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1 Introduction

In [1], three of the present authors initiated the study of generating sets and
bases for configurations in Steiner triple systems. A configuration is simply
any collection of blocks which can occur as part of a Steiner triple system,
i.e. no pair is repeated, and if the configuration consists of n blocks it will
be referred to as an n-configuration. For some configurations e.g. the n-
star, n lines intersecting at a common point, the number of occurrences in
a Steiner triple system of order v, STS(v), can be expressed as a rational
polynomial in v. Since for any given admissible v, this number is the same
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irrespective of the structure of the STS(v), such configurations will be called
constant. Other configurations are variable. It is easy and was shown in [1]
that all one, two and three-configurations in STS(v) are constant. For n-
configurations, n ≥ 4, this is not the case and the question arises of finding a
set of m-configurations, m ≤ n, such that the number of occurrences of each
member of the set determines the number of occurrences of all possible n-
configurations. Such a set is called a generating set and when it is minimal,
a basis. There are 16 pairwise non-isomorphic 4-configurations and in [1],
formulae for the number of occurrences of each of them was given. These all
take the form of a rational polynomial in v plus or minus an integral multiple
of the number of occurrences of the Pasch configuration. The latter, which is
any configuration isomorphic to {A,B,C}, {A, Y, Z}, {X,B, Z}, {X, Y, C}, is
known to be variable. Thus any constant configuration, and we could choose
just a single block, together with any variable 4-configuration, in particular
the Pasch configuration, form a basis for 4-configurations.

In a follow-up paper [2], the authors prove a general result concerning the
generating set for n-configurations in STS(v). Define the valency of a point
in a configuration as being the number of blocks in which the point occurs.
The main theorem in [2] is then that a generating set for n-configurations
in a Steiner triple system consists of any constant configuration together
with all m-configurations, m ≤ n in which every point has valency at least
2. This result is then used to determine bases for 5-configurations and 6-
configurations. For the former a basis consists of any constant configuration,
the Pasch configuration and the mitre configuration. The latter is any config-
uration isomorphic to {A,B,C}, {A,D,E}, {A, F,G}, {B,D, F}, {C,E,G}.
The proof of the theorem rests on recursive formulae relating the number of
occurrences of particular n- and (n − 1)-configurations. In theory therefore
the whole process of determining a formula for the number of occurrences
of each configuration may be systematized, but in practice this would be a
major and impracticable undertaking. Apart from identifying all the con-
figurations, much other information is required to be gleaned which is much
simpler to be done by inspection. For 5-configurations, of which there are
56, it is in fact very straightforward to proceed by the methods as described
in [1]. In this paper we present these formulae, simply for reference for fu-
ture researchers who will need them. We give no details of the calculations,
the methods employed are as in [1], but they have been obtained by the
Toronto authors and Preston authors independently. Some of the results, in
particular the more complex formulae, are obtained only after very lengthy
calculations of the formulae for other configurations, a situation which also
arises with the recursive formulae from [2].

Finally, the study of configurations in Steiner triple systems raises some
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interesting fundamental questions. One of these, the characterization of the
constant configurations, is discussed in [2]. Based on the results below, in
the last section of this paper we highlight another of these questions. In
addition we discuss how this also relates to the identification of the constant
configurations. It is a further aim of this paper to present these ideas.

2 Results

For each of the 56 5-configurations we first list the blocks of the configura-
tion. These are ordered by ascending order of the number of points in each.
Alongside, for information, the five integers separated by dashes give the
4-configurations which are obtained when each of the five blocks is removed
in turn from the 5-configuration. The numbering of the 4-configurations is
as in [1]. On the second line is given the formula, where v is the order of
the Steiner triple system, m is the number of mitre configurations and p is
the number of Pasch configurations. Configuration #1 is the mitre configu-
ration and #2 is the mia configuration, obtained by adjoining an extra block
through two non-adjacent points of a Pasch configuration. The formulae may
alternatively be given in terms of the numbers of mitre and mia configura-
tions simply by dividing the coefficient of the number of Pasch configurations
by 3. For simplicity we write n(v) = v(v− 1)(v− 3) which frequently occurs
as a factor. All polynomials are irreducible over Q, the set of rationals.
[The points of the configurations here are 0, 1, . . . , 9, a, b, c, d, e.]

1) 012 034 135 236 456 14− 14− 14− 15− 15
m : MITRE

2) 012 034 135 245 236 15− 15− 15− 15− 16
3p : MIA

3) 012 034 135 236 147 11− 11− 14− 15− 15
n(v)/2− 12p

4) 012 034 135 236 457 11− 12− 12− 14− 15
n(v)/2− 12p− 6m

5) 012 034 135 245 067 11− 11− 12− 12− 16
3(v − 7)p

6) 012 034 135 246 257 10− 11− 11− 14− 14
n(v)/2− 12p
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7) 012 034 135 246 567 10− 10− 12− 12− 14
n(v)/4− 6p− 3m

