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Abstract. We investigate cyclic bi-embeddings in an orientable surface of
Steiner triple systems on 31 points. Up to isomorphism, we show that there
are precisely 2408 such embeddings. The relationship of these to solutions of
Heffter’s first difference problem is discussed and a procedure described which,
under certain conditions, transforms one bi-embedding to another.



1 Introduction

In 1967 Ringel and Youngs completed the proof of the Heawood Map Colour
Theorem. An account can be found in [6]. In particular they proved that
the complete graph K,, can be embedded in an orientable surface of genus
[(n—3)(n—4)/12]. In the cases where n = 0,3,4 or 7 (mod 12) the embeddings
are triangulations and the faces form a Mendelsohn triple system. When n = 3
or 7 (mod 12) there is potential for the Mendelsohn triple system to form two
Steiner triple systems. In the literature, there is a wealth of material on graph
embeddings but results on the embedding of designs are much more sparse. This
paper is concerned with the latter. Throughout we only deal with orientable
embeddings.

A Mendelsohn triple system of order n, MTS(n), is a pair (V,B) where V is a set
of points of cardinality n and B is a set of cyclically ordered triples of elements
of V which collectively have the property that each ordered pair of elements
of V is contained in precisely one triple. (A triple (a,b,¢) “contains” the pairs
(a,b), (b, c), (c,a).) Such systems exist for n =0 or 1 (mod 3), n # 6. A Steiner
triple system of order n, STS(n), is a pair (V,B) where V is a set of points of
cardinality n and B is a set of triples of elements of V which collectively have
the property that each unordered pair of elements of V is contained in precisely
one triple. Such systems exist for n = 1 or 3 (mod 6).

If the graph K, is embedded in an orientable surface and every triple of a Steiner
triple system is a face of this embedding then that system is also regarded as
being embedded in the surface with these faces being coloured, say, black. If
the remaining faces (white) also form a Steiner triple system we then have a
face two-colourable bi-embedding of the two Steiner triple systems.

A particular question is whether, for n = 3 or 7 (mod 12), all STS(n)s can be
embedded. This seems to be a difficult question to answer. When n = 3 (mod
12), the first non-trivial case is n=15. There are 80 non-isomorphic STS(15)s
and it is currently known that three of these can be bi-embedded [1]. In this
paper we focus on n = 7 (mod 12) and, in particular, cyclic bi-embeddings of
cyclic systems. By this we mean an embedding which has a cyclic automorphism
of order n which necessarily extends to the two STS(n)s. In the case n = 3 (mod
12), a cyclic STS(n) contains a unique short orbit. Consequently there can be
no cyclic bi-embeddings of such a system. The STS(7) can be cyclically bi-
embedded in a torus and details of this and the cyclic bi-embeddings of the
STS(19)s can be found in [4]. The case examined in this paper is the cyclic
bi-embedding of the 80 non-isomorphic cyclic STS(31)s. These are given in [3]
and we follow the numbering therein.

2  Summary of Results
Each of the cyclic STS(31)s comprises five cyclic orbits. In a cyclic bi-embedding

the blocks of each orbit are oriented consistently. Without loss of generality,
one orbit may be oriented arbitrarily and there are then two possibilities for



each of the other orbits. This gives 16 potential orderings for consideration for
each of the 80 systems, a total of 1280 possibilities.

An embedding of a graph (or design) in an orientable surface may be described
by means of a rotation scheme. Given a vertex x of the graph (or point of the
design) the rotation scheme at z comprises the cyclically ordered list of other
vertices (points) which are adjacent to « taken in the order in which they appear
around z in the embedding. The rotation scheme for the embedding is the set of
all the vertices together with their rotations taken with a consistent orientation,
i.e. all clockwise or all anti-clockwise. If the rotation scheme is cyclic then we
can denote the vertices by 0,1,...,n — 1 in such a way that the rotation about
x is obtained by adding = (modulo n) to the rotation about 0.

