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1 Introduction

In this note we re-examine a construction for Steiner triple systems which
although to our knowledge appears at least three times [4], [5], [6] in the
published literature seems to be virtually unknown. In the authors’ opinions
this is a pity because it is direct, extremely simple and valid for all admissible
orders of a Steiner triple system. The construction is presented in the papers
by Schreiber [5] and Quiring [4] where it is used to prove the existence of a
large set of mutually disjoint Steiner triple systems under a certain number
theoretic condition (for definitions and precise statements of results see the
relevant sections below). The same is done in the paper by R. M. Wilson [6]
but in addition it is also shown that a single system can be constructed for
all admissible orders. Indeed Wilson also comments on the elegance of the
method. However it is not just our aim to popularise this work by presenting
yet another version. The method can be extended very easily to construct a
pair of mutually disjoint or mutually almost disjoint Steiner triple systems for
some admissible orders and in the cases where a large set of mutually disjoint
systems can be constructed these have the structure of being anti-Pasch or
quadrilateral free, thus extending the known spectrum of such systems. In
particular these are the first known quadrilateral free Steiner triple systems
whose order v ≡ 1 (mod 6).
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2 Single systems

Recall that a Steiner triple system, denoted by STS(v), is a collection of
subsets of cardinality three, called blocks, of a base set V of cardinality v
having the property that every pair of elements of V occurs in precisely one
block. The necessary and sufficient condition for the existence of an STS(v),
[3] is v ≡ 1 or 3 (mod 6) and to exclude trivial systems we will also assume
that v ≥ 7. Let n = v−2 and consider an Abelian group G of order n, whose
operation we write additively for convenience and whose identity is denoted
by 0. Note that neither 2 nor 3 divides n. Now list all unordered triples
〈a, b, c〉 where a, b, c ∈ G and a + b + c = 0. These fall into three different
types or possibilities.

(a) 〈a, b, c〉 where a 6= b 6= c 6= a. Except in the case dealt with under
possibility (b), the set {a, b, c} is included as a block of the system; we
refer to these blocks as of type A.

(b) 〈a, a,−2a〉 where a ∈ G, a 6= 0. This collection of triples can be parti-
tioned into orbits under the mapping z → −2z, z ∈ G. If the number
of triples in each orbit is even (note that the total number of such
triples is even) then replace the repeated element in each triple by one
of two further elements A or B in such a way that triples which have
an element in common i.e. one of which can be mapped to the other
by z → −2z, receive different elements A or B. All sets {A, a,−2a}
and {B, a,−2a} where a ∈ G, a 6= 0 are included as blocks of the
system; we refer to these as of type B. If the number of triples in an
orbit is odd then the above will not be possible but in that case such
odd order orbits will occur in pairs; if one is generated by the triple
〈a, a,−2a〉 there will be another generated by 〈−a,−a, 2a〉. Include
sets {0, a,−2a} and {0,−a, 2a} as blocks of the system; call these type
A’. In addition delete blocks {0, a,−a} and {0, 2a,−2a} from the sys-
tem replacing these with {A, a,−a} and {B, 2a,−2a}; type B’. Other
triples in the pair of orbits may then be dealt with as previously pro-
viding we begin with replacing both 〈2a, 2a,−4a〉 and 〈−2a,−2a, 4a〉
by {A, 2a,−4a} and {A,−2a, 4a} respectively.

(c) a single triple 〈0, 0, 0〉 which becomes the set {0, A, B}; type C.

It is very easy to verify that all of the above blocks constitute a Steiner triple
system and we leave this as an exercise for the reader.
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3 Two disjoint or almost disjoint systems

Two Steiner triple systems are said to be disjoint if they have no block in
common and almost disjoint if they have precisely one block in common.
Firstly construct a single system S(0) as indicated in Section 2. Now choose
a ∈ G, a 6= 0 and apply the mapping z → z + a, z ∈ G, A → A,B → B to
the system to construct a second system S(a). Assume that all of the orbits
under possibility (b) in Section 2 are of even length i.e. that no sets of type
A’ or B’ occur. It is then easy to verify that in this case the only block which
systems S(0) and S(a) may have in common is {C,−a, 2a} which in S(a) is
the map of the block {C,−2a, a} in S(0). Hence the two systems are either
disjoint or almost disjoint according as the orbit of the triple 〈a, a,−2a〉 under
z → −2z is singly or doubly even respectively. If the mapping z → z + a,
z ∈ G, A → B,B → A is also applied to S(0) to form a third system S ′(a)
it is then clear that the systems S(0) and S ′(a) are either almost disjoint or
disjoint in the respective cases.

