±∞, x,−x} of type E and
{±∞, y,−2y} of type B. The remaining two blocks are of one of the
forms:

(a) {0, x, y} and {0,−x,−2y}. If the first block was of type D then
either y = −2x and no such second block exists or y = −x/2 and
we have a repeated pair. If the first block was of type A then
y = −x which is impossible.

(b) {x, y, z} and {−x,−2y, z} where z ∈ Q \ {0}. Both blocks are of
type A. Hence x+ y+ z = −x− 2y+ z = 0 giving y = −2x/3 and
z = −x/3 yielding the quadrilateral of Type III
{x,−2x/3,−x/3}, {−x, 4x/3,−x/3}, {±∞, x,−x},
{±∞,−2x/3, 4x/3}.

(c) {x, y ∓∞} and {−x,−2y,∓∞}. If the first block was of type B
then either y = −2x and no such second block exists or y = −x/2
and we have a repeated pair. If the first block was of type E then
y = −x and again we have a repeated pair.

Now we must go on to consider the last two blocks of the forms {−x, y, }
and {x,−2y, } where again the missing element may be either 0, z ∈
Q \ {0} or ∓∞. These are treated exactly similarly to (a), (b) or (c)
above respectively where now x is replaced by −x. Again the only
quadrilateral obtained is the one as in (b) above but with −x replacing
x, i.e. Type III

{−x, 2x/3, x/3}, {x,−4x/3, x/3}, {±∞, x,−x}, {±∞, 2x/3,−4x/3}.
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(vi) the quadrilateral contains blocks {±∞, x,−x} of type E and
{0,∞,−∞} of type C. The remaining two blocks are of one of the
forms:

(a) {x,∓∞, y} and {−x, 0, y} where y ∈ Q \ {0}. From the second of
these blocks y 6= −x so the first block is not of type E. It therefore
must be of type B. Hence either y = −2x or y = −x/2 and no
such second block exists in either case.

(b) {−x,∓∞, y} and {x, 0, y} where y ∈ Q \ {0}. This is the same as
(a) with x replaced by −x and is eliminated in the same manner.

Summarising, four new types of quadrilateral may appear, of one of the
following forms:

(I) {0,−x, 2x}, {0, x,−2x}, {±∞, 2x,−2x}, {±∞, x,−x} which is an op-
posite quadrilateral.

(II) {0, x,−2x}, {0,−3x/2, 3x/2}, {x,−3x/2, x/2}, {−2x, 3x/2, x/2}.

(III) {x,−2x/3,−x/3}, {−x, 4x/3,−x/3}, {±∞, x,−x},
{±∞,−2x/3, 4x/3}.

(IV) {±∞, x,−x}, {±∞, 2x,−2x}, {∓∞, x,−2x}, {∓∞,−x, 2x}.

However in possibility (IV) the only way in which blocks {±∞, x,−x} and
{±∞, 2x,−2x} can appear in the CIST is either by replacing the quadrilat-
eral {±∞, x,−2x}, {±∞,−x, 2x}, {0, x,−x}, {0, 2x,−2x} by its opposite in
which case neither of the blocks {∓∞, x,−2x} and {∓∞,−x, 2x} exist or
by replacing both of the quadrilaterals which are adjacent to the above in
the quadrilateral graph i.e. quadrilaterals corresponding to two vertices a
distance two apart. Since in what follows we never replace quadrilaterals less
than a distance three apart, quadrilaterals of type (IV) do not appear and
can be disregarded.

So the overall effect on the quadrilateral graph of replacing a quadrilateral
in the CIST can be illustrated in the following diagram. The infinite chain
is broken and an offshoot configuration obtained.