8) 012 034 135 067 168 10− 11− 11− 11− 11
n(v)(v − 8)/4 + 6p

9) 012 034 135 067 268 9− 11− 11− 12− 12
n(v)(v − 10)/2 + 36p+ 6m

10) 012 034 135 067 568 8− 10− 10− 11− 12
n(v)(v − 9)/2 + 24p

11) 012 034 135 236 078 8− 11− 11− 12− 15
n(v)(v − 9)/4 + 12p

12) 012 034 135 236 378 7− 11− 11− 11− 15
n(v)(v − 7)/12 : CONSTANT

13) 012 034 135 236 478 6− 8− 12− 12− 15
n(v)(v − 11)/4 + 24p+ 6m

14) 012 034 135 245 678 6− 6− 6− 6− 16
(v − 7)(v − 12)p/6

15) 012 034 135 246 078 11− 11− 13− 13− 14
n(v)(v − 9)/8− 3(v − 9)p+ 3m

16) 012 034 135 246 178 8− 9− 11− 12− 14
n(v)(v − 9)/2− 12(v − 9)p

17) 012 034 135 246 578 6− 9− 9− 12− 14
n(v)(v − 11)/4− 6(v − 11)p+ 6m

18) 012 034 135 267 468 9− 9− 10− 12− 12
n(v)(v − 11)/2 + 48p+ 12m

19) 012 034 156 357 468 10− 10− 10− 13− 13
n(v)(v − 10)/12 + 6p+ 2m

20) 012 034 135 067 089 7− 8− 8− 11− 11
n(v)(v − 7)(v − 9)/16 : CONSTANT

21) 012 034 135 067 189 8− 8− 9− 11− 11
n(v)(v − 9)2/8− 12p

22) 012 034 135 067 289 5− 8− 11− 12− 13
n(v)(v2 − 20v + 103)/4 + 12(v − 13)p− 12m

23) 012 034 135 067 589 4− 9− 9− 11− 12
n(v)(v − 9)(v − 11)/8 + 6(v − 11)p

24) 012 034 135 067 689 6− 8− 9− 9− 11
n(v)(v2 − 20v + 101)/4− 60p− 6m
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25) 012 034 135 236 789 4− 6− 6− 6− 15
n(v)(v2 − 22v + 123)/36− 12p− 2m

26) 012 034 135 246 789 5− 5− 6− 6− 14
n(v)(v2 − 22v + 123)/24− (v2 − 22v + 123)p− 3m

27) 012 034 135 267 289 3− 8− 8− 12− 12
n(v)(v − 9)(v − 11)/16 + 6(v − 9)p

28) 012 034 135 267 489 5− 5− 9− 12− 12
n(v)(v2 − 22v + 125)/8 + 12(v − 12)p− 12m

29) 012 034 135 267 689 3− 6− 9− 9− 12
n(v)(v2 − 22v + 123)/4 + 12(v − 16)p− 18m

30) 012 034 156 357 089 9− 9− 10− 10− 11
n(v)(v − 9)(v − 10)/4 + 6(v − 13)p

31) 012 034 156 357 289 5− 10− 10− 11− 14
n(v)(v2 − 21v + 114)/4 + 6(v − 23)p− 18m

32) 012 034 156 378 579 9− 9− 9− 9− 9
n(v)(v2 − 21v + 113)/10− 36p− 6m

33) 012 034 056 078 09a 7− 7− 7− 7− 7
n(v)(v − 5)(v − 7)(v − 9)/3840 : 5-STAR, CONSTANT

34) 012 034 056 078 19a 4− 7− 8− 8− 8
n(v)(v − 7)(v − 9)(v − 11)/96 : CONSTANT

35) 012 034 056 178 19a 3− 8− 8− 8− 8
n(v)(v − 9)2(v − 11)/128 + 3p

36) 012 034 056 178 29a 2− 8− 8− 13− 13
n(v)(v − 11)(v2 − 20v + 107)/64− 6(v − 11)p+ 3m

37) 012 034 056 178 39a 5− 5− 8− 8− 9
n(v)(v − 11)(v2 − 20v + 103)/16− 6(v − 19)p+ 6m

38) 012 034 056 178 79a 3− 4− 8− 9− 9
n(v)(v − 9)(v − 11)2/16− 12(v − 11)p

39) 012 034 135 067 89a 4− 5− 5− 6− 11
n(v)(v − 12)(v2 − 20v + 103)/24− 6(v − 17)p+ 6m

40) 012 034 135 267 89a 2− 5− 5− 6− 12
n(v)(v − 12)(v2 − 22v + 129)/24 + 2(v2 − 28v + 207)p+ 18m

41) 012 034 135 678 69a 3− 3− 3− 6− 6
n(v)(v − 13)(v2 − 21v + 114)/48− 6(v − 15)p+ 6m

42) 012 034 156 278 39a 2− 2− 5− 9− 9
n(v)(v3 − 33v2 + 371v − 1427)/16− 12(2v − 27)p+ 24m
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43) 012 034 156 357 89a 5− 5− 5− 5− 10
n(v)(v − 12)(v2 − 21v + 116)/48 + (v2 − 25v + 216)p/2 + 6m

44) 012 034 156 378 59a 3− 5− 5− 9− 9
n(v)(v3 − 33v2 + 367v − 1383)/8− 24(v − 18)p+ 36m

