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In a recent issue of the Mathematical Gazette [1], A. C. Heath posed
the question of tessellating a convex hexagon with interior angles of 120o and
integral sides, using equilateral triangles of unit side. The number of such tri-
angles used is defined to be the content of the hexagon. In this article we show
that it is possible to construct a hexagon with content x ≥ 6 if and only if x
is not one of the numbers 7, 8, 9, 11, 12, 15, 17, 20, 21, 23, 29, 36, 39, 41, 44, 84.

Proposition 1. An equiangular hexagon with integral sides may be char-
acterised by four integers a, b, c, d, where a, b, c ≥ 1 and d ≥ 0. The numbers
a, b, c represent three alternate sides and (a+ d) represents the side opposite
a (without loss of generality we may assume d ≥ 0). The content of the
hexagon is given by

φ(a, b, c, d) = 2(ab+ bc+ ca) + 2d(a+ b+ c) + d2.

Proof. Construct the configuration ABCD and the dotted lines as shown
in the diagram.
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Place a line segment (EF ) of length a in the unique position parallel
to BC where its ends rest on the dotted lines. Put b′ = DE, c′ = FA.
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Construction of equilateral triangles on AB,CD,EF shows that b′ = b + d
and c′ = c + d, so that b′ and c′ are both positive integers. By considering
the circumscribed equilateral triangle and then removing the three smaller
equilateral triangles it can be seen that the content of the hexagon is given
by

φ(a, b, c, d) = (b+ (a+ d) + c)2 − a2 − b2 − c2

= 2(ab+ bc+ ca) + 2d(a+ b+ c) + d2.

In our subsequent discussion of φ(a, b, c, d) we shall assume that a, b, c are
positive integers and that d is a non negative integer.

Proposition 2. For x ≡ 0, 7, 8, 12, 15 (mod 16) there exist values of a, b, c, d
such that φ(a, b, c, d) = x, with the possible exceptions of the cases x =
7, 8, 12, 15, 23, 28, 31, 39, 44, 47.
Proof. φ(a, 2, 2, 0) = 8a+ 8; apart from x = 8 this generates all numbers of
the form x ≡ 0, 8 (mod 16).
φ(a, 4, 3, 1) = 16a + 39; apart from x = 7, 23, 39 this generates all numbers
of the form x ≡ 7 (mod 16).
φ(a, 4, 2, 2) = 16a + 44; apart from x = 12, 28, 44 this generates all numbers
of the form x ≡ 12 (mod 16).
φ(a, 4, 1, 3) = 16a + 47; apart from x = 15, 31, 47 this generates all numbers
of the form x ≡ 15 (mod 16).

It is possible to eliminate other residue classes in this fashion (for example
see Proposition 5). However, we have not found a suitable integer all of whose
residue classes can be so eliminated. The following proposition provides an
alternative approach. We assume x is an arbitrary positive integer.

Proposition 3. A necessary and sufficient condition for the equation
φ(a, b, c, d) = x to have a solution is that there exist positive integers α, β, γ, ε
such that

(i) x = ε2 − α2 − β2 − γ2,

(ii) 2(αβ + βγ + γα) ≤ x.

If the conditions are satisfied then φ(α, β, γ, σ) = x, where σ = ε−(α+β+γ).
This value of σ is necessarily non-negative.
Proof.

(a) Necessity. If φ(α, β, γ, σ) = x, then

σ2 + 2σ(α + β + γ) + 2(αβ + βγ + γα)− x = 0.
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Solving for σ we obtain

σ = −(α + β + γ) +
√
α2 + β2 + γ2 + x.

Hence

(i) α2 + β2 + γ2 + x is a perfect square, ε2, say.

(ii) Since σ ≥ 0, α2 + β2 + γ2 + x ≥ (α + β + γ)2. Therefore
2(αβ + βγ + γα) ≤ x.

(b) Sufficiency. Suppose the conditions are satisfied.

Put σ = ε− (α + β + γ). Then φ(α, β, γ, σ) = x. Moreover

ε2 = x+ α2 + β2 + γ2

≥ 2(αβ + βγ + γα) + α2 + β2 + γ2

= (α + β + γ)2

so that σ ≥ 0.