The 1280 orientations produce a total of 5536 cyclic bi-embeddings. These were
found by the same computer program which was used in [4]. As a check on the
correctness of the program it was used to verify the results produced by hand for
n=19. The 5536 cyclic bi-embeddings can be reduced to 2408 non-isomorphic
embeddings. The key to this is the observation that if system #i is embedded
with system #j and ¢ is a multiplier automorphism of #:¢ but not of #7 then
isomorphic embeddings of #i with #j and of #i with ¢(#j) will be obtained.
Amongst the 80 cyclic STS(31)s there are 12 systems with a multiplier auto-
morphism of order 3 and one system with a multiplier automorphism of order
5 (#80). For each of the 1280 orientations the program was used to determine
all possible bi-embeddings. Hence a further check on the correctness of the pro-
gram is the symmetry of the matrix N given in the Appendix whose entries give
the numbers of non-isomorphic cyclic bi-embeddings of system #i with system
5.

A brief summary of the computational results is as follows:

(a) Of the 80 cyclic STS(31)s, 76 can be cyclically bi-embedded (although
this does not mean that the remaining four cannot be bi-embedded non-
cyclically). This contrasts with the four cyclic STS(19)s, all of which may
be cyclically bi-embedded [4].

(b) There are 64 non-isomorphic cyclic bi-embeddings of a system with itself,
involving 44 distinct systems.

(c) System #80 (PG(4,2)) does cyclically bi-embed, but not with itself. This
is unlike the STS(7) (PG(2,2)). The projective STS(15)
(PG(3,2)), as noted above, cannot have a cyclic bi-embedding; it does
however have a non-cyclic bi-embedding with itself. This suggests that
there is still hope for a non-cyclic bi-embedding of PG(4,2) with itself.

The distribution of the 5536 bi-embeddings of the cyclic STS(31)s is given in
the matrix M (see Appendix). Each entry in the body of the matrix M gives the
number of bi-embeddings of system #i with system #j where i and j are the
system numbers which appear at the heads of the associated row and column.
The numbering of the STS(31)s corresponds to that given in [3] but the systems
are grouped into the classes discussed below. Because of this grouping the rows



and columns of M are not numbered sequentially. The distribution of the 2408
non-isomorphic bi-embeddings is given, in similar format, in the matrix N.
The matrices have a noticeable “block” structure which we show to be connected
with the solution of Heffter’s first difference problem. It is this which led us to
group the STS(31)s into eight classes and explains the ordering of the 80 systems
in the matrices (see Section 3 for details). The rotation schemes for the 2408
bi-embeddings are available from the authors in the format:

bi-embedding rotation the two STS(31)s
number at 0 embedded therein

3 Heffter’s First Difference Problem

In 1897, Heffter posed the following difference problem [5]: can the integers
1,2,...,3k be partitioned into k triples {a, b, ¢} so that for each triple, a+b+c =0
(mod 6k+1)? Heffter observed that a solution to this problem produces cyclic
Steiner triple systems of order 6k+1. Each difference triple {a, b, ¢} gives rise to
a cyclic orbit of the system generated by either {0, a,a+b} or {0,b,a+b}. In [2]
it was found that for the case where k=5 there are 64 solutions to Heffter’s dif-
ference problem (HDP) producing 64 x2° = 2048 distinct cyclic STS(31)s which
lie in 80 isomorphism classes. Two solutions to HDP are said to be multiplier
equivalent if one set of triples may be obtained from the other by first multi-
plying by a constant factor (modulo 6k+1) and then reducing any residue z in
the range 3k +1 < x < 6k to (6k + 1 — z). Clearly, two solutions to HDP which
are multiplier equivalent will produce isomorphic sets of Steiner triple systems.
The 64 solutions to HDP for k = 5 partition into eight “Heffter classes” under
multiplier equivalence. A representative solution for each of these eight classes
is listed as A to H below.

{123} {4711} {51214} {6,9,15} {8,10,13}
{123} {4812} {5914} {6,105} {7,11,13}
{134} {2810} {51214} {6,9,15} {7,11,13}
{123} {4711} {5,105} {6,12,13} {8,9,14}
{134} {21012} {5,11,15} {6,7,13}  {8,9,14}
{156} {279} {3,135} {4,10,14} {8,11,12}
{156} {21012} {3,13,15} {4,7.11} {8914}
{11112} {279} {358} {4,134} {6,10,15}

TQEEDQW

Each of these eight Heffter classes produces 2° distinct STS(31)s, some of which
will be isomorphic. In fact, three of the classes produce 16 systems, three pro-
duce 8 systems and two produce 4 systems. The distribution of the 80 cyclic
STS(31)s into the eight Heffter classes is given in the table below using the
standard numbering of the 80 systems given in [3].