10



This part of
the graph is
deleted

Original
quadrilateral
{±∞, x,−2x}B
{±∞,−x, 2x}B
{0, x,−x}A
{0, 2x,−2x}A

Opposite
quadrilateral
{0, x,−2x}D
{0,−x, 2x}D
{±∞, x,−x}E
{±∞, 2x,−2x}E

Type II
quadrilateral
{0, x,−2x}D
{0, 3x/2,−3x/2}A
{x,−3x/2, x/2}A
{−2x, 3x/2, x/2}A

{0, x,−2x}D
{0, 3x/2,−3x/2}A
{−x,−3x/2,−x/2}A
{2x,−3x/2,−x/2}A
Type II
quadrilateral

Type III quadrilateral either as given or
the one obtained by replacing x by −x
{−2x, 4x/3, 2x/3}A
{2x,−8x/3, 2x/3}A
{±∞, 2x,−2x}E
{±∞, 4x/3,−8x/3}B

{−x, 2x/3, x/3}A
{x,−4x/3, x/3}A
{±∞, x,−x}E
{±∞, 2x/3,−4x/3}B
Type III quadrilateral either as given or
the one obtained by replacing x by −x
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In the CIST(f) which we are considering let r0 be the unique rational
in [1

2
, 1) such that f(r0) = f(−r0). Then, in the above diagram, x is of the

form ±(−2)sr0 for some s ∈ Z because only if x is of this form can both the
blocks {±∞, x,−2x} and {±∞,−x, 2x} exist with the same choice of the
signs of the ∞ s. Since 2x/3 and 4x/3 are then not of the form ±(−2)sr0 for
any s ∈ Z there are only two type III quadrilaterals to which each opposite
quadrilateral is adjacent, as indicated. For the same reason and because
3x/2 is also not of the form ±(−2)sr0 for any s ∈ Z, none of the type II or
type III quadrilaterals can be adjacent to any quadrilateral in the original
doubly infinite chain. Again the fact that we never replace quadrilaterals
corresponding to vertices in the original doubly infinite chain less than a
distance three apart ensures that no new type of quadrilateral is adjacent to
any other new type of quadrilateral other than as indicated on the diagram
i.e. the effect of the replacement operation is local to each vertex representing
the quadrilateral replaced.

We are now finally in a position to construct 2ℵ0 pairwise non-isomorphic
CISTs. Choose any subset S of Z+. First replace the quadrilateral

{±∞, r0,−2r0}, {±∞,−r0, 2r0}, {0, r0,−r0}, {0, 2r0,−2r0},

in the original CIST(f) by the opposite quadrilateral

{0,−r0, 2r0}, {0, r0,−2r0}, {±∞, 2r0,−2r0}, {±∞, r0,−r0},

The quadrilateral graph of the CIST so obtained will consist of two singly
infinite chains and the offshoot configuration.

Then for each n ∈ S, compute m = m(n) =
∑

i∈S
i≤n

(i+ 3).

Replace each quadrilateral
{±∞, 2mr0,−2m+1r0}, {±∞,−2mr0, 2

m+1r0}, {0, 2
mr0,−2mr0},

{0, 2m+1r0,−2m+1r0}
by its opposite
{0,−2mr0, 2

m+1r0}, {0, 2
mr0,−2m+1r0}, {±∞, 2m+1r0,−2m+1r0},

{±∞, 2mr0,−2mr0}.

Each such replacement produces a further break in the infinite chain
together with further (disconnected) offshoot configurations. The total effect
of all such replacements is to produce a CIST whose quadrilateral graph
contains two singly infinite chains, a finite chain of length n for each n ∈ S
and no further chains. Hence distinct subsets S ⊂ Z+ give rise to CISTs
having non-isomorphic quadrilateral graphs and therefore these CISTs are
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themselves non-isomorphic. Since there are 2ℵ0 distinct subsets of Z+ there
are at least 2ℵ0 pairwise non-isomorphic CISTs.

The fact that the cardinality of the number of CISTs can not be greater
than 2ℵ0 is guaranteed by the fact that the set Q̄ and therefore also the
collection of all 3-subsets of Q̄ from which blocks of a CIST are chosen, are
both of cardinality ℵ0. Hence the result is proved; the number of countably
infinite Steiner triple systems has the cardinality of the continuum.

3 Disjoint and almost disjoint CISTs

DEFINITION. Two Steiner systems (V,B1) and (V,B2) are said to be
mutually disjoint (MD)/respectively mutually almost disjoint (MAD) if the
number of blocks common to both B1 and B2 is zero/one. A collection of
pairwise MD Steiner triple systems is said to be a large set if every 3-element
subset of the base set V occurs as a block in some Steiner system in the
collection. Similarly a large set of MAD Steiner triple systems is one in
which the systems are pairwise MAD and every 3-element subset of V occurs
in some Steiner system in the collection.