Proposition 4. If y is any positive integer not of the form 4e(8f + 7)
(e, f = 0, 1, 2, . . .) then

(i) y is a perfect square, or

(ii) y can be expressed as the sum of the squares of two positive integers,
or

(iii) y can be expressed as the sum of the squares of three positive integers.

Proof. This result may be found in standard textbooks, For example, see
[2].

We now establish the major part of our result.

Proposition 5. If x 6≡ 4 (mod 16) then the equation φ(a, b, c, d) = x has a
solution for x ≥ 317. If x ≡ 4 (mod 16) then the equation has a solution for
x ≥ 1268.
Proof. Proposition 2 has already dealt with the cases x ≡ 0, 7, 8, 12, 15 (mod
16). This leaves

(a) x ≡ 1, 2, 3, 5, 6 (mod 8), and

(b) x ≡ 4 (mod 16).
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For both (a) and (b) we make use of Propositions 3 and 4. Firstly for the
given x we define

g0 = b
√
xc+ 1,

where b c denotes the integer part. We note that

√
x < g0 ≤

√
x+ 1.

For i = 0, 1, 2, . . . , 7, we define gi = g0 + i and observe that

g2i − x ≤ (
√
x+ 1 + i)2 − x

= 2(1 + i)
√
x+ (1 + i)2. (5.1)

(a) x ≡ 1, 2, 3, 5, 6 (mod 8).
For i = 0, 1, 2, 3 there are three distinct residues (mod 8) taken by g2i ,
namely 0, 1, 4. For each possible value of x choose an appropriate i so
that the values of g2i and g2i − x are as tabulated below.

value of x value of g2i value of g2i − x (mod 8)
1 4 3
2 0 6
3 1 6
5 0 3
6 1 3

Now a number equal to 3 or 6 (mod 8) cannot be a perfect square or
the sum of two squares since for any integers z1, z2, z21 ≡ 0, 1, 4 (mod
8) and z21 + z22 ≡ 0, 1, 2, 4, 5 (mod 8). Thus if we can show that in each
of the above cases g2i −x satisfies the conditions of Proposition 4 it will
follow that there exist positive integers α, β, γ such that

x = g2i − α2 − β2 − γ2.

Suppose that g2i − x ≡ 3 (mod 8). Then there exist h = 0, 1, 2, . . . such
that g2i − x = 8h+ 3. But clearly 8h+ 3 6= 4e(8f + 7) for any choice of
e, f, h.
The case g2i − x ≡ 6 (mod 8) is dealt with similarly.

(b) x ≡ 4 (mod 16).
Choose i = 0, 1, 2 or 3 such that gi is divisible by 4. Then g2i − x ≡ 12
(mod 16). A number equal to 12 (mod 16) cannot be a perfect square
or the sum of two squares, since for any integers z1, z2, z21 ≡ 0, 1, 4, 9
(mod 16) and z21 + z22 ≡ 0, 1, 2, 4, 5, 6, 9, 10, 13 (mod 16). Take j to be
the non-negative integer for which g2i − x = 16j + 12 = 4(4j + 3).
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(i) Suppose j is even: j = 2k. Then g2i − x = 4(8k + 3), and clearly
4(8k + 3) 6= 4e(8f + 7) for any choice of e, f, k.

(ii) Suppose j is odd: j = 2k − 1. Then

g2i+4 − x = g2i − x+ 8gi + 16

= 4(4j + 3) + 8gi + 16

= 4(8k − 1) + 32`+ 16 (where 4` = gi)

= 4(8(k + `) + 3).

Hence g2i+4 − x ≡ 12 (mod 16) and g2i+4 − x is not of the form
4e(8f + 7).

It follows that in either of the cases (i) or (ii) it is possible to find a
value of i = 0, 1, 2, . . . , 7 for which there are positive integers α, β, γ
such that x = g2i − α2 − β2 − γ2.