4 Large sets of mutually disjoint systems

A collection of pairwise mutually disjoint Steiner triple systems is called a
large set if every triple occurs as a block of one of the systems. Elementary
counting determines that this consists of v−2 mutually disjoint Steiner triple
systems. Using the same arguments as in Section 3 it is an easy generalisation
of the results given there that if the orbits under possibility (b) in Section
2 are all singly even, the Steiner triple systems S(a) as a runs through all
elements of the group G form a large set of mutually disjoint Steiner triple
systems. Again the reader will be able to supply the details of the proof for
himself or alternatively refer to [4], [5], [6]. The condition that the orbits
under possibility (b) are all singly even is better given number theoretically.
For every prime divisor p of n = v − 2, the order of −2 (mod p) must be
singly even.

Alternatively this is equivalent to the order of +2 (mod p) being odd or
in fact that the order of +2 (mod n) is odd. It follows that +2 must be a
quadratic residue and hence that p must be of the form 8s+1 or 8s+7. In the
latter case −2 is a quadratic non-residue and hence the order of −2 is even.
In addition this must be singly even since the order divides p−1 = 2(4s+3).
To summarize, v − 2 must be of the form of a product of any primes of the
form 8s + 7 and certain primes of the form 8s + 1. Up to 100, these latter
include the primes 73 and 89 but not 17, 41 or 97.
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5 Quadrilateral free Steiner triple systems

A quadrilateral consists of four blocks of a Steiner triple system whose union
has cardinality six. It is clear that a quadrilateral must have the follow-
ing configuration: {x, y, z}, {a, b, z}, {a, y, c}, {x, b, c}. Steiner triple systems
having no quadrilaterals are known as anti-Pasch systems or we prefer the
term quadrilateral free. Bose [1] gave the following construction of an STS(v)
where v ≡ 3 (mod 6). Let H be an Abelian group of odd order 2s + 1 and
let S be the Cartesian product H × {0, 1, 2}. Then the following subsets of
S,

{(x, 0), (x, 1), (x, 2)} for all x ∈ H,

{(x, 0), (y, 0), (z, 1)}

{(x, 1), (y, 1), (z, 2)}

{(x, 2), (y, 2), (z, 0)} where xy = z2, x 6= y

form the blocks of an STS(6s + 3).
In [2], Doyen observed that if the order of the group H is not divisible

by 7 then the system so formed is quadrilateral free and this is the only
construction known to the authors of such systems.

We now prove that using the method described in this paper, the condi-
tion for which the Steiner triple systems so constructed are quadrilateral free
is precisely the same as the condition to construct a large set of mutually
disjoint systems i.e. the orbits under possibility (b) in Section 2 are all singly
even.

Consider the system S(0). Firstly observe that no quadrilateral may
comprise four blocks of type A; {x, y, z}, {a, b, z}, {a, y, c}, {x, b, c} since the
conditions x + y + z = a + b + z = a + y + c = x + b + c = 0 imply
x = a, y = b, z = c. Now assume that the quadrilateral includes a block of
type B; {A, a,−2a} and further assume that the block which intersects it at
element A is also of type B; {A, b,−2b}. Then there are four possibilities for
the remaining two blocks.

(i) {a, b, c} and {−2a,−2b, c} giving a + b+ c = −2a − 2b + c = 0. Thus
c = 0 and b = −a giving a bona fide quadrilateral the only way of
which to avoid is that the orbits under possibility (b) in Section 2 are
all singly even since in that case alone if {A, a,−2a} is a block then so
is {B,−a, 2a} and not {A,−a, 2a}. Hence, the condition is necessary
and blocks of types A’ and B’ will not occur in a quadrilateral free
system and can be ignored.

(ii) {a, b, B} and {−2a,−2b, B} so from the first block b = −a/2 giving a
contradiction with the second block.
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(iii) {a,−2b, c} and {−2a, b, c} giving a − 2b + c = −2a + b + c = 0. This
leads to a = b, a contradiction.

(iv) {a,−2b, B} and {−2a, b, B} so from the first block −2b = −a/2 or
a = 4b. Hence from the second block −2a = 8b = −b/2 or 15b = 0.
But the order of the group G is a product of primes of the form 8s+7
or 8s+ 1 so b = 0, a contradiction.

The only other possibility to consider is if the quadrilateral includes a
block of type B; {A, a,−2a} and the block of type C: {A,B, 0}. Then the
remaining two blocks are either {0, a,−a} and {B,−2a,−a}, or {0,−2a, 2a}
and {B, a, 2a} the first case of which is possible only if −2a = 2a and the
second only if 5a = 0 both leading to a = 0, again a contradiction. Hence
the condition is also sufficient. Up to 100, the result establishes the existence
of previously unknown quadrilateral free STS(v) for v = 25, 49, 73 and 91.
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