Our main result concerns MD systems. For the case where V is finite, Lu
Jia Xi [8],[9] has proved in a sequence of by now classic papers, the existence
of a large set of MD Steiner triple systems for all v ≡ 1 or 3 (mod 6) and
v > 7 with the possible exception of v = 141, 283, 501, 789, 1501 and 2365.
We prove the same result in the case where the set V has cardinality ℵ0

THEOREM 3. There exists a large set of mutually disjoint countably
infinite Steiner triple systems.
Proof: Consider an anti-Pasch CIST, A as constructed in Theorem 1. For
each u ∈ Q, we generate an isomorphic copy of A, denoted by Au by applying
to the points of the system the mapping

x → x+ u, x, u ∈ Q, ∞ → ∞, −∞ → −∞.

The family {Au : u ∈ Q} provides a large set of MD CISTs. This can be
seen as follows.

The blocks of type A are mapped to blocks of the form {x, y, z} where
x+y+ z = 3u and x, y, z are unequal with x, y, z ∈ Q: type A’. The block of
type C is mapped to {u,∞,−∞}: type C’. The blocks of type B are mapped
to {x+ u,−2x+ u,±∞} where x ∈ Q \ {0}: type B’.

Now let u run through the rationals, thus furnishing ℵ0 CISTs. In this
manner we certainly obtain all blocks of the form {x, y, z} where x, y, z are
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unequal with x, y, z ∈ Q and x+ y+ z = r, r ∈ Q, and also all blocks of the
form {r,∞,−∞}, r ∈ Q.

Additionally, choosing u′, v′ ∈ Q such that u′ 6= v′ and applying the
mapping defined above for u = u′ and v = v′ the blocks of types A and C
occuring in the two CISTs will be disjoint. Thus all blocks of types A’ and
C’ occur in one and only one system.

There remains to consider blocks of type B’ for varying values of u. Two
questions arise:

(i) do all blocks of the forms {α, β,∞} and {α, β,−∞} where α, β ∈ Q
and α 6= β occur among the systems and

(ii) do any such blocks occur in more than one system?

To answer these questions we firstly show that for the mappings of blocks
of type B the pair {α, β} α, β ∈ Q, α 6= β occurs in precisely two systems
in a block of type B’. This is easily seen, for take any pair {α, β} as above,
then the mapping applied to a block of type B, say {x,−2x,±∞} produces
{x+ u,−2x+ u,±∞}. Two values of x and u will now produce the required
pair in the block, that is x = (α−β)/3, u = (2α+β)/3 or x = (β−α)/3, u =
(α + 2β)/3.

Now from our construction of A if for any q ∈ Q \ {0} there is a block of
this system {q,−2q,∞} there is also a block of this system {−q, 2q,−∞}.

Thus since x = ±(α− β)/3 the type B’ blocks containing the pair {α, β}
will have oppositely signed infinities and so under the mappings one will be
{α, β,∞} and the other {α, β,−∞}. Hence all blocks of the form {α, β,∞}
and {α, β,−∞} occur each in just one system. Thus all blocks of the form
{x, y, z} with x, y, z unequal and x, y, z ∈ Q̄ are included among these sys-
tems and no block occurs in more than one system; hence we have produced
a large set of mutually disjoint countably infinite Steiner triple systems as
required.

Turning now to MAD systems it is immediately clear that if the construc-
tion described in Theorem 3 were applied to a CIST(f) with f(r) = f(−r)
for all r ∈ Q satisfying 1

2
≤ |r| < 1 then a collection of ℵ0, pairwise MAD

CISTs would be obtained. Unfortunately it is equally clear that the collec-
tion is not a large set nor can be extended to such. However in [6], Lindner
and Rosa give for the finite case v ≡ 1 or 3 (mod 6) an easy construction of
a large set of mutually almost disjoint Steiner triple systems S(2, 3, v) from
a Steiner quadruple system S(3, 4, v + 1). The Lindner and Rosa method is
also applicable to the infinite case and so we are able to state:
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THEOREM 4. If there exists a countably infinite Steiner quadruple system
(i.e. the parameters defined in the introductory section of this paper have
the values t = 3, k = 4 and |V | = ℵ0) then there exists a large set of mutually
almost disjoint countably infinite Steiner triple systems.
Proof: Take as representation of a countably infinite set, Q∗ = Q̄∪ {⋆} and
construct a countably infinite Steiner quadruple System with this as the base
set V . For each x ∈ Q consider the derived CIST obtained by deleting all
blocks not containing x as well as x itself. Now rename the element ⋆ as
x. As x runs through Q a large set of mutually almost disjoint countably
infinite Steiner triple systems is obtained. For details see [6].