To complete the proof of Proposition 5 it remains to show that condition
(ii) of Proposition 3 - i.e. 2(αβ + βγ + γα) ≤ x - is satisfied for all suitably
large values of x. From equation (5.1) we have in all cases

α2 + β2 + γ2 ≤ 2(1 + i)
√
x+ (1 + i)2,

where i ≤ 3 for x ≡ 1, 2, 3, 5, 6 (mod 8) and i ≤ 7 for x ≡ 4 (mod 16). For
any numbers α, β we have (α− β)2 ≥ 0 and so 2αβ ≤ α2 + β2. Adding two
similar inequalities we obtain 2(αβ + βγ + γα) ≤ 2(α2 + β2 + γ2). It follows
that

2(αβ + βγ + γα) ≤ 4(1 + i)
√
x+ 2(1 + i)2.

Thus 2(αβ + βγ + γα) ≤ x provided

x ≥ 4(1 + i)
√
x+ 2(1 + i)2,

which is equivalent to

x ≥ (1 + i)2(10 + 4
√

6).

For the cases x ≡ 1, 2, 3, 5, 6 (mod 8) this gives x ≥ 317, while for x ≡ 4
(mod 16) it gives x ≥ 1268.

In principle, Proposition 5 provides the solution to the problem, at any
rate for x ≥ 1268. Quite a large number of individual cases remain however.
To simplify their consideration we establish a further result on residue classes.
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Proposition 6.

(i) For x 6≡ 1, 4, 6, 9 (mod 10) there exist values of a, b, c, d such that
φ(a, b, c, d) = x, with the possible exceptions of the cases x = 2, 3, 5, 7, 8,
10, 12, 13, 15, 17, 20, 23.

(ii) For x 6≡ 0, 7 (mod 14) there exist values a, b, c, d such that φ(a, b, c, d) =
x, with the possible exceptions of the cases x = 1, 2, . . . , 25, 27, 29, 30,
31, 32, 33, 36, 39, 41, 44, 47.

Proof.

(i)
φ(a, 4, 1, 0) = 10a+ 8 φ(a, 3, 2, 0) = 10a+ 12
φ(a, 3, 1, 1) = 10a+ 15 φ(a, 2, 2, 1) = 10a+ 17
φ(a, 2, 1, 2) = 10a+ 20 φ(a, 1, 1, 3) = 10a+ 23

(ii)
φ(a, 6, 1, 0) = 14a+ 12 φ(a, 5, 2, 0) = 14a+ 20
φ(a, 4, 3, 0) = 14a+ 24 φ(a, 5, 1, 1) = 14a+ 23
φ(a, 4, 2, 1) = 14a+ 29 φ(a, 3, 3, 1) = 14a+ 31
φ(a, 4, 1, 2) = 14a+ 32 φ(a, 3, 2, 2) = 14a+ 36
φ(a, 3, 1, 3) = 14a+ 39 φ(a, 2, 2, 3) = 14a+ 41
φ(a, 2, 1, 4) = 14a+ 44 φ(a, 1, 1, 5) = 14a+ 47

It is now possible to provide the complete solution to the original problem.

Theorem 1. φ(a, b, c, d) takes all positive integral values of x apart from
x = 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 15, 17, 20, 21, 23, 29, 36, 39, 41, 44, 84.
Proof. Elimination of those numbers covered by Propositions 2, 5, and 6
leaves the following numbers still to be considered.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 29, 31, 36, 39, 41, 44,
49, 84, 91, 126, 154, 161, 189, 196, 231, 259, 266, 294, 301, 644, 756, 1204.
The tabulation below deals with those which can be obtained from φ.

x 6 10 13 14 19 31 49 91 126 154 161 189
a 1 1 1 3 2 4 7 14 15 38 5 7
b 1 2 1 1 1 1 1 1 3 1 3 3
c 1 1 1 1 1 1 1 1 1 1 1 3
d 0 0 1 0 1 1 1 1 0 0 5 3
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x 196 231 259 266 294 301 644 756 1204
a 32 12 42 20 23 49 32 40 99
b 2 4 1 3 3 1 3 6 4
c 1 3 1 1 3 1 2 3 2
d 0 1 1 2 0 1 4 0 0

The remaining numbers cannot be obtained from φ. To see this for a
particular number x we use Proposition 3. It is only necessary to list all the
possible values of α, β, γ which satisfy 2(αβ+βγ+γα) ≤ x and to check that
for each possibility, the number (α2 + β2 + γ2 + x) is not a perfect square.
We leave the details for the reader to complete.
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