5 6 7 8 9 10 11 12 33 34 35 36 37 38 39
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
41 42 43 44 45 46 47 48 55 56 57T B8 59 60 61

12 3 4 13 14 31 32
49 50 51 52 53 54 63 64
65 66 67 68 69 70 71 76
72 73 74 TS
778 79 80

TQEEOQW>

These 80 numbers, in the order which they appear above, form the headers for
the rows and columns of the matrices M and N given in the Appendix.

The significance of Heffter’s first difference problem for the results is now ex-
plained.

Consider the oriented cyclic orbit containing an oriented triple (0, a, o + 5).
This orbit will also contain the oriented triples (0, 8, —a) and (0, —(a+ ), —f).
If this orbit forms part of a cyclic embedding then there are just two possibilities
for the rotation about zero:

(a) (a+f8)...8(=a)...(—(a+p8)(=8)...a or
(b) (a+8)...(—(a+8) (=8)...8(-a)...a.

In case (b) consider the alternative rotation about zero given by

() (@+p) ... (=(a+p) (=) ... a (=) ... 0,

where the three sections of the rotation, namely (o + 3) . . . (—(a + 0)),
(—a) ... «a,and (=0) ... B are exactly as in (b). If (b) generates a cyclic
bi-embedding, then so does (c). The cyclic orbits of the two Steiner triple
systems of (c) will be identical to those of (b) except that the oriented cyclic
orbit containing (0, o, & + ) is replaced by the oriented cyclic orbit containing
(0,8, a + 3). Both these orbits come from a common Heffter difference triple.
As a consequence, we see that if (0, o, « + ) is an oriented triple of system #i
bi-embedded with a system #j in which the rotation about zero has the struc-
ture given in (b), then we obtain a bi-embedding of a system #i’ with system
#j. The systems #i and #i’ will lie in the same Heffter class and differ only
in the orbit corresponding to the Heffter difference triple {«, 3, + 3}. The
system #7j is common to both biembeddings.

The above observations provide an explanation for the “block” structure of
the matrices M and N. The operation described in moving from (b) to (c) is
an example of a combinatorial trade where one substructure is replaced by an
equivalent substructure; in this case the oriented orbit containing (0, a, a+ 3) is
replaced by that containing (0, 3, «+ ). Finally we note that the four STS(31)s
which are not cyclically bi-embedded are #72 - #75 and comprise Heffter class
G in the table given above.

40
30
62
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Conclusion

The results of this paper give rise to the following questions:

1.

The Heffter class G does not give rise to any cyclic bi-embeddings. Is it
possible to identify structural features of this class which clearly preclude
such bi-embeddings?

. (An extension of (1)). There are several pairs of Heffter classes which do

not give rise to corresponding bi-embeddings. Again, is it possible to iden-
tify structural features of these classes which explain this phenomenon?

The matrices M and N have a clear block structure related to the Heffter
classes. Within a block it is noticeable that most entries are non-zero
and that in many cases it is possible to move from one non-zero entry to
another using a trade of the form described above. A worthwhile future
investigation would be the extent to which it is possible to obtain all
the non-zero entries in such a block from any one entry by performing a
sequence of such trades.

Less important but still of interest are:

4.

The systems #72 - #75, which comprise Heffter class G, do not cyclically
bi-embed with any other system. However, this does not imply that these
systems will not embed in some other way and it would be of interest to
find bi-embeddings of these systems.

PG(4,2) does not cyclically bi-embed with itself but the possibilty still
exists for this system to have a non-cyclic bi-embedding with itself. The
basis for this suggestion is twofold:

(a) PG(2,2) does cyclically bi-embed with itself and

(b) PG(3,2) (which cannot have a cyclic bi-embedding) does have a non-
cyclic bi-embedding with itself.
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Appendix
The matrices M and N described in the text are given below.
For the sake of clarity and to reveal the block structure, “0” entries have been suppressed and replaced by blanks.
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Table 1. The Matrix M
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Table 2. The Matrix N