NOTE. In a forthcoming paper [4] we give a construction for a countably
infinite Steiner quadruple system. The existence of such systems has also
been proved by Köhler in [5].

Finally in this section we observe that the large set of mutually disjoint
countably infinite Steiner triple systems consists of isomorphic copies of an
anti-Pasch CIST. It would be interesting to construct a large set of MD CISTs
in which each system was isomorphic to a non-anti-Pasch CIST; indeed we
ask the more general question of whether there exists a large set of MD
isomorphic copies of any CIST?

4 Pairs of CISTs with prescribed intersec-

tions

DEFINITION. For the case where V is finite and of cardinality v ≡ 1 or
3 (mod 6) denote by I(v) the set of all integers m such that there exists a
pair of Steiner triple systems each of order v having precisely m blocks in
common.

In [7], Lindner and Rosa proved that I(v) = {n : n ∈ Z, 0 ≤ n ≤
b − 6} ∪ {b − 4, b} where b = v(v − 1)/6 is the number of blocks in each
system. We consider the same problem for CISTs and present a complete
solution in the two theorems below.

THEOREM 5. For any non-negative integer m or m countably infinite,
there exists a pair of countably infinite Steiner triple systems having precisely
m blocks in common.
Proof: Consider an anti-Pasch cist A, as constructed in Theorem 1 and
apply two mappings to the points of this CIST as follows.
Mapping 1: x → x+ 1, x ∈ Q; ∞ → ∞; −∞ → −∞.

15



Mapping 2: x → x− 1, x ∈ Q; ∞ → ∞; −∞ → −∞.
The two CISTs obtained denoted by A1, and A−1 respectively, are by the
proof of Theorem 3, disjoint.

Our method of proof is to devise a mapping F : Q̄ → Q̄ such that the
CIST F (A1) has precisely m blocks in common with A−1. The form of F
is an involution; we firstly require that F (±∞) = ±∞ and F (0) = 0 and
will determine a subset S ⊂ Q+ such that F (±x) = ∓x if x ∈ S, and
F (±x) = ±x otherwise, with obvious notation as to the selection of the
signs. Clearly any blocks common to F (A1) and A−1 will originate from the
same type of block A, B or C in A. We will arrange that all common blocks
originate from type A. To do this we consider the three types in turn.

(i) If 1 6∈ S then the blocks originating from type C in both systems are
distinct.

(ii) Consider typical blocks originating from type B. These are of the form
{r+1,−2r+1,±∞} where r ∈ Q\{0} in A1 and {s−1,−2s−1,±∞}
where s ∈ Q \ {0} in A−1 . For the former to be equal to the latter
when the mapping F is applied one of the following three necessary
conditions must hold. (They are not sufficient because the “signs of
the ∞ s” may be different).

(a) {−r − 1, 2r − 1} = {s− 1,−2s− 1}.
Hence either −r− 1 = s− 1 and 2r− 1 = −2s− 1 giving r = −s,
but in this case from the construction of A the “signs of the ∞ s”
are different. Alternatively −r − 1 = −2s− 1 and 2r − 1 = s− 1
giving r = 2s = 4r which is impossible.

(b) {−r − 1,−2r + 1} = {s− 1,−2s− 1}.
If −r−1 = s−1 and −2r+1 = −2s−1 it follows that r = −s = 1

2

and as in (a) the “signs of the ∞ s” are different. Alternatively if
−r− 1 = −2s− 1 and −2r+1 = s− 1 then r = 4/5 and s = 2/5.
Hence we must require that r + 1 = 9/5 6∈ S.

(c) {r + 1, 2r − 1} = {s− 1,−2s− 1}.
If r + 1 = s− 1 and 2r− 1 = −2s− 1 then r = −s = −1 and the
same applies as in (a) and (b). Alternatively r+1 = −2s− 1 and
2r − 1 = s− 1 gives r = −2/5 and s = −4/5; −2r + 1 = 9/5 as
in (b).