45) 012 034 056 078 9ab 4− 4− 4− 4− 7
n(v)(v − 7)(v − 9)(v − 11)(v − 13)/2304 : CONSTANT

46) 012 034 056 178 9ab 2− 4− 5− 5− 8
n(v)(v2 − 20v + 103)(v2 − 24v + 147)/96 + 12(v − 14)p− 6m

47) 012 034 056 789 7ab 3− 3− 3− 4− 4
n(v)(v − 9)(v − 11)2(v − 18)/384 + 3(v − 11)p

48) 012 034 135 678 9ab 2− 2− 2− 6− 6
n(v)(v2 − 22v + 129)(v2 − 25v + 162)/432
−2(v2 − 28v + 219)p/3− 6m

49) 012 034 156 278 9ab 1− 5− 5− 5− 13
n(v)(v4 − 46v3 + 808v2 − 6442v + 19743)/288
−2(v2 − 37v + 318)p/3− 10m

50) 012 034 156 378 9ab 2− 2− 5− 5− 9
n(v)(v4 − 46v3 + 804v2 − 6330v + 18987)/48
−2(v2 − 40v + 405)p− 42m

51) 012 034 156 789 7ab 2− 3− 3− 5− 5
n(v)(v4 − 46v3 + 800v2 − 6242v + 18495)/64
+6(5v − 74)p− 27m

52) 012 034 056 789 abc 2− 2− 2− 4− 4
n(v)(v − 13)(v4 − 45v3 + 767v2 − 5847v + 16812)/3456
−3(v − 13)p+m

53) 012 034 156 789 abc 1− 2− 2− 5− 5
n(v)(v5 − 60v4 + 1458v3 − 17944v2 + 111909v − 283428)/576
+2(v2 − 37v + 345)p+ 30m

54) 012 034 567 589 abc 2− 2− 2− 2− 3
n(v)(v5 − 60v4 + 1454v3 − 17784v2 + 109809v − 274284)/768
+(v2 − 67v + 768)p/2 + 18m

55) 012 034 567 89a bcd 1− 1− 2− 2− 2
n(v)(v6 − 75v5 + 2370v4 − 40402v3 + 391905v2 − 2051235v
+4530492)/10368− (v2 − 40v + 381)p− 15m

56) 012 345 678 9ab cde 1− 1− 1− 1− 1
n(v)(v7 − 91v6 + 3588v5 − 79510v4 + 1069873v3 − 8742231v2

+40167162v − 80101224)/933120+ (v − 16)(v − 21)p/6 + 2m
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3 Conclusion

As mentioned in [2], the authors make the conjecture that an n-configuration
is constant if and only if it can be obtained from an (n−1)-star by adjoining
a further block. In general this can be done in precisely five ways. They
prove that the condition is sufficient and state that they strongly believe
that it is also necessary. We do too. Below we introduce a different but we
think essentially equivalent conjecture on the characterization of the constant
configurations. However before we do so we firstly need to discuss another
interesting fundamental question concerning configurations in Steiner triple
systems.

It would appear that the following result, analogous to the graph recon-
struction conjecture, is true.

Conjecture 1: For all n ≥ 2, the collection of n (n − 1)-configurations
obtained from an n-configuration by removing each of the n blocks in turn,
uniquely determines the n-configuration apart from four exceptions.

The exceptions are when n = 2, the pair of parallel blocks and the
pair of intersecting blocks, and when n = 3, the 3-star and the triangle

{A, F,B}, {A,E,C}, {B,D,C}. These are just the usual “small” exceptions
which often occur in Combinatorics. The results in the previous section prove
that the conjecture is true when n = 5 and it is straightforward to verify it
for n < 5. However we suspect that in general it could be quite difficult to
prove.

Within this framework we can now make the following conjecture con-
cerning the constant configurations.

Conjecture 2: For all n ≥ 5, an n-configuration is constant if and only
if each of the n (n − 1)-configurations which can be obtained from it by
removing a block in turn is also constant.

Observe that this result is however false for n = 4 though interestingly
enough not for n = 2 or 3. It is worth looking at the situation in a little more
detail. Let C

n
be a particular n-configuration. Then consider the following

three statements.

A: C
n
is constant.

B: C
n
can be obtained from an (n− 1)-star by adjoining a further line.

C: All n (n− 1)-configurations obtained from C
n
by removing a block in

turn are constant.
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We believe that for all n ≥ 5, the three statements are equivalent. How-
ever for n = 2, 3, 4 there will be sporadic exceptions. In what follows n ≥ 2.
The present state of knowledge seems to be as follows. It is proved in [2]
that B ⇒ A. It is also conjectured that A ⇒ B but there will be a single
exception the 3-partial parallel class {A,B,C}, {D,E, F}, {G,H, I}. It is
also easily seen that B ⇒ C. Again if C ⇒ B, the 3-partial parallel class will
be an exception. We have made the conjecture above that A ⇒ C for all
n ≥ 5 and it is trivially true for n = 2, 3, 4. However C ⇒ A must have as
exceptions the eleven variable 4-configurations. To our mind the intricacy of
the situation may make progress on the above questions difficult.
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