Hence, to summarise, if 9/5 6∈ S then the blocks originating from type
B in F (A1) and A−1 are distinct.
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iii) Any block in A1, originating from type A will be of the form {x, y, z}
where x+ y + z = 3 and x, y, z are unequal with x, y, z ∈ Q. Without
loss of generality, applying the mapping F to such a block leads to one
of the four following possibilities which are examined in turn.

(a) {x, y, z} → {x, y, z}. The block can not be in A−1.

(b) {x, y, z} → {−x, y, z}. For the latter to be a block of A−1 then
−x + y + z = −3 giving x = 3 and z = −y. Requiring 3 6∈ S
avoids this possibility.

(c) {x, y, z} → {−x,−y, z}. Again for the latter to be a block of A−1

then −x − y + z = −3 giving z = 0 and y = 3 − x. So for any
block of the form {0, x, 3 − x} where x ∈ Q \ {0, 3

2
, 3} in A1 the

condition that both |x| ∈ S and |3− x| ∈ S will result in a block
common to both F (A1) and A−1.

(d) {x, y, z} → {−x,−y,−z}. The latter would of necessity be a
block of A−1 but we avoid the occurrence of this by our choice of
the set S below which ensures that no block {x, y, z} contained in
A1, maps to {−x,−y,−z}. To see this note that if x+ y + z = 3
then not all of |x|, |y| and |z| ∈ S.

To complete the proof let m be as in the statement of the theorem. Put

ǫn =

n
∑

i=1

10−i and let S = {x : x = 3/2± ǫn for n ∈ Z and 1 ≤ n ≤ m}.

Then from the conditions derived in (i), (ii) and (iii) above it is clear that
F (A1) will have precisely m blocks in common with A−1 and the theorem is
proved.

Superficially the above theorem might appear slightly surprising in that
it is not analogous to the result in the finite case proved by Lindner and Rosa
[7]. However observe that in the finite case the number of common blocks
between two Steiner systems automatically determines the number of blocks
not in common. This is not the case for CISTs and in the construction
of Theorem 5 of two countably infinite Steiner triple systems having any
prescribed number of common blocks, the number of blocks not in common
has cardinality ℵ0. To complete the solution therefore we state and prove
the theorem below.

THEOREM 6. For any m ∈ {0, 4} ∪ {n : n ∈ Z, n ≥ 6} and no other
values there exists a pair of countably infinite Steiner triple systems differing
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in precisely m blocks, i.e. there are precisely m blocks in the first system but
not in the second and vice-versa.
Proof: Consider any CIST constructed on the set Q̄ as indicated. Let V
be a finite set of cardinality v ≡ 1 or 3 (mod 6) and further consider any
Steiner triple system S(2, 3, v) constructed on V . Then another CIST can be
constructed on the Cartesian product V × Q̄ in the usual way, i.e. the blocks
of the new CIST are

(i) {(a, x), (b, y), (c, z)}

(ii) {(a, x), (a, y), (a, z)} for all a ∈ V

(iii) {(a, x), (b, x), (c, x)} for all x ∈ Q̄

where {a, b, c} and {x, y, z} are blocks of the S(2, 3, v) and original CIST
respectively.

Trivially all blocks of the form {(a, 0), (b, 0), (c, 0)} form a finite Steiner
triple subsystem of order v of the CIST. Now let any m defined as in the
statement of the theorem be given. Choose any v such that v(v − 1)/6 ≥ m
and construct a CIST on the set V × Q̄ as indicated. Now construct a second
CIST in the same way but replacing m blocks of the form {(a, 0), (b, 0), (c, 0)}
using the m blocks of a second S(2, 3, v) which has precisely these blocks not
in common with the first S(2, 3, v).

It remains to show that there does not exist a pair of CISTs differing in
1, 2, 3 or 5 blocks. Suppose otherwise. Consider one of the CISTs, then
the blocks not in common with the other CIST form a finite partial Steiner
triple system which by Treash’s theorem [10] can be embedded in a (com-
plete) finite Steiner triple system. Replacing the non-common blocks of the
first CIST with those of the second CIST in the finite Steiner triple system
would then give a contradiction to Lindner and Rosa’s result concerning the
sets I(v). Hence the theorem is proved.
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